Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99343
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor譚婉玉zh_TW
dc.contributor.advisorWoan-Yuh Tarnen
dc.contributor.author洪珮瑜zh_TW
dc.contributor.authorPei-Yu Hungen
dc.date.accessioned2025-09-09T16:05:49Z-
dc.date.available2025-09-10-
dc.date.copyright2025-09-09-
dc.date.issued2025-
dc.date.submitted2025-07-29-
dc.identifier.citation1. Lindahl, T., Instability and decay of the primary structure of DNA. Nature, 1993. 362(6422): p. 709-715.
2. Aziz, K., et al., Targeting DNA damage and repair: Embracing the pharmacological era for successful cancer therapy. Pharmacology & Therapeutics, 2012. 133(3): p. 334-350.
3. Huang, R. and P.-K. Zhou, DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduction and Targeted Therapy, 2021. 6(1): p. 254.
4. Ciccia, A. and S.J. Elledge, The DNA Damage Response: Making It Safe to Play with Knives. Molecular Cell, 2010. 40(2): p. 179-204.
5. Bi, X., Mechanism of DNA damage tolerance. World J Biol Chem, 2015. 6(3): p. 48-56.
6. Chao, H.X., et al., Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle. Cell Systems, 2017. 5(5): p. 445-459.e5.
7. Abraham, R.T., Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev, 2001. 15(17): p. 2177-96.
8. Lagerwerf, S., et al., DNA damage response and transcription. DNA Repair, 2011. 10(7): p. 743-750.
9. Ghosal, G. and J. Chen, DNA damage tolerance: a double-edged sword guarding the genome. Transl Cancer Res, 2013. 2(3): p. 107-129.
10. Scully, R., et al., DNA double-strand break repair-pathway choice in somatic mammalian cells. Nature Reviews Molecular Cell Biology, 2019. 20(11): p. 698-714.
11. Castedo, M., A. Lafarge, and G. Kroemer, Poly(ADP-ribose) polymerase-1 and its ambiguous role in cellular life and death. Cell Stress, 2023. 7(1): p. 1-6.
12. Sobotka, A.A. and I. Tempera PARP1 as an Epigenetic Modulator: Implications for the Regulation of Host-Viral Dynamics. Pathogens, 2024. 13, DOI: 10.3390/pathogens13020131.
13. Swindall, A.F., J.A. Stanley, and E.S. Yang PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis? Cancers, 2013. 5, 943-958 DOI: 10.3390/cancers5030943.
14. Chang, H.H.Y., et al., Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature Reviews Molecular Cell Biology, 2017. 18(8): p. 495-506.
15. Wang, Y.-L., et al., Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death & Disease, 2023. 14(11): p. 746.
16. Miné-Hattab, J., S. Liu, and A. Taddei Repair Foci as Liquid Phase Separation: Evidence and Limitations. Genes, 2022. 13, DOI: 10.3390/genes13101846.
17. Bader, A.S., et al., The roles of RNA in DNA double-strand break repair. British Journal of Cancer, 2020. 122(5): p. 613-623.
18. Michelini, F., et al., Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nature Cell Biology, 2017. 19(12): p. 1400-1411.
19. Pessina, F., et al., Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nature Cell Biology, 2019. 21(10): p. 1286-1299.
20. Xiang, Y., et al., RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature, 2017. 543(7646): p. 573-576.
21. Xhemalçe, B., K.M. Miller, and N. Gromak, Epitranscriptome in action: RNA modifications in the DNA damage response. Mol Cell, 2024. 84(19): p. 3610-3626.
22. Grossman, E., O. Medalia, and M. Zwerger, Functional architecture of the nuclear pore complex. Annu Rev Biophys, 2012. 41: p. 557-84.
23. Mao, Y.S., B. Zhang, and D.L. Spector, Biogenesis and function of nuclear bodies. Trends in Genetics, 2011. 27(8): p. 295-306.
24. Buchan, J.R. and R. Parker, Eukaryotic Stress Granules: The Ins and Outs of Translation. Molecular Cell, 2009. 36(6): p. 932-941.
25. Alberti, S., A. Gladfelter, and T. Mittag, Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell, 2019. 176(3): p. 419-434.
26. Sabari, B.R., Biomolecular Condensates and Gene Activation in Development and Disease. Developmental Cell, 2020. 55(1): p. 84-96.
27. Li, J., et al., Post-translational modifications in liquid-liquid phase separation: a comprehensive review. Molecular Biomedicine, 2022. 3(1): p. 13.
28. Pullara, P., I. Alshareedah, and P.R. Banerjee, Temperature-dependent reentrant phase transition of RNA-polycation mixtures. Soft Matter, 2022. 18(7): p. 1342-1349.
29. Wang, B., et al., Liquid–liquid phase separation in human health and diseases. Signal Transduction and Targeted Therapy, 2021. 6(1): p. 290.
30. Liu, Y., et al., Crosstalk between protein post-translational modifications and phase separation. Cell Communication and Signaling, 2024. 22(1): p. 110.
31. Singatulina, A.S., et al., PARP-1 Activation Directs FUS to DNA Damage Sites to Form PARG-Reversible Compartments Enriched in Damaged DNA. Cell Reports, 2019. 27(6): p. 1809-1821.e5.
32. Wegmann, S., et al., Tau protein liquid–liquid phase separation can initiate tau aggregation. The EMBO Journal, 2018. 37(7): p. e98049.
33. Onuchic, P.L., et al., Divalent cations can control a switch-like behavior in heterotypic and homotypic RNA coacervates. Scientific Reports, 2019. 9(1): p. 12161.
34. Rayman, J.B., K.A. Karl, and E.R. Kandel, TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn2+. Cell Reports, 2018. 22(1): p. 59-71.
35. Kilic, S., et al., Phase separation of 53BP1 determines liquid‐like behavior of DNA repair compartments. The EMBO Journal, 2019. 38(16): p. e101379.
36. Boija, A., et al., Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell, 2018. 175(7): p. 1842-1855.e16.
37. Sabari, B.R., et al., Coactivator condensation at super-enhancers links phase separation and gene control. Science, 2018. 361(6400).
38. Lu, H., et al., Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature, 2018. 558(7709): p. 318-323.
39. Gibson, B.A., et al., Organization of Chromatin by Intrinsic and Regulated Phase Separation. Cell, 2019. 179(2): p. 470-484.e21.
40. Du, M. and Z.J. Chen, DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science, 2018. 361(6403): p. 704-709.
41. Chen, X., et al., Phase separation at the synapse. Nature Neuroscience, 2020. 23(3): p. 301-310.
42. Fijen, C. and E. Rothenberg, The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair (Amst), 2021. 105: p. 103170.
43. Wang, Y.L., et al., Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death Dis, 2023. 14(11): p. 746.
44. Levone, B.R., et al., FUS-dependent liquid-liquid phase separation is important for DNA repair initiation. J Cell Biol, 2021. 220(5).
45. Wei, M., et al., SENP1 Decreases RNF168 Phase Separation to Promote DNA Damage Repair and Drug Resistance in Colon Cancer. Cancer Res, 2023. 83(17): p. 2908-2923.
46. Ghodke, I., et al., AHNAK controls 53BP1-mediated p53 response by restraining 53BP1 oligomerization and phase separation. Molecular Cell, 2021. 81(12): p. 2596-2610.e7.
47. Zhang, L., et al., 53BP1 regulates heterochromatin through liquid phase separation. Nature Communications, 2022. 13(1): p. 360.
48. Fan, X.J., et al., NONO phase separation enhances DNA damage repair by accelerating nuclear EGFR-induced DNA-PK activation. Am J Cancer Res, 2021. 11(6): p. 2838-2852.
49. Altmeyer, M., et al., Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nature Communications, 2015. 6(1): p. 8088.
50. Pessina, F., et al., DNA Damage Triggers a New Phase in Neurodegeneration. Trends in Genetics, 2021. 37(4): p. 337-354.
51. Boeynaems, S., et al., Protein Phase Separation: A New Phase in Cell Biology. Trends in Cell Biology, 2018. 28(6): p. 420-435.
52. Teixeira, D., et al., Processing bodies require RNA for assembly and contain nontranslating mRNAs. Rna, 2005. 11(4): p. 371-82.
53. Machyna, M., P. Heyn, and K.M. Neugebauer, Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA, 2013. 4(1): p. 17-34.
54. Galganski, L., M.O. Urbanek, and W.J. Krzyzosiak, Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Research, 2017. 45(18): p. 10350-10368.
