請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99324完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童慶斌 | zh_TW |
| dc.contributor.advisor | Ching-Pin Tung | en |
| dc.contributor.author | 黃衍瑞 | zh_TW |
| dc.contributor.author | Yan-Ruei Huang | en |
| dc.date.accessioned | 2025-09-01T16:05:06Z | - |
| dc.date.available | 2025-09-02 | - |
| dc.date.copyright | 2025-09-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-18 | - |
| dc.identifier.citation | Abdallah, M., Rahmat-Ullah, Z., Hosny, M., & Alsmadi, S. (2024). Minimizing the environmental impacts of waste valorization systems using multi-criteria life cycle optimization. Journal of Cleaner Production, 449, 141619.
Abdul-Azeez, O. Y., Nwabekee, U. S., Agu, E. E., & Ijomah, T. I. (2024). Sustainability in product life cycle management: A review of best practices and innovations. Ahmad, S. (2023). Triple bottom line-based sustainability assessment of Tamar Cocoa manufacturing and packaging activities by using comprehensive and integrated stochastic-fuzzy method. The International Journal of Life Cycle Assessment, 1-22. Ahmad, S., & Wong, K. Y. (2018). Sustainability assessment in the manufacturing industry: a review of recent studies. Benchmarking: An International Journal, 25(8), 3162-3179. Ahmad, S., Wong, K. Y., & Butt, S. I. (2023). Status of sustainable manufacturing practices: literature review and trends of triple bottom-line-based sustainability assessment methodologies. Environmental Science and Pollution Research, 30(15), 43068-43095. Albán-Pérez, C. A., Serrano-Guzmán, M. F., & Pérez-Ruiz, D. D. (2023). Weighted sums method applied for decision making in improvement towards complete street: a case study in Popayan, Colombia. Legado de Arquitectura y Diseño, 18(34), 155-170. Aydin, R., & Badurdeen, F. (2019). Sustainable product line design considering a multi-lifecycle approach. Resources, Conservation and Recycling, 149, 727-737. Badurdeen, F., Aydin, R., & Brown, A. (2018). A multiple lifecycle-based approach to sustainable product configuration design. Journal of Cleaner Production, 200, 756-769. Bain, A. D., Peter Parry, Joe Scalise. (2021). Global Energy and Natural Resources Report 2021: Navigating the Energy Transition. Bain. https://www.bain.com/insights/topics/energy-and-natural-resources-report/ BCG, M. L. M., Andrea Ventura, Kai Heller, Andrew Loh, Romane Roch, Johannes Spitzbart, and Pietro Zanotelli. (2023). Six Strategies for Designing Sustainable Products. BCG. Retrieved 6/11 from https://www.bcg.com/publications/2023/six-strategies-to-lead-product-sustainability-design Board, E. Y. E. P. A. R. F. M. (2021). The Environmental Protection Agency increases the recycling volume of paper tableware. https://enews.moenv.gov.tw/Page/3B3C62C78849F32F/c1b72066-65dc-4e05-8110-1658ba66ee3c Branke, J., Deb, K., Dierolf, H., & Osswald, M. (2004). Finding knees in multi-objective optimization. Parallel Problem Solving from Nature-PPSN VIII: 8th International Conference, Birmingham, UK, September 18-22, 2004. Proceedings 8, Brundtland, G. H., & Khalid, M. (1987). Our common future. Oxford University Press, Oxford, GB. Ceschin, F., & Gaziulusoy, I. (2016). Evolution of design for sustainability: From product design to design for system innovations and transitions. Design studies, 47, 118-163. Chang, D., Lee, C., & Chen, C.-H. (2014). Review of life cycle assessment towards sustainable product development. Journal of Cleaner Production, 83, 48-60. Chavalittumrong, P., & Speece, M. (2022). Three-Pillar sustainability and brand image: A qualitative investigation in Thailand’s household durables industry. Sustainability, 14 (18), 11699. In. Clark, G., Kosoris, J., Hong, L. N., & Crul, M. (2009). Design for sustainability: current trends in sustainable product design and development. Sustainability, 1(3), 409-424. Commission, E. (2020). Product Environmental Footprint (PEF). In: European Commission. Cosate de Andrade, M. F., Souza, P. M., Cavalett, O., & Morales, A. R. (2016). Life cycle assessment of poly (lactic acid)(PLA): Comparison between chemical recycling, mechanical recycling and composting. Journal of Polymers and the Environment, 24, 372-384. Curran, M. A. (2012). Life cycle assessment handbook: a guide for environmentally sustainable products. John Wiley & Sons. da Luz, L. M., de Francisco, A. C., Piekarski, C. M., & Salvador, R. (2018). Integrating life cycle assessment in the product development process: A methodological approach. Journal of Cleaner Production, 193, 28-42. Dyllick, T., & Rost, Z. (2017). Towards true product sustainability. Journal of Cleaner Production, 162, 346-360. Elkington, J. (1997). The triple bottom line. Environmental management: Readings and cases, 2, 49-66. Fangmongkol, K., & Gheewala, S. H. (2020). Life cycle assessment of biodegradable food container from bagasse in Thailand. Journal of Sustainable Energy & Environment, 11, 61-69. García-Velásquez, C., Defryn, C., & van der Meer, Y. (2023). Life cycle optimization of the supply chain for biobased chemicals with local biomass resources. Sustainable Production and Consumption, 36, 540-551. Goridkov, N., Ye, K., Wang, Y., & Goucher-Lambert, K. (2023). Challenges in extracting insights from life cycle assessment documents during early stage design. Proceedings of the Design Society, 3, 837-846. Guan, J., Yang, X., You, L., Ding, L., & Cheng, X. (2022). Multi-objective optimization for sustainable road network maintenance under traffic equilibrium: Incorporating costs and environmental impacts. Journal of Cleaner Production, 334, 130103. Hackenhaar, I. C., Moraga, G., Thomassen, G., Taelman, S. E., Dewulf, J., & Bachmann, T. M. (2024). A comprehensive framework covering Life Cycle Sustainability Assessment, resource circularity and criticality. Sustainable Production and Consumption. Hanski, J., Uusitalo, T., Rantala, T., & Hemilä, J. (2023). Sustainability Assessment in Product Design—Perspectives from Finnish Manufacturing Companies. International Conference on Sustainable Design and Manufacturing, Hauschild, M. Z., Rosenbaum, R. K., & Olsen, S. I. (2018). Life cycle assessment (Vol. 2018). Springer. He, B., Li, F., Cao, X., & Li, T. (2020). Product sustainable design: a review from the environmental, economic, and social aspects. Journal of Computing and Information Science in Engineering, 20(4), 040801. He, B., Luo, T., & Huang, S. (2019). Product sustainability assessment for product life cycle. Journal of Cleaner Production, 206, 238-250. He, B., Niu, Y., Hou, S., & Li, F. (2018). Sustainable design from functional domain to physical domain. Journal of Cleaner Production, 197, 1296-1306. Huang, L., Solangi, Y. A., Magazzino, C., & Solangi, S. A. (2024). Evaluating the efficiency of green innovation and marketing strategies for long-term sustainability in the context of Environmental labeling. Journal of Cleaner Production, 450, 141870. Huijbregts, M. A., Steinmann, Z. J., Elshout, P. M., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & Van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22, 138-147. Hunkeler, D., Lichtenvort, K., & Rebitzer, G. (2008). Environmental life cycle costing. Crc press. Ibn-Mohammed, T., Yamoah, F., Acquaye, A., Omoteso, K., & Koh, S. (2024). Enhancing life cycle product design decision-making processes: Insights from normal accident theory and the satisficing framework. Resources, Conservation and Recycling, 205, 107523. Iofrida, N., de Bikuña Salinas, K. S., Mistretta, M., Falcone, G., Spada, E., Gulisano, G., & De Luca, A. I. (2024). Social life cycle assessment of garments production using the psychosocial risk factors impact pathway. Journal of Cleaner Production, 458, 142448. Khatri, I., & Kjærland, F. (2023). Sustainability reporting practices and environmental performance amongst nordic listed firms. Journal of Cleaner Production, 418, 138172. Kühnen, M., & Hahn, R. (2017). Indicators in social life cycle assessment: a review of frameworks, theories, and empirical experience. Journal of Industrial Ecology, 21(6), 1547-1565. Lacasa, E., Santolaya, J. L., & Biedermann, A. (2016). Obtaining sustainable production from the product design analysis. Journal of Cleaner Production, 139, 706-716. Li, C., Wang, L., Zhang, Y., Yu, H., Wang, Z., Li, L., Wang, N., Yang, Z., Maréchal, F., & Yang, Y. (2023). A multi-objective planning method for multi-energy complementary distributed energy system: Tackling thermal integration and process synergy. Journal of Cleaner Production, 390, 135905. Li, J., Pitt, M., Ma, L., Jia, J., & Jiang, F. (2022). A multi-objective differential evolutionary algorithm for optimal sustainable pavement maintenance plan at the network level. Journal of Cleaner Production, 381, 135212. Li, W., Zhang, G., Zhang, T., & Huang, S. (2020). Knee Point‐Guided Multiobjective Optimization Algorithm for Microgrid Dynamic Energy Management. Complexity, 2020(1), 8877008. Luthin, A., Crawford, R. H., & Traverso, M. (2023). Demonstrating circular life cycle sustainability assessment–a case study of recycled carbon concrete. Journal of Cleaner Production, 433, 139853. Mabey, C. S., Dickerson, T. J., Salmon, J. L., & Mattson, C. A. (2024). An Approach for Predicting Social, Environmental, and Economic Product Impacts and Characterizing the Associated Sustainability Tradespace in Engineering Design. Journal of Mechanical Design, 146(2). Manikandan, S., Vickram, S., Deena, S. R., Subbaiya, R., & Natchimuthu, K. (2024). Critical review on fostering sustainable progress: An in-depth evaluation of cleaner production methodologies and pioneering innovations in industrial processes. Journal of Cleaner Production, 142207. Manjunatheshwara, K., & Vinodh, S. (2021). Sustainable electronics product design and manufacturing: State of art review. International Journal of Sustainable Engineering, 14(4), 541-551. Mármol, C., Martín-Mariscal, A., Picardo, A., & Peralta, E. (2023). Social life cycle assessment for industrial product development: A comprehensive review and analysis. Heliyon. Maxwell, D., & Van der Vorst, R. (2003). Developing sustainable products and services. Journal of Cleaner Production, 11(8), 883-895. Mckinsey & Company, S. F., Stephan Mohr, Malin Orebäck, and Jan Rys. (2022). Product sustainability: Back to the drawing board. Mckinsey & Company. Retrieved 6/11 from https://www.mckinsey.com/capabilities/operations/our-insights/product-sustainability-back-to-the-drawing-board Mengistu, A. T., Dieste, M., Panizzolo, R., & Biazzo, S. (2024). Sustainable product design factors: A comprehensive analysis. Journal of Cleaner Production, 142260. Meyer, M., Fichtler, T., Koldewey, C., & Dumitrescu, R. (2022). Potentials and challenges of analyzing use phase data in product planning of manufacturing companies. AI EDAM, 36, e14. Meyer, M., Wiederkehr, I., Koldewey, C., & Dumitrescu, R. (2022). Planning the Analysis of Use Phase Data in Product Planning. Proceedings of the Design Society, 2, 753-762. Michael, Z. H., Ralph, K. R., & Stig, I. O. (2018). Life cycle assessment: Theory and practice. In: Spinger. Moins, B., Hernando, D., Buyle, M., & Audenaert, A. (2024). Reviewing the variability in product category rules for asphalt pavements–A quantitative evaluation of methodological framework differences for environmental product declarations. Journal of Cleaner Production, 140580. Movahed, Z. P., Kabiri, M., Ranjbar, S., & Joda, F. (2020). Multi-objective optimization of life cycle assessment of integrated waste management based on genetic algorithms: A case study of Tehran. Journal of Cleaner Production, 247, 119153. Nogueira, E., Gomes, S., & Lopes, J. M. (2022). The key to sustainable economic development: A triple bottom line approach. Resources, 11(5), 46. Omidzadeh, D., Sajadi, S. M., Bozorgi-Amiri, A., & Daneshvar Kakhki, M. (2024). Enhancing Sustainability Attributes in New Product Design Insights from Automotive Industry. Sustainability, 16(15). Ostojic, S., & Traverso, M. (2024). Application of Life Cycle Sustainability Assessment in the automotive sector–A systematic literature review. Sustainable Production and Consumption. Papamichael, I., Voukkali, I., Loizia, P., Pappas, G., & Zorpas, A. (2023). Existing tools used in the framework of environmental performance. Sustain Chem Pharm 32: 101026. In. Perossa, D., Rosa, P., & Terzi, S. (2024). A Systematic Literature Review of Existing Methods and Tools for the Criticality Assessment of Raw Materials: A Focus on the Relations between the Concepts of Criticality and Environmental Sustainability. Resources, 13(9), 131. Pohl, J., Suski, P., Haucke, F., Piontek, F. M., & Jäger, M. (2019). Beyond production—the relevance of user decision and behaviour in LCA. Progress in life cycle assessment 2018, 3-19. Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: in search of conceptual origins. Sustainability Science, 14, 681-695. Reap, J., Roman, F., Duncan, S., & Bras, B. (2008). A survey of unresolved problems in life cycle assessment: Part 2: impact assessment and interpretation. The International Journal of Life Cycle Assessment, 13, 374-388. Rebitzer, G., & Hunkeler, D. (2003). Life cycle costing in LCM: ambitions, opportunities, and limitations. Reddy, Y. J., Reddy, G. P., & Kumar, Y. V. P. (2023). Implementation of Design for Sustainability in Product Engineering. Engineering Proceedings, 56(1), 172. Reichard, J. J., & Martin, A. (2023). Sustainable Design Evaluation–Integration of Sustainability in Product Development Processes. Proceedings of the Design Society, 3, 3275-3284. Rigamonti, L., Grosso, M., Møller, J., Sanchez, V. M., Magnani, S., & Christensen, T. H. (2014). Environmental evaluation of plastic waste management scenarios. Resources, Conservation and Recycling, 85, 42-53. Ruihui, Z., Xinmei, Y., & Yu, H. (2023). Cleaner production and total factor productivity of polluting enterprises. Journal of Cleaner Production, 423, 138827. Rybaczewska-Błażejowska, M., & Jezierski, D. (2024). Comparison of ReCiPe 2016, ILCD 2011, CML-IA baseline and IMPACT 2002+ LCIA methods: a case study based on the electricity consumption mix in Europe. The International Journal of Life Cycle Assessment, 1-19. Salemdeeb, R., Saint, R., Clark, W., Lenaghan, M., Pratt, K., & Millar, F. (2021). A pragmatic and industry-oriented framework for data quality assessment of environmental footprint tools. Resources, Environment and Sustainability, 3, 100019. Selvefors, A., Rexfelt, O., Renström, S., & Strömberg, H. (2019). Use to use–A user perspective on product circularity. Journal of Cleaner Production, 223, 1014-1028. Sharma, R., & Gupta, H. (2024). Harmonizing sustainability in industry 5.0 era: Transformative strategies for cleaner production and sustainable competitive advantage. Journal of Cleaner Production, 445, 141118. Sharma, S. (2024). Fostering Green Product Design and Innovation for a Sustainable Future. In Waste Management and Life Cycle Assessment for Sustainable Business Practice (pp. 86-110). IGI Global. Shi, J., Wang, Y., Fan, S., Ma, Q., & Jin, H. (2019). An integrated environment and cost assessment method based on LCA and LCC for mechanical product manufacturing. The International Journal of Life Cycle Assessment, 24, 64-77. Subal, L., Braunschweig, A., & Hellweg, S. (2024). The relevance of life cycle assessment to decision-making in companies and public authorities. Journal of Cleaner Production, 435, 140520. Suman, D., & Rajak, S. (2023). Sustainable Product Design for Electric Vehicles. In Progress in Sustainable Manufacturing (pp. 31-44). Springer. Suryadi, D., Widjaja, W., Sungkar, M. S., Kraugusteeliana, K., Adhicandra, I., & Sujito, S. (2023). Evaluating Location Alternatives for a New Manufacturing Plant using Weighted Sum Model Method. Journal of Applied Science, Engineering, Technology, and Education, 5(1), 46-51. Tragnone, B. M., Serreli, M., Arzoumanidis, I., Pelino, C. A., & Petti, L. (2023). Using the product social impact life cycle assessment (PSILCA) database for product comparison: confetti case study. The International Journal of Life Cycle Assessment, 28(8), 1031-1053. Vezzoli, C., Ceschin, F., Diehl, J. C., & Kohtala, C. (2015). New design challenges to widely implement ‘Sustainable Product–Service Systems’. Journal of Cleaner Production, 97, 1-12. Visentin, C., da Silva Trentin, A. W., Braun, A. B., & Thomé, A. (2020). Life cycle sustainability assessment: A systematic literature review through the application perspective, indicators, and methodologies. Journal of Cleaner Production, 270, 122509. Wang, L., Templer, R., & Murphy, R. J. (2012). A Life Cycle Assessment (LCA) comparison of three management options for waste papers: Bioethanol production, recycling and incineration with energy recovery. Bioresource Technology, 120, 89-98. Wehner, D., Prenzel, T., Betten, T., Briem, A.-K., Hong, S. H., & Ilg, R. (2022). The Sustainability Data Science Life Cycle for automating multi-purpose LCA workflows for the analysis of large product portfolios. E3S Web of Conferences, Xin-She Yang. (2014). Nature-Inspired Optimization Algorithms. Elsevier. https://doi.org/10.1016/B978-0-12-416743-8.00014-2 Yang, X.-S. (2020). Nature-inspired optimization algorithms. Academic Press. Yeturu, J. R., Gogulamudi, P. R., & Kumar, Y. V. P. (2023). Implementation of Design for Sustainability in Product Engineering. Yip, W. S., Zhou, H., & To, S. (2023). A critical analysis on the triple bottom line of sustainable manufacturing: key findings and implications. Environmental Science and Pollution Research, 30(14), 41388-41404. Yu, H., Yang, W., Li, Q., & Li, J. (2022). Optimizing Buildings’ Life Cycle Performance While Allowing Diversity in the Early Design Stage. Sustainability, 14(14), 8316. Zomer, T. T. S., Cauchick-Miguel, P. A., Kohlbeck, E., Moro, S. R., de Senzi Zancul, E., & de Sousa Mendes, G. H. (2024). Investigating Social and Environmental Hotspots Throughout the Lifecycle of Product-Service Systems in the Early Design Stages. Journal of Cleaner Production, 142724. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99324 | - |
| dc.description.abstract | 永續產品設計已成為解決產品於製造與消費過程中環境、經濟及社會挑戰的關鍵策略,旨在創造滿足當代需求而不損及後代需求滿足能力的產品。然而,現行永續設計方法常難以在整個產品生命週期中平衡多重目標,忽略關鍵階段(特別是使用階段),且因實用性不足而缺乏廣泛產業接受度。為解決這些問題,本研究開發了一套創新的四步驟永續產品生命週期管理方法,運用多目標生命週期最佳化。方法學包含四大步驟:(1)辨識潛在設計路徑;(2)評估永續性表現;(3)建構最佳化模型;(4)透過加權總和法求解,建立最佳設計方案的帕雷托前緣。案例分析結果顯示,此方法能在維持經濟可行性的同時,大幅降低各類產品的環境影響。案例分析將方法學應用於臺灣手搖杯,相較於基準情境,應用本研究方法的手搖杯設計,展現出全球暖化潛勢最多可降低60%、毒性指標可降低80%的潛力,同時兼顧經濟表現。研究結果揭示不同永續目標間的複雜權衡關係,強調在產品設計中考量多重生命週期的重要性,實現對不同材料、製程與終端處置情境的全面評估。本研究為產業提升產品永續性及推動潔淨生產提供實用框架,可作為各產業發展更精緻永續產品設計模式的起點,並具有納入社會影響評估及應用至其他產品類別的拓展潛力。此外,亦為永續設計決策提供量化基礎,對政策制定與產業永續倡議具有參考價值,有望改變產品設計與製造方式,促進產業永續轉型。 | zh_TW |
| dc.description.abstract | Sustainable product design has emerged as a critical approach to address environmental, economic, and social challenges in manufacturing and consumption, aiming to create products that fulfill present needs without compromising future generations' ability to meet their own. Current sustainable design approaches often struggled to balance multiple objectives across entire product lifecycles, overlooking key phases, particularly usage, and lacking widespread industry acceptance due to limited practicality. To address these gaps, we developed a novel four-step methodology for sustainable product lifecycle management using multi-objective life cycle optimization. Here we show that this approach can significantly reduce environmental impacts while maintaining economic viability across various product categories. Our methodology, which involves (1) identifying potential design pathways, (2) assessing their sustainability, (3) formulating an optimization model, and (4) solving it using a weighted sum method, generated a Pareto frontier of optimal design solutions. Applying this to a case study in Taiwan's boba tea packaging industry, we demonstrated potential reductions of up to 60% in Global Warming Potential and 80% in toxicity measures compared to baseline scenarios, while considering economic performance. Our results reveal the complex trade-offs between different sustainability objectives and highlight the importance of considering multiple lifecycles in product design, enabling a comprehensive evaluation of various options including different materials, manufacturing processes, and end-of-life scenarios. This study provides a practical framework for industries to enhance product sustainability, promoting cleaner production practices. We anticipate our approach to be a starting point for more sophisticated models of sustainable product design across various sectors, with potential expansion to include social impacts and application to other product categories. Moreover, it offers a quantitative basis for sustainable design decisions, relevant for policy development and industry-wide sustainability initiatives, potentially transforming how products are designed and manufactured for a more sustainable future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-01T16:05:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-01T16:05:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of Contents
Acknowledgement i 摘要及關鍵字... ii Abstract and Keywords. iii Table of Contents. v List of Figures. ix List of Tables. x 1 Introduction. 1 1.1 Background and Motivation. 1 1.2 Research Goal 6 1.3 Research Framework. 8 2 Literature review.. 10 2.1 Design for Sustainability. 11 2.2 Limited Lifecycle Coverage. 12 2.3 Insufficient Integration of Sustainability Dimensions. 18 2.4 Restricted Industry Acceptance. 34 2.5 Summary of Research Gaps in Sustainable Product Design. 38 3 Methods. 40 3.1 Identifying Potential Product Design Pathways. 42 3.2 Assessing Sustainability of Potential Design Pathways. 46 3.3 Formulating a Sustainable Product Design Optimization Model 49 3.4 Solving the Optimization Model 53 4 Industrial Case Study. 55 4.1 Background and Implementation Goal 55 4.2 Implementation of the Proposed Methodology. 56 4.3 Data Collection. 63 5 Implementation Results. 65 5.1 Optimization Measures. 65 5.2 Optimization Results. 66 6 Discussion. 80 6.1 Interpretation of the Trade-Off Relationship. 81 6.2 Implementation of Optimization Result in Decision Making. 85 6.3 Broader Application: Product Category Rules. 89 6.4 Industry Perspectives on Implementation Results. 91 7 Conclusion. 96 7.1 Major Findings. 96 7.2 Research Contribution. 99 7.3 Future Work Direction. 102 8 References. 109 9 Attachments. 118 9.1 Cost Indicators for Evaluating the TLC in Case Study. 118 9.2 Activity Data for Potential Beverage Packaging Pathways. 121 9.3 Environmental Impact Indicators for Evaluating the GWP, HTP, FAEP, MAEP, TEP in Case Study 125 9.4 Objective Performance of 29 Optimal Design Cases. 131 | - |
| dc.language.iso | en | - |
| dc.subject | 永續產品設計 | zh_TW |
| dc.subject | 循環經濟 | zh_TW |
| dc.subject | 生命週期評估 | zh_TW |
| dc.subject | 產品生命週期管理 | zh_TW |
| dc.subject | 多目標最佳化 | zh_TW |
| dc.subject | Circular Economy | en |
| dc.subject | Multi-objective optimization | en |
| dc.subject | Product lifecycle management | en |
| dc.subject | Life cycle optimization | en |
| dc.subject | Life Cycle Assessment | en |
| dc.subject | Sustainable product design | en |
| dc.title | 重塑永續產品設計思維: 以多目標最佳化及生命週期評估打造永續產品設計方法學 | zh_TW |
| dc.title | Rethinking Design for Sustainability: A Novel Multi-Objective Optimization Methodology for Sustainable Product Lifecycle Design | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 廖昱凱 | zh_TW |
| dc.contributor.coadvisor | Yu-Kai Liao | en |
| dc.contributor.oralexamcommittee | 馬鴻文;謝宜桓 | zh_TW |
| dc.contributor.oralexamcommittee | HWONG-WEN MA;Yi-Huan Hsieh | en |
| dc.subject.keyword | 永續產品設計,生命週期評估,產品生命週期管理,多目標最佳化,循環經濟, | zh_TW |
| dc.subject.keyword | Sustainable product design,Life Cycle Assessment,Life cycle optimization,Product lifecycle management,Multi-objective optimization,Circular Economy, | en |
| dc.relation.page | 132 | - |
| dc.identifier.doi | 10.6342/NTU202501893 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-21 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 氣候變遷與永續發展國際學位學程 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 氣候變遷與永續發展國際學位學程(含碩士班、博士班) | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
