請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99327完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳 | zh_TW |
| dc.contributor.advisor | Yang-Fang Chen | en |
| dc.contributor.author | 粘德辰 | zh_TW |
| dc.contributor.author | De-Chen Nian | en |
| dc.date.accessioned | 2025-09-01T16:06:00Z | - |
| dc.date.available | 2025-09-02 | - |
| dc.date.copyright | 2025-09-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-21 | - |
| dc.identifier.citation | [1] Jimmy. Efficient production of bose-einstein condensates in double chamber vacuum system. 2020. Advised by Prof. Ming-Shien Chang.
[2] Robert P. Smith. Effects of interactions on bose-einstein condensation. arXiv preprintarXiv:1609.04762, 2016. arXiv:1609.04762 [cond-mat.quant-gas]. [3] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping ofneutral sodium atoms with radiation pressure. Phys. Rev. Lett., 59(23), 1987. [4] Daniel A. Steck. Rubidium 87 d line data. http://steck.us/alkalidata, 2001. Revision 1.6, 14 October 2003. [5] Ming-Shien Chang. Coherent Spin Dynamics of a Spin-1 Bose-Einstein Condensate. Ph.d. dissertation, University of Maryland, College Park, Maryland, USA, 2006. [6] Steven Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable. Experimental observation of optically trapped atoms. Phys. Rev. Lett., 57(3), 1986. [7] Paul D. Lett, Richard N. Watts, Christoph I. Westbrook, William D. Phillips, Phillip L. Gould, and Harold J. Metcalf. Observation of atoms laser cooled below the doppler limit. Phys. Rev. Lett., 61(2), July 1988. [8] David S. Weiss, Erling Riis, Yaakov Shevy, P. Jeffrey Ungar, and Steven Chu. Optical molasses and multilevel atoms: experiment. J. Opt. Soc. Am. B, 6(11), Nov 1989. [9] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the doppler limit by polarization gradients: Simple theoretical models. J. Opt. Soc. Am. B, 6(11), Nov 1989. [10] P. J. Ungar, D. S. Weiss, E. Riis, and Steven Chu. Optical molasses and multilevel atoms: theory. J. Opt. Soc. Am. B, 6(11), Nov 1989. [11] M. D. Barrett, J. A. Sauer, and M. S. Chapman. All-optical formation of an atomic bose–einstein condensate. Phys. Rev. Lett., 87(1), Jun 2001. [12] Andrew J. Kerman, Vladan Vuletić, Cheng Chin, and Steven Chu. Beyond optical molasses: 3d raman sideband cooling of atomic cesium to high phase-space density. Phys. Rev. Lett., 84(3), Jan 2000. [13] Giovanna Morigi, Jürgen Eschner, and Christoph H. Keitel. Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett., 85(21), November 2000. Received 5 May 2000. [14] Pablo Solano, Yiheng Duan, Yu-Ting Chen, Alyssa Rudelis, Cheng Chin, and Vladan Vuletić. Strongly correlated quantum gas prepared by direct laser cooling. Phys. Rev. Lett., 123(17), October 2019. [15] Jiazhong Hu, Alban Urvoy, Zachary Vendeiro, Valentin Crépel, Wenlan Chen, and Vladan Vuletić. Creation of a bose-condensed gas of 87rb by laser cooling. Science, 358(6366), November 2017. Direct laser cooling to BEC without evaporation using degenerate Raman sideband cooling. [16] Chun‐ Chia Chen, Rodrigo González Escudero, Jiří Minář, Benjamin Pasquiou, 76Shayne Bennetts, and Florian Schreck. Continuous bose–einstein condensation. Nature, 606(7915), Jun 2022. [17] Mingjie Xin, Wui Seng Leong, Zilong Chen, Yu Wang, and Shau-Yu Lan. Fast quantum gas formation via electromagnetically induced transparency cooling. Nat. Phys., 21(1), Jan 2025. [18] Meng-Ju Tsai. Study Thermodynamic with Spinor Condensate. Ph.d. dissertation, National Taiwan Normal University, Taipei, Taiwan, Jan 2022. [19] Harold J. Metcalf and Peter van der Straten. Laser Cooling and Trapping. Graduate Texts in Contemporary Physics. Springer, New York, 1999. [20] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Ob- servation of bose–einstein condensation in a dilute atomic vapor. Science, 269(5221), July 1995. [21] Charles Kittel and Herbert Kroemer. Thermal Physics. W. H. Freeman, San Francisco, 2 edition, 1980. [22] R. K. Pathria and Paul D. Beale. On the chemical potential of ideal fermi and bose gases. J. Low Temp. Phys., 197(5–6), 2019. [23] T. W. Hänsch and A. L. Schawlow. Cooling of gases by laser radiation. Opt. Commun., 13(1), 1975. [24] Daniel A. Steck. Rubidium 87 d line data. https://steck.us/alkalidata/ rubidium87numbers.pdf, 2024. Version 2.3.3, last revised 28 May 2024. [25] Mark Kasevich and Steven Chu. Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett., 69(12), September 1992. [26] Giovanna Morigi, Jürgen Eschner, and Christoph H. Keitel. Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett., 85(21), Nov 2000. [27] Claude Cohen-Tannoudji, Jean Dupont-Roc, and Gilbert Grynberg. Laser cooling below the doppler limit. Phys. Today, 43(10), 1990. [28] D. J. Berkeland and M. G. Boshier. Destabilization of dark states and optical spectroscopy in zeeman-degenerate atomic systems. Phys. Rev. A, 65, Feb 2002. [29] Min-Ting Wu. 利用雙光子過程達成基態雷射冷卻. 大專學生研究計畫成果報告 MOST 106-2813-C-001-009-M, Ministry of Science and Technology (MOST), Taiwan, Feb 2018. 研究期間:106 年 07 月 01 日至 107 年 02 月 28 日,計 8 個月。指導教授:張銘顯. [30] Andrew T. Grier, Igor Ferrier-Barbut, Benno S. Rem, Marion Delehaye, Lev Khaykovich, Frédéric Chevy, and Christophe Salomon. Λ-enhanced sub-doppler cooling of lithium atoms in 𝑑1 gray molasses. Phys. Rev. A, 87(6), Jun 2013. [31] C. F. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and R. Blatt. Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. Phys. Rev. Lett., 85(26), Dec 2000. [32] Tobias Kampschulte, Wolfgang Alt, Stefan Brakhane, Martin Eckstein, René Reimann, Artur Widera, and Dieter Meschede. Optical control of the refractive index of a single atom. Phys. Rev. Lett., 105(15), Oct 2010. [33] Maryam Roghani and Hanspeter Helm. Trapped-atom cooling beyond the lambdicke limit using electromagnetically induced transparency. Phys. Rev. A, 77, Apr 2008. [34] Ran Finkelstein, Samir Bali, Ofer Firstenberg, and Irina Novikova. A practical guide to electromagnetically induced transparency in atomic vapor. New J. Phys., 25, 03 2023. [35] Sara Rosi, Alessia Burchianti, Stefano Conclave, Devang S. Naik, Giacomo Roati, Chiara Fort, and Francesco Minardi. Λ-enhanced grey molasses on the d2 transition of rubidium-87 atoms. Sci. Rep., 8(1), 2018. [36] Guan-Bo Liao, Keng-Shuo Wu, Chung-You Shih, Yu-Hsuan Cheng, Li-An Sun, Yu-Ju Lin, and Ming-Shien Chang. Optimization of a crossed optical dipole trap for loading and confining laser-cooled atoms. J. Opt. Soc. Am. B, 34(5), 2017. [37] Hansub Hwang, Andrew Byun, and Jaewook Ahn. Eit cooling of atoms in optical dipole traps. In Conference on Lasers and Electro-Optics (CLEO), San Jose, California, USA, 2021. Optica (OSA). © 2021 The Author(s). [38] Chang Huang, Pei-Chen Kuan, and Shau-Yu Lan. Laser cooling of 85rb atoms to the recoil-temperature limit. Phys. Rev. A, 97(2), 2018. [39] Shuo Zhang, Jian-Qi Zhang, Wei Wu, Wan-Su Bao, and Chu Guo. Fast cooling of trapped ion in strong sideband coupling regime. New J. Phys., 23(2), February 2021. [40] Chen-Yu Lee and Guin-Dar Lin. Cavity qed simulation with a trapped ion system. Opt. Express, 24(26), 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99327 | - |
| dc.description.abstract | 本實驗旨在導入並進一步發展電磁誘導透明冷卻(Electromagnetically Induced Transparency Cooling,EIT Cooling)技術,以提高玻色–愛因斯坦凝聚(Bose–Einstein Condensation,BEC)的製備效率;同時系統性探討利用純雷射冷卻實現玻色–愛因斯坦凝聚的可行性及其冷卻極限。本實驗首先利用磁光阱(magneto-optical trap, MOT)收集冷原子,並將其溫度降至接近都卜勒極限溫度(Doppler temperature, \\(T_D\\))。接著以次都卜勒冷卻(sub-Doppler cooling)技術在自由空間中將原子進一步冷卻至約 \\(6~\\mu\\text{K}\\)。隨後,我們將約 \\(2\\times10^{6}\\) 顆冷原子載入光偶極阱(optical dipole trap, ODT);在維持約 \\(10~\\mu\\text{K}\\) 的低溫下,成功將原子密度提升至 \\(3\\times10^{13}\\,\\text{cm}^{-3}\\)。
在次都卜勒冷卻階段,本實驗引入 \\(\\Lambda\\)-型增益灰稠漿冷卻(\\(\\Lambda\\)-enhanced gray molasses cooling, GMC)與進階電磁誘導透明冷卻(EIT cooling)技術。透過光場中原子與激發態之去耦合效應形成暗態(dark state),避免冷原子持續散射光子,進而實現甚至突破反衝溫度(recoil temperature, \\(T_r\\))之極限。對銣原子而言,\\(T_r \\approx 0.36~\\mu\\text{K}\\)。此類雙光子冷卻技術可減少對高功率雷射以產生光偶極阱及效率較差之蒸發致冷的依賴,為以純雷射冷卻實現玻色–愛因斯坦凝聚(BEC)奠定實驗基礎。 | zh_TW |
| dc.description.abstract | This experiment aims to introduce and further develop Electromagnetically Induced Transparency (EIT) cooling to improve the efficiency of producing Bose–Einstein condensation (BEC); it also systematically explores the feasibility and ultimate cooling limits of achieving BEC solely through direct laser cooling.
The experiment begins by collecting cold atoms in a magneto-optical trap (MOT) and cooling them to near the Doppler temperature (\\(T_D\\)). Subsequent sub-Doppler cooling in free space lowers the atomic temperature further to about \\(6~\\mu\\text{K}\\). Approximately \\(2\\times10^{6}\\) of these atoms are then loaded into an optical dipole trap (ODT); while maintaining a temperature of roughly \\(10~\\mu\\text{K}\\), the atomic density is increased to \\(3\\times10^{13}\\,\\text{cm}^{-3}\\). During the sub-Doppler cooling stage, we implement \\(\\Lambda\\)-enhanced gray molasses cooling (GMC) and advanced Electromagnetically Induced Transparency (EIT) cooling. These two-photon techniques create dark states by decoupling atoms from their excited states, thereby suppressing photon scattering and enabling temperatures at or even below the recoil limit (\\(T_r\\)); for rubidium, \\(T_r \\approx 0.36~\\mu\\text{K}\\). This approach lowers our reliance on high-power lasers for optical dipole trapping and on the relatively inefficient evaporative cooling, thus laying the groundwork for achieving Bose–Einstein condensation (BEC) purely via laser cooling. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-01T16:06:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-01T16:06:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements ii 摘要 iii Abstract iv Contents v List of Figures vii List of Tables xiii Chapter 1 序論 1 Chapter 2 基礎理論 4 2.1 玻色-愛因斯坦凝結 . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 雷射冷卻介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 磁光阱 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 偏振梯度冷卻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.1 西西弗斯冷卻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 灰稠漿冷卻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.3 Λ 型增強灰稠漿冷卻 . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 光偶極阱 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 蒸發致冷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6.1 強迫蒸發致冷的比例定律 . . . . . . . . . . . . . . . . . . . . . . 28 2.7 電磁誘發透明於光偶極阱/光晶格中的冷卻 . . . . . . . . . . . . . 32 Chapter 3 實驗架設 37 3.1 超高真空系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 銣原子特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 銣-87 原子 D2 躍遷譜線 . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 銣原子之光學系統架設 . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 光偶極阱之光學架設 . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5 影像處理架設 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.1 利用螢光訊號計算原子數量和計算溫度 . . . . . . . . . . . . . . 44 3.6 吸收影像法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.7 實驗控制系統 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Chapter 4 實驗數據與分析 52 4.1 自由空間中之雷射冷卻與時序控制 . . . . . . . . . . . . . . . . . 52 4.2 磁場校正補償 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3 光學灰稠漿冷卻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 偶極阱陷阱頻率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Chapter 5 未來展望和總結 65 5.1 光學晶格和電磁致透明冷卻 . . . . . . . . . . . . . . . . . . . . . 65 References 69 Appendix A — 795 奈米外腔半導體雷射之於銣-85D1 躍遷譜線架設 74 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 雷射冷卻 | zh_TW |
| dc.subject | 電磁誘發透明 | zh_TW |
| dc.subject | 次都普勒冷卻 | zh_TW |
| dc.subject | 光偶極阱 | zh_TW |
| dc.subject | 玻色凝結 | zh_TW |
| dc.subject | Bose-Einstein condensation | en |
| dc.subject | laser cooling | en |
| dc.subject | Electromagnetically induced transparency | en |
| dc.subject | sub-Doppler cooling | en |
| dc.subject | optical dipole trap | en |
| dc.title | 雷射誘發透明冷卻銣-87 | zh_TW |
| dc.title | Electromagnetically induced transparency Cooling of Rubidium-87 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 張銘顯 | zh_TW |
| dc.contributor.coadvisor | Ming-Shien Chang | en |
| dc.contributor.oralexamcommittee | 鄭王曜 | zh_TW |
| dc.contributor.oralexamcommittee | Wang-Yau Cheng | en |
| dc.subject.keyword | 雷射冷卻,電磁誘發透明,次都普勒冷卻,光偶極阱,玻色凝結, | zh_TW |
| dc.subject.keyword | laser cooling,Electromagnetically induced transparency,sub-Doppler cooling,optical dipole trap,Bose-Einstein condensation, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202504101 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-21 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 13.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