55. Cheutin, T., et al., Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science, 2003. 299(5607): p. 721-5.
56. Chu, L., et al., The Spatiotemporal Dynamics of Chromatin Protein HP1α Is Essential for Accurate Chromosome Segregation during Cell Division*. Journal of Biological Chemistry, 2014. 289(38): p. 26249-26262.
57. Keenen, M.M., et al., HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. eLife, 2021. 10: p. e64563.
58. Larson, A.G., et al., Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature, 2017. 547(7662): p. 236-240.
59. Strom, A.R., et al., Phase separation drives heterochromatin domain formation. Nature, 2017. 547(7662): p. 241-245.
60. Maharana, S., et al., RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science, 2018. 360(6391): p. 918-921.
61. Chen, Q., et al., Phosphorylation and specific DNA improved the incorporation ability of p53 into functional condensates. International Journal of Biological Macromolecules, 2023. 230: p. 123221.
62. Kovachev, P.S., et al., Distinct modulatory role of RNA in the aggregation of the tumor suppressor protein p53 core domain. Journal of Biological Chemistry, 2017. 292(22): p. 9345-9357.
63. Shrinivas, K., et al., Enhancer Features that Drive Formation of Transcriptional Condensates. Molecular Cell, 2019. 75(3): p. 549-561.e7.
64. Shelkovnikova, T.A., et al., Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm. Cell Cycle, 2013. 12(19): p. 3383-3391.
65. Shakya, A. and J.T. King, DNA Local-Flexibility-Dependent Assembly of Phase-Separated Liquid Droplets. Biophysical Journal, 2018. 115(10): p. 1840-1847.
66. Gao, J., et al., G-quadruplex DNA inhibits unwinding activity but promotes liquid-liquid phase separation by the DEAD-box helicase Ded1p. Chem Commun (Camb), 2021. 57(60): p. 7445-7448.
67. Ishiguro, A., et al., ALS-linked FUS mutations dysregulate G-quadruplex-dependent liquid–liquid phase separation and liquid-to-solid transition. Journal of Biological Chemistry, 2021. 297(5): p. 101284.
68. Kim, T.H., et al., Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science, 2019. 365(6455): p. 825-829.
69. Alshareedah, I., et al., Phase transition of RNA−protein complexes into ordered hollow condensates. Proceedings of the National Academy of Sciences, 2020. 117(27): p. 15650-15658.
70. Asamitsu, S., et al., CGG repeat RNA G-quadruplexes interact with FMRpolyG to cause neuronal dysfunction in fragile X-related tremor/ataxia syndrome. Sci Adv, 2021. 7(3).
71. Chuang, T.-W., K.-M. Lee, and W.-Y. Tarn Function and Pathological Implications of Exon Junction Complex Factor Y14. Biomolecules, 2015. 5, 343-355 DOI: 10.3390/biom5020343.
72. Fukumura, K., et al. The Exon Junction Complex Controls the Efficient and Faithful Splicing of a Subset of Transcripts Involved in Mitotic Cell-Cycle Progression. International Journal of Molecular Sciences, 2016. 17, DOI: 10.3390/ijms17081153.
73. Wang, Z., V. Murigneux, and H. Le Hir, Transcriptome-wide modulation of splicing by the exon junction complex. Genome Biology, 2014. 15(12): p. 551.
74. Hsu Ia, W., et al., Phosphorylation of Y14 modulates its interaction with proteins involved in mRNA metabolism and influences its methylation. J Biol Chem, 2005. 280(41): p. 34507-12.
75. Lu, C.-C., et al., Y14 governs p53 expression and modulates DNA damage sensitivity. Scientific Reports, 2017. 7(1): p. 45558.
76. Mao, H., et al., Rbm8a haploinsufficiency disrupts embryonic cortical development resulting in microcephaly. J Neurosci, 2015. 35(18): p. 7003-18.
77. Mao, H., et al., Haploinsufficiency for Core Exon Junction Complex Components Disrupts Embryonic Neurogenesis and Causes p53-Mediated Microcephaly. PLoS Genet, 2016. 12(9): p. e1006282.
78. Su, C.-H., et al., The Y14-p53 regulatory circuit in megakaryocyte differentiation and thrombocytopenia. iScience, 2021. 24(11): p. 103368.
79. Chuang, T.-W., et al., The RNA Processing Factor Y14 Participates in DNA Damage Response and Repair. iScience, 2019. 13: p. 402-415.
