請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99319完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許哲源 | zh_TW |
| dc.contributor.advisor | Je-Yuan Hsu | en |
| dc.contributor.author | 張晏誠 | zh_TW |
| dc.contributor.author | Yen-Chen Chang | en |
| dc.date.accessioned | 2025-08-22T16:09:54Z | - |
| dc.date.available | 2025-08-23 | - |
| dc.date.copyright | 2025-08-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centurioni, L. R., Chao, S. Y., Chang, M. H., Farmer, D. M., Fringer, O. B., Fu, K. H., Gallacher, P. C., Graber, H. C., Helfrich, K. R., Jachec, S. M., Jackson, C. R., Klymak, J. M., Ko, D. S., Jan, S.,…Tang, T. Y. (2015). The formation and fate of internal waves in the South China Sea (vol 521, pg 65, 2015). Nature, 528(7580), 152–152. Bai, X. L., Liu, Z. Y., Zheng, Q. N., Hu, J. Y., Lamb, K. G., & Cai, S. Q. (2019). Fission of Shoaling Internal Waves on the Northeastern Shelf of the South China Sea. Journal of Geophysical Research-Oceans, 124(7), 4529–4545.
Buijsman, M. C., Legg, S., & Klymak, J. (2012). Double-Ridge Internal Tide Interference and Its Effect on Dissipation in Luzon Strait. Journal of Physical Oceanography, 42(8), 1337–1356. Buijsman, M. C., McWilliams, J. C., & Jackson, C. R. (2010). East-west asymmetry in nonlinear internal waves from Luzon Strait. Journal of Geophysical Research-Oceans, 115. Chang, M. H. (2021). Marginal Instability Within Internal Solitary Waves. Geophysical Research Letters, 48(9). Chang, M. H., Cheng, Y. H., Yang, Y. J., Jan, S., Ramp, S. R., Reeder, D. B., Hsieh, W. T., Ko, D. S., Davis, K. A., Shao, H. J., & Tseng, R. S. (2021). Direct measurements reveal instabilities and turbulence within large amplitude internal solitary waves beneath the ocean. Communications Earth & Environment, 2(1). Chang, M. H., Lien, R. C., Lamb, K. G., & Diamessis, P. J. (2021). Long-Term Observations of Shoaling Internal Solitary Waves in the Northern South China Sea. Journal of Geophysical Research-Oceans, 126(10). Chen, L., Zheng, Q. A., Xiong, X. J., Yuan, Y. L., Xie, H. R., Guo, Y. L., Yu, L., & Yun, S. J. (2019). Dynamic and Statistical Features of Internal Solitary Waves on the Continental Slope in the Northern South China Sea Derived From Mooring Observations. Journal of Geophysical Research-Oceans, 124(6), 4078–4097. Farmer, D. M., Alford, M. H., Lien, R. C., Yang, Y. J., Chang, M. H., & Li, Q. (2011). From Luzon Strait to Dongsha Plateau: Stages in the Life of an Internal Wave. Oceanography, 24(4), 64–77. Gao, Z. Y., Chen, Z. H., Huang, X. D., Yang, H. Y., Wang, Y. H., Ma, W., & Luo, C. Y. (2024). Estimating the Energy Flux of Internal Tides in the Northern South China Sea Using Underwater Gliders. Journal of Geophysical Research-Oceans, 129(2). Gong, Y. K., Chen, X. E., Xu, J. X., Xie, J. S., Chen, Z. W., He, Y. H., & Cai, S. Q. (2023). An internal solitary wave forecasting model in the northern South China Sea (ISWFM-NSCS). Geoscientific Model Development, 16(10), 2851–2871. Hsu, J. Y. (2021). Observing Surface Wave Directional Spectra under Typhoon Megi (2010) Using Subsurface EM-APEX Floats. Journal of Atmospheric and Oceanic Technology, 38(11), 1949–1966. Hsu, J. Y. (2024). A New Rotating Axes Method for Processing High-Resolution Horizontal Velocity Measurements on EM-APEX floats. Journal of Atmospheric and Oceanic Technology, 41(3), 