請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99326完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張寶棣 | zh_TW |
| dc.contributor.advisor | Pao-Ti Chang | en |
| dc.contributor.author | 徐舟晗 | zh_TW |
| dc.contributor.author | ZhouHan Xu | en |
| dc.date.accessioned | 2025-09-01T16:05:46Z | - |
| dc.date.available | 2025-09-02 | - |
| dc.date.copyright | 2025-09-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-15 | - |
| dc.identifier.citation | [1] A. D. Sakharov. Violation of cp invariance, c asymmetry, and baryon asymmetry of the universe. Sov. Phys. Usp., 34:392, 1991.
[2] N. Cabibbo. Unitary symmetry and leptonic decays. Physical Review Letters, 10:531, 1963. [3] M. Kobayashi and T. Maskawa. Cp-violation in the renormalizable theory of weak interaction. Progress of Theoretical Physics, 49:652, 1973. [4] S. L. Glashow, J. Iliopoulos, and L. Maiani. Weak interactions with lepton–hadron symmetry. Physical Review D, 2:1285, 1970. [5] Hai-Yang Cheng and Chun-Khiang Chua. Title unknown. Phys. Rev. D, 80:114008, 2009. [6] Hsiang-Nan Li and Satoshi Mishima. Title unknown. Phys. Rev. D, 74:094020, 2006. [7] Wei Wang, Yu-Ming Wang, De-Shan Yang, and Cai-Dian Lü. Title unknown. Phys. Rev. D, 78:034011, 2008. [8] V. Chobanova, J. Dalseno, C. Kiesling, I. Adachi, H. Aihara, D. M. Asner, V. Aulchenko, T. Aushev, T. Aziz, A. M. Bakich, and ... (Belle Collaboration). Measurement of branching fractions and cp violation parameters in b → ωk decays with first evidence of cp violation in b0 → ωk0s. Physical Review D, 90:012002, 2014. [9] B. Aubert and et al. Measurements of cp-violating asymmetries and branching fractions in b decays to ωk and ωπ. Phys. Rev. D, 74(1):011106(R), 2006. [10] E. Kou et al. The belle ii physics book. Prog. Theor. Exp. Phys., page 123C01, 2019 (Belle II Collaboration). [11] A. J. Bevan et al. The physics of the b factories. Eur. Phys. J. C, 74:3026, 2014. [12] Y. Ohnishi et al. Accelerator design at superkekb. Prog. Theor. Exp. Phys., page 03A011, 2013. [13] M. Akatsu et al. Title unknown. Nucl. Instrum. Meth., A440:124–135, 2000. arXiv:physics/9904009. [14] J. Kemmer et al. Title unknown. Nucl. Instrum. Meth., A253:378–381, 1987. [15] P. Fischer et al. Title unknown. Nucl. Instrum. Meth., A582:843–848, 2007. [16] T. Abe. Belle ii. https://arxiv.org/abs/1011.0352, 2010. arXiv:1011.0352. [17] T. Aushev and et al. A scintillator based muon and K0L detector for the Belle II experiment, 2014. [18] S. Longo, J. M. Roney, C. Cecchi, S. Cunliffe, T. Ferber, H. Hayashii, C. Hearty, A. Hershenhorn, A. Kuzmin, E. Manoni, F. Meier, K. Miyabayashi, I. Nakamura, M. Remnev, A. Sibidanov, Y. Unno, Y. Usov, and V. Zhulanov. CsI(Tl) Pulse Shape Discrimination with the Belle II Electromagnetic Calorimeter as a Novel Method to Improve Particle Identification at Electron-Positron Colliders. J. Instrum., 15(C0016):1–23, 2020. [19] Belle II Collaboration. Electromagnetic Calorimeter. Belle II Experiment website, 2023. [20] Z. Dolezal and S. Uno. Belle II Technical Design Report. KEK Report 2010-1,KEK, 2010. Department of Physics, University of Hawaii. [21] S. B¨ahr and et al. The neural network first-level hardware track trigger of Belle II. Nucl. Instrum. Meth. A, 2025. Submitted; available on ScienceDirect. [22] E. Won, J. B. Kim, and B. R. Ko. Three dimensional fast tracker for central drift chamber based level 1 trigger system in the Belle II experiment, 2017. [23] M. Nakao and et al. Performance of the Unified Readout System of Belle II, 2020. [24] R. Itoh and et al. The Performance of Belle II High Level Trigger in the First Physics Runs. In EPJ Web Conf. CHEP2020, volume 245, page 01040, 2020. [25] N. Braun and T. Kuhr. Software for Online Reconstruction and Filtering at the Belle II Experiment, 2020. [26] Belle II Collaboration. High-Level Trigger (HLT): Software trigger. Overview of the Belle II High Level Trigger, USTC Indico, Nov. 21, 2024, 2024. Online presentation. [27] F. Abudin´en and II Collaboration Belle˙ B-flavor tagging at belle ii. European Physical Journal C, 82:283, 2022. [28] G. C. Fox and S. Wolfram. Observables for the analysis of event shapes in e+e−annihilation and other processes. Physical Review Letters, 41:1581, 1978. [29] A. Abashian and et al. The Belle Detector. Nucl. Instrum. Meth. A,479:117–232, 2002. Section 4.5 details continuum suppression and Fox–Wolfram moments. [30] K. Abe and et al. Measurement of Time-Dependent CP-Violating Asymmetries in B0 → J/ψK0S Decays. Phys. Rev. D, 66:032007, 2002. [31] Belle II Collaboration. Conference readiness (until MC15rd).https://xwiki.desy.de/xwiki/bin/view/BI/Belle%20II%20Internal/Physics%20Performance%20Webhome/Conference%20readiness/Conference%20readiness%20%28until%20MC15rd%29/, 2025. [32] Belle II Collaboration. Belle II Physics Public Note: Measurement of the energy dependence of the e+e− −→ B ¯B, B ¯B∗ and B∗ ¯B∗ cross sections at Belle II. Belle II Physics Public Note BELLE2-PUB-PH-2023-016, Belle II Collaboration, 2023. [33] Neutral Reconstruction Performance Group. π0 Reconstruction Efficiency Calibration using D0 → K−π+π0 and D0 → K−π+ Decays. Belle II Internal Note BELLE2-NOTE-PERF-2025-001, Belle II Collaboration, 2025. Belle II Internal Note. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99326 | - |
| dc.description.abstract | 我们报告了基于详尽的蒙特卡洛模拟衰变模型,对无味强子衰变 B⁺→ωK⁺ 和 B⁺→ωπ⁺ 的支分数及直接 CP 电荷不对称性进行可行性研究的结果。
此模拟采用完整的 LS1 探测器几何结构和响应,针对 Υ(4S) 共振下相当于 362 fb⁻¹ 的数据量(约 (387±1)×10⁶ 对 B B̄)。ω→π⁺π⁻π⁰ 末态通过基于事件形状和运动学特征训练的多变量分类器进行重建,以优化信号选择并抑制连续体背景。信号产额通过对束约束质量 M_bc 和能量差 ΔE 的无分箱扩展极大似然拟合提取。我们评估支分数在 10⁻⁶ 量级的统计精度,并预计 CP 不对称灵敏度达百分数水平。 我们从控制信道 B⁺→D̄⁰π⁺ 样本中逐事件提取数据对 MC 的校正因子,校正跟踪效率、PID 及分类器性能,以降低系统偏差并增强灵敏度预测。 最终结果将在未来 Belle II 实际数据去盲后给出。本研究验证了分析策略,并表明我们已做好应对即将到来数据集的准备。 | zh_TW |
| dc.description.abstract | We report on feasibility studies of branching fractions and direct CP-violating charge asymmetries in the charmless hadronic decays B⁺→ωK⁺ and B⁺→ωπ⁺ based on detailed Monte Carlo simulations of our decay model.