80. Chuang, T.-W., et al., LncRNA HOTAIRM1 functions in DNA double-strand break repair via its association with DNA repair and mRNA surveillance factors. Nucleic Acids Research, 2023. 51(7): p. 3166-3184.
81. Yu, C.L., et al., Co-phase separation of Y14 and RNA in vitro and its implication for DNA repair. Rna, 2023. 29(7): p. 1007-1019.
82. Hsu, I.-W., et al., Phosphorylation of Y14 Modulates Its Interaction with Proteins Involved in mRNA Metabolism and Influences Its Methylation*. Journal of Biological Chemistry, 2005. 280(41): p. 34507-34512.
83. Gai, X., et al., Pre-ribosomal RNA reorganizes DNA damage repair factors in nucleus during meiotic prophase and DNA damage response. Cell Research, 2022. 32(3): p. 254-268.
84. Wang, Y.-L., et al., MRNIP condensates promote DNA double-strand break sensing and end resection. Nature Communications, 2022. 13(1): p. 2638.
85. Ulianov, S.V., et al., Suppression of liquid–liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells. Nucleic Acids Research, 2021. 49(18): p. 10524-10541.
86. Tacke, R. and J.L. Manley, Determinants of SR protein specificity. Current Opinion in Cell Biology, 1999. 11(3): p. 358-362.
87. Zahler, A.M., et al., SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev, 1992. 6(5): p. 837-47.
88. André, A.A.M. and E. Spruijt, Liquid–Liquid Phase Separation in Crowded Environments.
89. Banani, S.F., et al., Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology, 2017. 18(5): p. 285-298.
90. Mao, A.H., et al., Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc Natl Acad Sci U S A, 2010. 107(18): p. 8183-8.
91. Qu, F., P.S. Tsegay, and Y. Liu, N(6)-Methyladenosine, DNA Repair, and Genome Stability. Front Mol Biosci, 2021. 8: p. 645823.
92. Dominissini, D., et al., Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012. 485(7397): p. 201-206.
93. Jiang, A., et al., RBM15 condensates modulate m6A modification of STYK1 to promote tumorigenesis. Computational and Structural Biotechnology Journal, 2022. 20: p. 4825-4836.
94. Su, Y., et al., Modulation of Phase Separation by RNA: A Glimpse on N(6)-Methyladenosine Modification. Front Cell Dev Biol, 2021. 9: p. 786454.
95. Liao, S., H. Sun, and C. Xu, YTH Domain: A Family of N6-Methyladenosine (m6A) Readers. Genomics, Proteomics & Bioinformatics, 2018. 16(2): p. 99-107.
96. Krietsch, J., et al., PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks. Nucleic Acids Research, 2012. 40(20): p. 10287-10301.
97. Mamontova, E.M., et al., FUS RRM regulates poly(ADP-ribose) levels after transcriptional arrest and PARP-1 activation on DNA damage. Cell Reports, 2023. 42(10): p. 113199.
98. Ray Chaudhuri, A. and A. Nussenzweig, The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nature Reviews Molecular Cell Biology, 2017. 18(10): p. 610-621.
99. Chappidi, N., et al., PARP1-DNA co-condensation drives DNA repair site assembly to prevent disjunction of broken DNA ends. Cell, 2024. 187(4): p. 945-961.e18.
100. Dawicki-McKenna, Jennine M., et al., PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain. Molecular Cell, 2015. 60(5): p. 755-768.
101. Lu, R., et al. Post-Translational Modification of MRE11: Its Implication in DDR and Diseases. Genes, 2021. 12, DOI: 10.3390/genes12081158.
102. Chowdhury, S.G., et al., NHEJ is promoted by the phosphorylation and phosphatase activity of PTEN via regulation of DNA-PKcs. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2024. 1871(8): p. 119828.
103. Ali, A.A.E., et al., Specific recognition of a multiply phosphorylated motif in the DNA repair scaffold XRCC1 by the FHA domain of human PNK. Nucleic Acids Research, 2009. 37(5): p. 1701-1712.
104. Maeshima, K., et al., A Transient Rise in Free Mg2+ Ions Released from ATP-Mg Hydrolysis Contributes to Mitotic Chromosome Condensation. Current Biology, 2018. 28(3): p. 444-451.e6.
105. Sukhanova, M.V., et al., Divalent and multivalent cations control liquid-like assembly of poly(ADP-ribosyl)ated PARP1 into multimolecular associates in vitro. Communications Biology, 2024. 7(1): p. 1148.
106. Singh, V., et al., Zinc promotes liquid–liquid phase separation of tau protein. Journal of Biological Chemistry, 2020. 295(18): p. 5850-5856.
107. Dutagaci, B., et al., Charge-driven condensation of RNA and proteins suggests broad role of phase separation in cytoplasmic environments. Elife, 2021. 10.
108. Yao, R.-W., et al., Nascent Pre-rRNA Sorting via Phase Separation Drives the Assembly of Dense Fibrillar Components in the Human Nucleolus. Molecular Cell, 2019. 76(5): p. 767-783.e11.
109. Jiang, L., et al., NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing. Nature Structural & Molecular Biology, 2017. 24(10): p. 816-824.
110. Zeng, M., et al., Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity. Cell, 2016. 166(5): p. 1163-1175.e12.
111. Liu, Z., et al., Par complex cluster formation mediated by phase separation. Nature Communications, 2020. 11(1): p. 2266.
112. Wang, H., et al., Temporal and spatial assembly of inner ear hair cell ankle link condensate through phase separation. Nature Communications, 2023. 14(1): p. 1657.
113. Zeng, M., et al., Reconstituted Postsynaptic Density as a Molecular Platform for Understanding Synapse Formation and Plasticity. Cell, 2018. 174(5): p. 1172-1187.e16.
114. Gruijs da Silva, L.A. and D. Dormann, Sedimentation Assays to Assess the Impact of Posttranslational Modifications on Phase Separation of RNA-Binding Proteins In Vitro and In Cells, in Phase-Separated Biomolecular Condensates: Methods and Protocols, H.-X. Zhou, J.-H. Spille, and P.R. Banerjee, Editors. 2023, Springer US: New York, NY. p. 325-339.
115. Gruijs da Silva, L.A., et al., Disease‐linked TDP‐43 hyperphosphorylation suppresses TDP‐43 condensation and aggregation. The EMBO Journal, 2022. 41(8): p. e108443.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99343-
dc.description.abstract生物分子在時間與空間上的凝聚行為已被視為細胞於DNA雙股斷裂(DSBs)修復過程中的關鍵調控機制。多功能RNA結合蛋白Y14/RBM8A可於DNA損傷部位,透過與RNA介導的交互作用促進非同源性末端接合(NHEJ)的DNA修復途徑。Y14具有帶電的內在無序區域(intrinsically disordered regions, IDRs),提供其進行液-液相分離(liquid-liquid phase separation, LLPS)的結構基礎。其C端RS重複序列經SR蛋白激酶SRPK1磷酸化後,可在鎂離子存在的條件下產生相分離現象。磷酸化後的Y14(pY14)可形成動態凝聚物,並透過不同的交互作用方式與DNA損傷反應(DNA damage response, DDR)因子(如Ku70/80)及核酸分子(包括長鏈非編碼RNA與DNA)共同聚集。非磷酸化Y14與聚(ADP-核糖)(PAR)聚合物的結合親和力高於磷酸化的 Y14,表明 Y14 在被 SRPK1 磷酸化之前就被募集到 DNA 損傷處;隨後磷酸化的Y14在鎂離子存在下形成凝聚物。綜合本研究結果,Y14經磷酸化後所引導的靜電驅動型相分離機制,與鎂離子協同調控,在DNA損傷位置上有助於修復因子的時空性募集與組織。zh_TW
dc.description.abstractSpatiotemporal condensation of biomolecules has emerged as a critical mechanism for coordinating the DNA repair process at double-strand breaks (DSBs). The multifunctional RNA-binding protein Y14/RBM8A facilitates non-homologous end joining (NHEJ) through RNA-guided interactions at damage sites. Structurally, Y14 contains charged intrinsically disordered regions (IDRs) that provide the basis for its liquid-liquid phase separation (LLPS). SR protein kinase-1 (SRPK1)-mediated phosphorylation of C-terminal RS dipeptides enables Y14 to undergo magnesium-dependent LLPS in vitro. Phosphorylated Y14 (pY14) condensates accommodate DNA damage response (DDR) factors such as Ku70/80 and nucleic acids such as lncRNA HOTAIRM1. Non-phosphorylated Y14 bound poly(ADP-ribose) (PAR) polymers with a higher affinity than phosphorylated Y14, suggesting that Y14 is recruited to DNA lesions prior to its phosphorylation by SRPK1. Y14 forms condensates after phosphorylation with Mg2+ present. Together, our findings suggested electrostatic interaction-mediated LLPS for recruiting DNA repair factors to Y14 condensates at DNA damage sites.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:05:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-09T16:05:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Table of contents v