319–339. Hsu, J. Y., Lien, R. C., D’Asaro, E. A., & Sanford, T. B. (2018). Estimates of Surface Waves Using Subsurface EM-APEX Floats under Typhoon Fanapi 2010. Journal of Atmospheric and Oceanic Technology, 35(5), 1053–1075. Huang, X., Chen, Z., Zhao, W., Zhang, Z., Zhou, C., Yang, Q., & Tian, J. (2016). An extreme internal solitary wave event observed in the northern South China Sea. Scientific Reports, 6(1), 30041. Huang, X. D., Huang, S. W., Zhao, W., Zhang, Z. W., Zhou, C., & Tian, J. W. (2022). Temporal variability of internal solitary waves in the northern South China Sea revealed by long-term mooring observations. Progress in Oceanography, 201. Huang, X. D., Zhang, Z. W., Zhang, X. J., Qian, H. B., Zhao, W., & Tian, J. W. (2017). Impacts of a Mesoscale Eddy Pair on Internal Solitary Waves in the Northern South China Sea revealed by Mooring Array Observations. Journal of Physical Oceanography, 47(7), 1539–1554. Kara, A. B., Rochford, P. A., & Hurlburt, H. E. (2000). Mixed layer depth variability and barrier layer formation over the North Pacific Ocean. Journal of Geophysical Research-Oceans, 105(C7), 16783–16801. Li, D., Chen, X., & Liu, A. (2011). On the generation and evolution of internal solitary waves in the northwestern South China Sea. Ocean Modelling, 40(2), 105–119. Liang, X., Losch, M., Nerger, L., Mu, L. J., Yang, Q. H., & Liu, C. Y. (2019). Using Sea Surface Temperature Observations to Constrain Upper Ocean Properties in an Arctic Sea Ice-Ocean Data Assimilation System. Journal of Geophysical Research-Oceans, 124(7), 4727–4743. Lien, R.-C., Sanford, T. B., Carlson, J. A., & Dunlap, J. H. (2016). Autonomous microstructure EM-APEX floats. Methods in Oceanography, 17, 282–295. Lien, R. C., Henyey, F., Ma, B., & Yang, Y. J. (2014). Large-Amplitude Internal Solitary Waves Observed in the Northern South China Sea: Properties and Energetics. Journal of Physical Oceanography, 44(4), 1095–1115. Liu, A. K., Chang, Y. S., Hsu, M. K., & Liang, N. K. (1998). Evolution of nonlinear internal waves in the East and South China Seas. Journal of Geophysical Research-Oceans, 103(C4), 7995–8008. Pan, Z. K., Zhai, Z. H., Li, Q., Li, Q. Q., Wu, L., & Bao, L. F. (2025). Preliminary Investigation of the Spatial-Temporal Characteristics and Vertical Dynamics of Internal Solitary Waves in the South China Sea from SWOT Data. Journal of Marine Science and Engineering, 13(2). Ramp, S. R., Tang, T. Y., Duda, T. F., Lynch, J. F., Liu, A. K., Chiu, C. S., Bahr, F. L., Kim, H. R., & Yang, Y. J. (2004). Internal solitons in the northeastern South China Sea - Part I: Sources and deep water propagation. Ieee Journal of Oceanic Engineering, 29(4), 1157–1181. Reverdin, G., Olivier, L., Cabanes, C., Boutin, J., Thouvenin-masson, C., Vergely, J. L., Kolodziejczyk, N., Thierry, V., Khvorostyanov, D., & Jouannod, J. (2024). Missing Argo Float Profiles in Highly Stratified Waters of the Amazon River Plume. Journal of Atmospheric and Oceanic Technology, 41(3), 221–233. Sanford, T. B., Drever, R. G., & Dunlap, J. H. (1978). A velocity profiler based on the principles of geomagnetic induction. Deep Sea Research, 25(2), 183–210. Sanford, T. B., Dunlap, J. H., Carlson, J. A., Webb, D. C., & Girton, J. B. (2005, 28–29 June 2005). Autonomous velocity and density profiler: EM-APEX. Proceedings of the IEEE/OES Eighth Working Conference on Current Measurement Technology, 2005., Sanford, T. B., Price, J. F., & Girton, J. B. (2011). Upper-Ocean Response to Hurricane Frances (2004) Observed by Profiling EM-APEX Floats. Journal of Physical Oceanography, 41(6), 1041–1056. St Laurent, L., Simmons, H., Tang, T. Y., & Wang, Y. H. (2011). Turbulent Properties of Internal Waves in the South China Sea. Oceanography, 24(4), 78–87. Xu, A. D., & Chen, X. E. (2021). A Strong Internal Solitary Wave with Extreme Velocity Captured Northeast of Dong-Sha Atoll in the Northern South China Sea. Journal of Marine Science and Engineering, 9(11). Xu, J. X., Chen, S. M., Gong, Y. K., Chen, Z. W., Cai, S. Q., & Li, D. N. (2024). Discrimination of Internal Solitary Waves from Coarse Time Resolution Field Observational Data by Using Wavelet Analysis. Journal of Marine Science and Engineering, 12(2). Xu, J. X., Xie, J. S., Chen, Z. W., Cai, S. Q., & Long, X. M. (2012). Enhanced mixing induced by internal solitary waves in the South China Sea. Continental Shelf Research, 49, 34–43. Yang, B., Hu, P., & Hou, Y. J. (2021). Observed Near-Inertial Waves in the Northern South China Sea. Remote Sensing, 13(16). Yang, K. C., Jan, S., Yang, Y. J., Chang, M. H., Wang, J., Wang, S. H., Ramp, S. R., Reeder, D. B., & Ko, D. S. (2023). Anatomy of Mode-1 Internal Solitary Waves Derived From Seaglider Observations in the Northern South China Sea. Journal of Physical Oceanography, 53(11), 2519–2536. Yang, Y. J., Fang, Y. C., Chang, M. H., Ramp, S. R., Kao, C. C., & Tang, T. Y. (2009). Observations of second baroclinic mode internal solitary waves on the continental slope of the northern South China Sea. Journal of Geophysical Research-Oceans, 114. Zhang, Y. L., Wang, Y. F., Wang, C., Guan, S. D., & Zhao, W. (2025). Variability in Diurnal Internal Tides and Near-Inertial Waves in the Southern South China Sea Based on Mooring Observations. Journal of Marine Science and Engineering, 13(3). Zhao, W., Huang, X. D., & Tian, J. W. (2012). A new method to estimate phase speed and vertical velocity of internal solitary waves in the South China Sea. Journal of Oceanography, 68(5), 761–769. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99319 | - |
| dc.description.abstract | 南海(South China Sea)為全球內孤立波(Internal solitary wave, ISW)規模最大、能量最強的海域之一。此海洋現象內部之垂直流速(Vertical velocity)遠高於一般海洋環境,其威力足以對區域內之人為建設構成潛在風險。為了更加了解此具危險性之海洋現象內部的動力結構,本研究致力於提出一套新的儀器觀測策略,應用電磁垂直剖面探測浮標(EM-APEX Float)於南海蒐集之資料進行對內孤立波的識別分析,此浮標為一種具自主垂直剖面能力的海洋觀測儀器,其1至2公尺的高解析度特性,能更加清晰的呈現內部之動力結構。由於此儀器並不具備直接量測垂直流速的能力,本研究以浮標在水中的垂直運動速度為代理指標。然而,浮標的垂直運動變化受浮力調控(Buoyancy adjustment)與海流推動共同影響。為確認該變化並非由浮力因素所致,本研究進一步引入浮標運動狀態相關之數項參數進行回歸統計,特別是與浮力作用密切相關的浮標旋轉速度(Rotation rate),藉此多參數的統計結果以識別受海流推動造成之異常運動,並據此作為初步判斷內孤立波存在的條件。在此基礎上,分析浮標於該段落所量測之水文資料,探討與內孤立波相關的動力結構特徵,包括等密度面位移振盪(Isopycnal displacement)與東西向流速(Zonal velocity)之垂直分布特性。最終,透過浮標的運動行為與水層物理結構的雙重驗證,以辨識出資料中的內孤立波事件。本研究為首次應用EM-APEX Float於南海進行內孤立波之觀測,將在結尾透過分析識別的結果,建立出一套適用於往後資料中事件辨識的參考準則,為該儀器在南海內孤立波研究上的應用潛力提供分析實證與技術基礎。 | zh_TW |
| dc.description.abstract | The South China Sea is one of the regions where internal solitary wave (ISW) exhibit the largest scales and strongest intensities globally. The vertical velocity within such phenomena far exceeds typical oceanic background conditions and poses potential risks to man-made structures. To better understand the internal dynamics of this hazardous process, this study proposes a new observational strategy utilizing the Electromagnetic Autonomous Profiling Explorer (EM-APEX) float, which collected high-resolution (1–2 m) data in March 2022 in the South China Sea. As the float cannot directly measure vertical velocity, the analysis uses the float’s vertical motion speed (dP/dt) as a proxy. Since the float’s vertical motion is governed by both buoyancy adjustment and external flow, a regression analysis involving motion-related parameters, particularly rotation rate, which reflects buoyancy-driven movement, is conducted to isolate segments where vertical motion is primarily driven by environmental forcing. These identified segments serve as initial indicators for potential ISW events. Further analysis of float-measured hydrographic data focuses on ISW structures, including isopycnal displacement and the vertical profile of zonal velocity. Through combined evaluation of float motion and water column structure, ISW events are successfully identified. This study represents the first deployment of EM-APEX floats for ISW observation in the South China Sea, and based on the analytical results, proposes a reference framework for future ISW event identification using EM-APEX float’s data, offering empirical and technical support for its application in internal solitary wave research. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-22T16:09:54Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-22T16:09:54Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 iii Abstract iv 目次 v 圖次 vii 表次 xiv 第一章 緒論 1 第二章 EM-APEX Float 7 2.1 2022年南海地區實地測量 7 2.2 EM-APEX Float運作設計 9 2.3 內孤立波對於浮標垂直運動可能造成的影響 12 第三章 2022年3月南海浮標資料之展示 16 3.1 溫鹽深及水平流速資料 16 3.2 與浮標垂直運動相關變化的參數 20 第四章 浮標在浮力常規與否下垂直運動異常變化的統計 25 4.1 不同密度區間中V0變化對於Rr變化影響之多寡 26 4.2 不同V0區間的Rr和σ關係之統計 29 4.3 不同V0區間的dP/dt和Rr關係之統計 32 第五章 從儀器資料中尋找內孤立波的方法 35 5.1 個別觀測剖面中的ISW判定步驟 35 5.2以ISW結構為基礎的物理驗證步驟 37 第六章 歸納觀測到之內孤立波性質 42 第七章 未來研究規劃之相關討論 48 7.1 下潛剖面資料存在的問題 48 7.2往後南海EM-APEX Float資料對於ISW量測之應用 49 第八章 結論 53 判定單一剖面中ISW存在的核心準則 55 參考文獻 56 附錄A─諧波擬合法(Harmonic Fit) 62 A.1最小平方法求解 63 A.2振幅與相位的計算 63 A.3各頻率成分的分離與重建 64 附錄B─旋轉速度的機率密度分佈分析 65 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電磁垂直剖面探測浮標 | zh_TW |
| dc.subject | 內孤立波 | zh_TW |
| dc.subject | 浮標旋轉速度 | zh_TW |
| dc.subject | 浮標垂直運動速度 | zh_TW |
| dc.subject | 浮力調控 | zh_TW |
| dc.subject | Internal solitary wave | en |
| dc.subject | EM-APEX Float | en |
| dc.subject | Rotation rate | en |
| dc.subject | Vertical motion speed | en |
| dc.subject | Buoyancy adjustment | en |
| dc.title | 利用電磁垂直剖面探測浮標資料分析南海內孤立波的訊號 | zh_TW |
| dc.title | Analysis of internal solitary waves on EM-APEX Float data in the South China Sea | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 張明輝 | zh_TW |
| dc.contributor.coadvisor | Ming-Huei Chang | en |
| dc.contributor.oralexamcommittee | 楊穎堅;鄭宇昕 | zh_TW |
| dc.contributor.oralexamcommittee | Yiing-Jang Yang;Yu-Hsin Cheng | en |
| dc.subject.keyword | 內孤立波,電磁垂直剖面探測浮標,浮力調控,浮標垂直運動速度,浮標旋轉速度, | zh_TW |
| dc.subject.keyword | Internal solitary wave,EM-APEX Float,Buoyancy adjustment,Vertical motion speed,Rotation rate, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202504096 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2026-01-01 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 5.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