The simulation uses the full LS1 detector geometry and response corresponding to 362 fb⁻¹ at the Υ(4S) resonance, equivalent to (387±1)×10⁶ B B̄ pairs. The ω→π⁺π⁻π⁰ final states are reconstructed with a multivariate classifier trained on event-shape and kinematic features to optimize signal selection and suppress continuum backgrounds. Signal yields are extracted via unbinned extended maximum-likelihood fits to the beam-constrained mass M_bc and energy difference ΔE. We assess the expected statistical precision on branching fractions at the 10⁻⁶ level and project sensitivity to CP asymmetries at the few-percent level. We derive event-by-event data-to-MC scale factors from control-channel B⁺→D̄⁰π⁺ samples—correcting tracking, PID, and classifier performance—to reduce systematic biases and strengthen our sensitivity projections. Final results will be obtained upon unblinding of real data in future Belle II analyses. These studies validate our analysis strategy and demonstrate readiness for the upcoming dataset. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-01T16:05:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-01T16:05:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract iv Contents v List of Figures viii List of Tables x 1 Introduction 1 1.1 Standard Model 1 1.2 CP Violation in SM 1 1.3 Charmless B decays and Direct CP Violation 3 1.4 Motivation 5 2 Belle II Experiment 7 2.1 SuperKEKB Accelerator 8 2.2 Belle II Detector 9 2.2.1 Particle Identification System (TOP and ARICH) 9 2.2.2 Vertex detector 10 2.2.3 KL and μ Detector 11 2.2.4 Central Drift Chamber 11 2.2.5 Electromagnetic Calorimeter 13 2.2.6 Trigger 13 3 Particle Selection and Reconstruction 15 3.1 Sample 15 3.2 Reconstruction Modes 16 3.3 Reconstruction and preselection 16 3.3.1 Charged Tracks Selection 16 3.3.2 gamma and π0 selection 17 3.3.3 ω reconstruction 18 3.3.4 B reconstruction 18 3.4 Summary of Event Selection 19 4 Background 20 4.1 Combinatorial Background 20 4.1.1 Thrust Angle 21 4.1.2 Flavor Tagging 22 4.1.3 Vertex 23 4.1.4 Fox-Wolfram moments 23 4.1.5 CLEO Cone 25 4.1.6 Training Consequence and F.O.M 25 4.2 BB Background 26 4.3 Feed-Across Background 26 4.4 Self Cross-Feed 27 4.5 Best Candidate 27 4.6 Summary for Final Selection 28 5 Signal Extraction 32 5.1 Correlation Check 32 5.2 PDF Modeling 33 5.2.1 Signal Model 33 5.2.2 Feed-across Model 33 5.2.3 q ¯q Model 34 5.2.4 B ¯B Model 34 5.3 Fitter Detials 35 5.4 Fitter Test 35 5.4.1 Toy Test 36 5.4.2 Ensemble Test 36 5.5 Linearity Check 39 6 Control Sample 41 6.1 Selection and Resconstruction 41 6.1.1 B+ and ¯D0 Resconstriction 41 6.2 Control Sample Modeling and Fitting 42 6.3 Fudge Factor 42 6.4 FastBDT correction 44 7 Systematic Uncertainties 48 7.1 Tracking 48 7.2 B ¯B Pair Counting 49 7.3 f+−/f00 49 7.4 π0 and ω Reconstruction efficiency 50 7.5 PID correction 50 7.6 CS selection 50 7.7 Fudge Factors 51 7.8 Modeling 51 8 Conclusion 52 Appendices 60 A ω Meson Helicity Distribution 61 B Distribution of Training Variables 62 C Pdf Modeling 65 D Correlation of Fitting Component 68 | - |
| dc.language.iso | en | - |
| dc.subject | Belle II | zh_TW |
| dc.subject | 蒙特卡洛模拟 | zh_TW |
| dc.subject | 无味B衰变 | zh_TW |
| dc.subject | ω介子 | zh_TW |
| dc.subject | 支分数预测 | zh_TW |
| dc.subject | CP不对称灵敏度 | zh_TW |
| dc.subject | 去盲 | zh_TW |
| dc.subject | charmless B decays | en |
| dc.subject | Belle II | en |
| dc.subject | Monte Carlo simulation | en |
| dc.subject | unblinding | en |
| dc.subject | CP asymmnsitivityetry sensitivity | en |
| dc.subject | branch-ing fraction projection | en |
| dc.subject | ω meson | en |
| dc.title | Belle II 实验中 B±→ωK± 与 B±→ωπ± 衰变的分支比与直接 CP 不对称性测量 | zh_TW |
| dc.title | Measurement of Branching Fractions and Direct CP Asymmetries for B±→ωK± and B±→ωπ± Decays at Belle II | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王名儒 ;趙元 ;張敏娟 | zh_TW |
| dc.contributor.oralexamcommittee | Min-Zu Wang;Yuan CHAO;Ming-Chuan Chang | en |
| dc.subject.keyword | Belle II,蒙特卡洛模拟,无味B衰变,ω介子,支分数预测,CP不对称灵敏度,去盲, | zh_TW |
| dc.subject.keyword | Belle II,Monte Carlo simulation,charmless B decays,ω meson,branch-ing fraction projection,CP asymmnsitivityetry sensitivity,unblinding, | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU202504255 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-18 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2025-09-02 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 6.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