Introduction 1
DNA repair is activated to maintain genome integrity 1
Liquid-liquid phase separation enables dynamic biochemical organization 3
The role of liquid-liquid phase separation in DNA damage repair 5
Nucleic acids modulate liquid-liquid phase separation behavior 6
Multifunctional RNA processing factor Y14 participates in DNA damage repair and undergoes liquid-liquid phase separation 9
Aims 11
Results 12
SRPK1 phosphorylates Y14 in cells 12
Mg2+ promotes phospho-Y14 to undergo LLPS 14
NHEJ factors engage charged IDRs to partition into Y14-driven condensates 18
Nucleic acid partitioning into pY14 droplets 20
Y14 does not distinguish RNA m6A modifications 22
Y14 interacts with PAR 24
Discussion 26
The effects of DDR kinases on Y14 phosphorylation are indirect. 26
pY14 droplets exhibit greater stability than Y14 under Mg2+/PEG conditions. 27
pY14 co-phase separates with RNA and NHEJ factors via electrostatic interactions. 28
Limitations of the study 30
Materials and methods 31
Cell culture and drug treatment 31
Phos-tag gel analysis 31
Protein purification of non-tagged Y14 32
In vitro phosphorylation of recombinant Y14 33
Mass Spectrometry 34
Liquid-liquid phase separation assay 34
Sedimentation assay 35
Turbidity assay 35
Fluorescence recovery after photobleaching (FRAP) 36
Far Western 37
PAR binding assay 37
In vitro transcription 38
Electrophoretic Mobility Shift Assay (EMSA) 40
Figures 41
Fig. 1 SRPK1 phosphorylates Y14 in vivo 41
Fig. 2 Mg2+ promotes LLPS of pY14 43
Fig. 3 Analysis of the interaction between pY14 and IDR peptides using Far Western blot 45
Fig. 4 Co-phase separation of nucleic acids with pY14 47
Fig. 5 Y14 interacts with PAR 49
Appendix 50
Appendix 1 In vitro phosphorylation of Y14 51
Appendix 2 Non-tagged recombinant Y14 purification 52
Appendix 3 Mg2+ promotes LLPS of pY14 55
Appendix 4 Electrostatic interaction drives Ku70 partitioning into pY14 condensates 57
Appendix 5 EMSA shows that m6A modification does not affect the binding between Y14 and lncRNA HM1-3 60
Appendix 6 EMSA shows that m6A modification does not affect Y14 and RNA binding 62
Reference 63
-
dc.language.isoen-
dc.subject磷酸化zh_TW
dc.subject液態-液態相分離zh_TW
dc.subjectDNA損傷修復zh_TW
dc.subject靜電作用zh_TW
dc.subject二價陽離子zh_TW
dc.subjectliquid-liquid phase separationen
dc.subjectphosphorylationen
dc.subjectDNA damage repairen
dc.subjectelectrostatic interactionen
dc.subjectdivalent cationen
dc.title磷酸化Y14與核酸之液態-液態相分離現象之研究zh_TW
dc.titleCharacterization of liquid-liquid phase separation of phosphorylated Y14 and nucleic acidsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor蔡欣祐zh_TW
dc.contributor.coadvisorHsin-Yue Tsaien
dc.contributor.oralexamcommittee陳瑞華;林倩伶zh_TW
dc.contributor.oralexamcommitteeRuey-Hwa Chen;Chien-Ling Linen
dc.subject.keyword液態-液態相分離,磷酸化,二價陽離子,靜電作用,DNA損傷修復,zh_TW
dc.subject.keywordliquid-liquid phase separation,phosphorylation,divalent cation,electrostatic interaction,DNA damage repair,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202502570-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college醫學院-
dc.contributor.author-dept分子醫學研究所-
dc.date.embargo-lift2025-09-10-
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.97 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved