Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99333
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉立偉zh_TW
dc.contributor.advisorLi-Wei Liuen
dc.contributor.author張亦德zh_TW
dc.contributor.authorYi-Te Changen
dc.date.accessioned2025-09-01T16:07:21Z-
dc.date.available2025-09-02-
dc.date.copyright2025-09-01-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citation[1] A. A. Abdel-Wahab, K. Alam, and V. V. Silberschmidt. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. Journal of the mechanical behavior of biomedical materials, 4(5):807–820, 2011.
[2] C. G. Ambrose, M. S. Martinez, X. Bi, J. Deaver, C. Kuzawa, L. Schwartz, B. Dawson, A. Bachim, U. Polak, B. Lee, et al. Mechanical properties of infant bone. Bone, 113:151–160, 2018.
[3] B. B. An. Constitutive modeling the plastic deformation of bone-like materials. International Journal of Solids and Structures, 92:1–8, 2016.
[4] A. J. Arias-Moreno, K. Ito, and B. van Rietbergen. Accuracy of beam theory for estimating bone tissue modulus and yield stress from 3-point bending tests on rat femora. Journal of Biomechanics, 101:109654, 2020.
[5] C. Z. Chao, H. L. Guo, P. Yan, and L. T. Dong. Dynamic modulus of staggered nanocomposites with different distributions of platelets considering the interface stress effect. Journal of Applied Mechanics, 88(9):091004, 2021.
[6] J. M. Cousins, M. A. Petit, M. L. Paudel, B. C. Taylor, J. M. Hughes, J. A. Cauley, J. M. Zmuda, P. M.Cawthon, K.E.Ensrud, O. F. in Men(MrOS)StudyGroup, etal. Muscle power and physical activity are associated with bone strength in older men: The osteoporotic fractures in men study. Bone, 47(2):205–211, 2010.
[7] C. C. Danielsen, L. Mosekilde, and T. T. Andreassen. Long-term effect of or chidectomy on cortical bone from rat femur: bone mass and mechanical properties. Calcified tissue international, 50(2):169–174, 1992.
[8] M. Ding, M. Dalstra, F. Linde, and I. Hvid. Mechanical properties of the normal humantibial cartilage-bone complex in relation to age. Clinical Biomechanics, 13(45):351–358, 1998.
[9] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the royal society of London. Series A. Mathematical and physical sciences, 241(1226):376–396, 1957.
[10] F. Fan, X. Cai, H. Follet, F. Peyrin, P. Laugier, H. Niu, and Q. Grimal. Cortical bone viscoelastic damping assessed with resonant ultrasound spectroscopy reflects porosity and mineral content. Journal of the mechanical behavior of biomedical materials, 117:104388, 2021.
[11] D. Ferreño, J. A. Sainz-Aja, I. A. Carrascal, S. Diego, E. Ruiz, J. A. Casado, J. A. Riancho, C. Sañudo, and F. Gutiérrez-Solana. Orientation of whole bone samples of small rodents matters during bending tests. Journal of the mechanical behavior of biomedical materials, 65:200–212, 2017.
[12] H. J. Gao. Application of fracture mechanics concepts to hierarchical biomechanics of bone and bone-like materials. International Journal of fracture, 138(1):101–137, 2006.
[13] H. J. Gao, B. H. Ji, I. L. Jäger, E. Arzt, and P. Fratzl. Materials become insensitive to flaws at nanoscale: lessons from nature. Proceedings of the national Academy of Sciences, 100(10):5597–5600, 2003.
[14] D. Gastaldi, M. Baleani, R. Fognani, F. Airaghi, L. Bonanni, and P. Vena. An experimental procedure to perform mechanical characterization of small-sized bone specimens from thin femoral cortical wall. Journal of the Mechanical Behavior of Biomedical Materials, 112:104046, 2020.
[15] N.Hisamori, M.Kimura,H.Morisue, M.Matsumoto,andY.Toyama. Fabricationof bone like composites material and evaluation of its ossiferous ability. International Journal of Modern Physics B, 20(25n27):3567–3572, 2006.
[16] A.Jackson, J. F. Vicent, and R. Turner. The mechanical design of nacre. Proceedings of the Royal society of London. Series B. Biological sciences, 234(1277):415–440, 1988.
[17] I. Jäger and P. Fratzl. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophysical journal, 79(4):1737–1746, 2000.
[18] K. J. Jepsen, M. J. Silva, D. Vashishth, X. E. Guo, and M. C. Van Der Meulen. Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changesinthediaphysesoflongbones. Journal of bone and mineral research, 30(6):951–966, 2015.
[19] B. Ji and H. J. Gao. Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 52(9):1963–1990, 2004.
[20] I. Jimenez-Palomar, A. Shipov, R. Shahar, and A. H. Barber. Mechanical behavior of osteoporotic bone at sub-lamellar length scales. Frontiers in Materials, 2:9, 2015.
[21] S. Kamat, X. Su, R. Ballarini, and A. H. Heuer. Structural basis for the fracture toughness of the shell of the conch strombus gigas. Nature, 405(6790):1036–1040, 2000.
[22] H. Ketata, N. Hfaiedh, M. Kanhonou, and H. Badreddine. Impact of fractured tibia implant fixation devices on bone stiffness during bending test. Medical Engineering & Physics, 131:104228, 2024.
[23] M. Kikuchi. Hydroxyapatite/collagen bone-like nanocomposite. Biological and Pharmaceutical Bulletin, 36(11):1666–1669, 2013.
[24] P. P. Lelovas, T. T. Xanthos, S. E. Thoma, G. P. Lyritis, and I. A. Dontas. The laboratory rat as an animal model for osteoporosis research. Comparative medicine, 58(5):424–430, 2008.
[25] L. W. Liu, J. Y. Wang, C. M. Chao, and Y. J. Shih. Viscoelastic beam theory of bone and its applications to bending testing. prepared.
[26] L. W. Liu, J. Y. Wang, Y. J. Shih, Y. T. Chang, and C. M. Chao. A viscoelastic modelling of bone-like materials. prepared.
[27] L. M. McNamara, A. G. H. Ederveen, C. G. Lyons, C. Price, M. B. Schaffler, H. Weinans, and P. J. Prendergast. Strength of cancellous bone trabecular tissue from normal, ovariectomized and drug-treated rats over the course of ageing. Bone, 39(2):392–400, 2006.
[28] J.G.Minonzio,N.Bochud,Q.Vallet,Y.Bala,D.Ramiandrisoa,H.Follet, D.Mitton, and P. Laugier. Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study. Bone, 116:111–119, 2018.
[29] T. Mori and K. Tanaka. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta metallurgica, 21(5):571–574, 1973.
[30] A. Nazarian, F. J. A. Arroyo, C. Rosso, S. Aran, and B. D. Snyder. Tensile properties of rat femoral bone as functions of bone volume fraction, apparent density and volumetric bone mineral density. Journal of biomechanics, 44(13):2482–2488, 2011.
[31] T. L. Norman, D. Vashishth, and D. B. Burr. Fracture toughness of human bone under tension. Journal of biomechanics, 28(3):309–320, 1995.
[32] M. C. O’Neill and C. B. Ruff. Estimating human long bone cross-sectional geometric properties: a comparison of noninvasive methods. Journal of human evolution, 47(4):221–235, 2004.
[33] G. Osterhoff, E. F. Morgan, S. J. Shefelbine, L. Karim, L. M. McNamara, and P. Augat. Bonemechanicalproperties andchangeswithosteoporosis. Injury, 47:S11–S20, 2016.
[34] J. H. Plochocki, J. P. Rivera, C. Zhang, and S. A. Ebba. Bone modeling response to voluntary exercise in the hindlimb of mice. Journal of Morphology, 269(3):313–318, 2008.
[35] M. Qwamizadeh, M. Lin, Z. Zhang, K. Zhou, and Y. W. Zhang. Bounds for the dynamicmodulusofunidirectional composites with bioinspired staggered distributions of platelets. Composite Structures, 167:152–165, 2017.
[36] M. Qwamizadeh, P. Liu, Z. Q. Zhang, K. Zhou, and Y. Wei Zhang. Hierarchical structure enhances and tunes the damping behavior of load-bearing biological materials. Journal of Applied Mechanics, 83(5):051009, 2016.
[37] C. B. Ruff and W. C. Hayes. Cross-sectional geometry of pecos pueblo femora and tibiae—a biomechanical investigation: I. method and general patterns of variation. American journal of physical anthropology, 60(3):359–381, 1983.
[38] Y. J. Shih. Viscoelastic modeling of biological materials-nacre and bone. Master's thesis, National Cheng Kung University, Tainan, Taiwan, 2023. Advisor: Li-Wei Liu.
[39] J. M. Somerville, R. M. Aspden, K. E. Armour, K. J. Armour, and D. M. Reid. Growth of c57bl/6 mice and the material and mechanical properties of cortical bone from the tibia. Calcified tissue international, 74:469–475, 2004.
[40] M. Suneetha, H. J. Kim, and S. S. Han. Bone-like apatite formation in phosphatecrosslinked sodium alginate-based hydrogels. Materials Letters, 328:133141, 2022.
[41] C. K. Tjhia, C. V. Odvina, D. S. Rao, S. M. Stover, X. Wang, and D. P. Fyhrie. Mechanical property and tissue mineral density differences among severely suppressed bone turnover (SSBT) patients, osteoporotic patients, and normal subjects. Bone, 49(6):1279–1289, 2011.
[42] K. Tokutomi, T. Matsuura, P. Atsawasuwan, H. Sato, and M. Yamauchi. Characterization of mandibular bones in senile osteoporotic mice. Connective Tissue Research, 49(5):361–366, 2008.
[43] G. H. van Lenthe, R. Voide, S. K. Boyd, and R. Müller. Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus. Bone, 43(4):717–723, 2008.
[44] C. X. Wang, T. C. Yu, L. Tan, and J. P. Cheng. Bioinformatics analysis of gene expression profile in callus tissues of osteoporotic phenotype mice induced by osteoblast-specific krm2 overexpression. International Journal of Rheumatic Diseases, 19(12):1263–1271, 2016.
[45] J. Y. Wang. Viscoelastoplastic modeling of bone-like materials and its applicatons. Master's thesis, National Taiwan University, Taipei, Taiwan, 2024. Advisor: Li-Wei Liu.
[46] T. Wang and Z. Feng. Dynamic mechanical properties of cortical bone: The effect of mineral content. Materials Letters, 59(18):2277–2280, 2005.
[47] W.Woigk,K.Masania, F.Stork, A.Heusi, E.Poloni, and A. R.Studart. Bio-inspired platelet-reinforced polymers with enhanced stiffness and damping behavior. ACS Applied Polymer Materials, 2(8):3557–3565, 2020.
[48] N. Yousefzadeh, K. Kashfi, S. Jeddi, and A. Ghasemi. Ovariectomized rat model of osteoporosis: a practical guide. EXCLI journal, 19:89, 2020.
[49] D. Zeng, Y. Liu, P. Yan, and Y. Yang. Location-aware real-time recommender systems for brick-and-mortar retailers. INFORMS Journal on Computing, 33(4):1608-1623, 2021.
[50] P. Zhang, M. A. Heyne, and A. C. To. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing. Journal of the Mechanics and Physics of Solids, 83:285–300, 2015.
[51] P. Zhang and A. C. To. Highly enhanced damping figure of merit in biomimetic hierarchical staggered composites. Journal of Applied Mechanics, 81(5):051015, 2014.
[52] Y. Y. Zheng, C. D. Xiong, S. L. Zhang, X. Y. Li, and L. F. Zhang. Bone-like apatite coating on functionalized poly (etheretherketone) surface via tailored silanization layers technique. Materials Science and Engineering: C, 55:512–523, 2015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99333-
dc.description.abstract許多天然生物材料展現出兼具高強度與高韌性的優異性能,其中以骨骼材料最具代表性,長期以來受到學術界廣泛關注。透過微觀尺度的觀察可知,骨頭並非均質材料,而是由軟硬材質(膠原纖維與礦物質)交錯堆疊而成的複合結構,其排列方式形似水泥磚牆,本研究將其定義為「軟硬材疊層結構」。針對此類結構,過去學者提出「拉伸-剪切鏈模型」(tension-shear chain model, TSC model),用以描述材料中軟硬相協同承載的機制,其中硬材負責抵抗軸向拉力,而軟材則主要承擔剪力傳遞,使整體結構展現出良好的承載與變形能力。然而,傳統TSC模型僅假設材料具備線彈性,未能考量膠原纖維在實際行為中展現的黏彈特性。
為克服上述侷限,本研究延伸原有模型,提出一套將軟材行為推廣為黏彈性的「黏彈性拉伸-剪切鏈模型」(viscoelastic TSC model, VE TSC model),使其更能真實模擬材料在實際力學環境下的反應。進一步地,考慮到骨質疏鬆症可能改變骨頭的微結構排列與材料性質,本研究設計三點彎曲實驗,針對健康骨頭與骨質疏鬆骨頭進行力學測試,並透過多階段的分析方法,在複雜載重路徑下解析兩者在剛性、黏彈性常數與能量耗散能力等面向的差異,以深入探討疾病狀態對骨骼力學行為的影響。
此外,微結構排列變化亦被視為影響材料行為的關鍵因素,因此本研究進一步設計多種不同排列形式之微結構試體,並透過3D列印技術製作樣本,進行單軸拉伸測試,結合理論模型的分析結果,系統性探討微結構幾何與排列對整體力學性質的影響。綜合理論模型建立、病理實驗驗證與微結構幾何設計,本研究旨在提供一個完整框架,解析軟硬材複合結構於不同條件下的力學行為,期望對生物力學與仿生材料設計領域提供實質貢獻。
zh_TW
dc.description.abstractMany natural biological materials exhibit exceptional combinations of strength and toughness, among which bone stands out as a representative example. Due to its remarkable mechanical performance, bone has long been a focal point of research. At the microscale, bone is not a homogeneous material but rather a composite composed of alternating soft and hard phases—primarily collagen fibrils and mineral crystals—arranged in a staggered brick-and-mortar-like configuration. In this study, such architecture is referred to as a "soft-stiff layered structure." To analyze the mechanical behavior of this structure, the tension-shear chain (TSC) model was previously proposed, wherein the hard phase primarily resists axial tension while the soft phase transfers shear forces. This cooperative interaction between the two phases accounts for the overall mechanical robustness of the structure. However, the traditional TSC model assumes linear elastic behavior for both phases and therefore fails to capture the viscoelastic characteristics of bone.
To address this limitation, the present study extends the TSC framework by incorporating viscoelasticity into the soft phase, resulting in the development of a viscoelastic tension-shear chain model (VE TSC model). This extension allows for a more realistic representation of time-dependent deformation and energy dissipation behavior. In light of the structural degradation commonly observed in osteoporotic bone, which may alter microstructural alignment and mechanical properties, this study conducts three-point bending experiments on both healthy and osteoporotic bones. Using a stage-based analytical approach, the differences in mechanical behavior—such as stiffness, viscoelastic constants, and energy dissipation—under complex loading paths are systematically examined.
Furthermore, recognizing that microstructural geometry significantly influences macroscopic properties, various microstructural configurations were designed and fabricated via 3D printing. These samples were subjected to uniaxial tensile tests and analyzed using the proposed model to elucidate the role of geometric arrangement on mechanical performance. By integrating theoretical modeling, experimental validation, and microstructural design, this study aims to establish a comprehensive framework for understanding the mechanics of soft-hard layered composites, with implications for both biomechanics research and biomimetic material development.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-01T16:07:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-01T16:07:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements . . . . . . . . . . . . . . . . . . . iii
摘要 . . . . . . . . . . . . . . . . . . . v
Abstract . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . xiii
List of Tables . . . . . . . . . . . . . . . . . . . xix
Notations and Conventions . . . . . . . . . . . . . . . . . . . xxi
Chapter 1 Review on the investigation of bone and bone-like materials 1
1.1 Introduction to bone-like materials . . . . . . . . . . . . . . . . . . . 1
1.2 Microstructural of bone and bone-like materials . . . . . . . . . . . . 2
1.3 Mechanical model of bone and bone-like materials . . . . . . . . . . 2
1.3.1 The tension-shear chain models . . . . . . . . . . . . . . . . . . . . 2
1.3.2 Model generalization . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Theoretical considerations based on Euler-Bernoulli beam theory . . 4
1.5 Experimental studies on bone-like materials and natural bone . . . . 5
1.5.1 Studies on osteoporotic bone tissue . . . . . . . . . . . . . . . . . . 5
1.5.2 Experimental and theoretical approaches to bone mechanics . . . . . 5
Chapter 2 Mechanical characterization of mouse bone through experimental testing 7
2.1 Experimental Setup and Preparations . . . . . . . . . . . . . . . . . 8
2.1.1 Introduction to experimental equipment . . . . . . . . . . . . . . . 8
2.1.2 Specimen preparation and pre-experimental procedures . . . . . . . 10
2.1.3 Morphometric analysis of mouse tibia geometry . . . . . . . . . . . 10
2.2 Three-point bending tests on healthy and osteoporotic bone . . . . . . 12
2.2.1 Experimental setup and protocol . . . . . . . . . . . . . . . . . . . 12
2.2.2 Experimental results under the protocol-M . . . . . . . . . . . . . . 15
2.2.3 Experimental results under the protocol-C . . . . . . . . . . . . . . 17
Chapter 3 Mechanical model of bone and bone-like materials 21
3.1 Review elastic model of bone-like materials . . . . . . . . . . . . . . 22
3.2 Revisit viscoelastic mechanical behavior of bone tissue . . . . . . . . 25
3.2.1 Analysis of viscoelastic behavior of bone tissue . . . . . . . . . . . 25
3.2.2 Viscoelastic modeling of bone under different microstructural arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Viscoelastic beam theory for bone tissue and its applications to bending tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Revisit theoretical modeling of three-point bending tests . . . . . . 33
3.3.2 Theoretical modeling of four-point bending tests . . . . . . . . . . . 38
Chapter 4 Mechanical analysis of healthy and osteoporotic bone 43
4.1 Analysis of healthy and osteoporotic bone under protocol-M . . . . . 43
4.1.1 Identification of model parameters . . . . . . . . . . . . . . . . . . 43
4.1.2 Analysis of mechanical performance . . . . . . . . . . . . . . . . . 48
4.2 Analysis of healthy and osteoporotic bone under protocol-C . . . . . 51
4.2.1 Identification of model parameters . . . . . . . . . . . . . . . . . . 51
4.2.2 Parameter identification in stage 3 for healthy and osteoporotic Bone 58
4.2.3 Analysis of the mechanical performance of healthy and osteoporotic bone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Chapter 5 Experimental and theoretical analysis of bone-like materials 65
5.1 Uniaxial tensile testing of offset arrangement specimens . . . . . . . 65
5.1.1 Design of experimental specimens . . . . . . . . . . . . . . . . . . 65
5.1.2 Experimental protocol design . . . . . . . . . . . . . . . . . . . . . 68
5.1.3 Analysis of experimental results under uniaxial tensile test . . . . . 69
5.2 Effect of microstructural arrangement of bone-like materials . . . . . 75
5.2.1 Mechanical response under monotonic loading . . . . . . . . . . . 75
5.2.2 Mechanical response under cyclic loading . . . . . . . . . . . . . . 78
5.2.3 Mechanical analysis of viscoelastic constants . . . . . . . . . . . . 80
Chapter 6 Conclusion 85
6.1 Comparative analysis of mechanical properties between healthy and osteoporotic bone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Effect of offset staggering on the mechanical properties of microstructured materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
References 91
Appendix A —Uniaxial tensile testing of mouse femur and tibia 99
A.1 Design of gripping fixture for bone tensile testing . . . . . . . . . . . 99
A.2 Experimental analysis of uniaxial tensile testing on mouse femur and tibia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.2.1 Experimental setup and protocol . . . . . . . . . . . . . . . . . . . 101
A.2.2 Experimental results of tensile test . . . . . . . . . . . . . . . . . . 103
A.2.3 Analysis and discussion of experimental results . . . . . . . . . . . 104
-
dc.language.isoen-
dc.subject黏彈性拉伸-剪切鏈模型zh_TW
dc.subject生物力學zh_TW
dc.subject微結構架構zh_TW
dc.subject骨質疏鬆zh_TW
dc.subjectbone mechanicsen
dc.subjectmicrostructural architectureen
dc.subjectViscoelastic tension-shear chain model (VE TSC Model)en
dc.subjectosteoporosisen
dc.title實驗與理論研究微結構排列對骨頭與仿骨材料力學行為之影響zh_TW
dc.titleExperimental and theoretical study on the mechanical behavior of bone or bone-like materials with microstructural arrangementsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林哲宇;陳正宗;陳栢均zh_TW
dc.contributor.oralexamcommitteeChe-Yu Lin;Jeng-Tzong Chen;Po-Chun Chenen
dc.subject.keyword黏彈性拉伸-剪切鏈模型,生物力學,微結構架構,骨質疏鬆,zh_TW
dc.subject.keywordViscoelastic tension-shear chain model (VE TSC Model),bone mechanics,microstructural architecture,osteoporosis,en
dc.relation.page106-
dc.identifier.doi10.6342/NTU202503601-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-09-02-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf102.16 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved