請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9926完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余榮熾(Lung-Chih Yu) | |
| dc.contributor.author | Guo-Wei Pan | en |
| dc.contributor.author | 潘國偉 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:49:52Z | - |
| dc.date.available | 2008-06-25 | |
| dc.date.available | 2021-05-20T20:49:52Z | - |
| dc.date.copyright | 2008-06-25 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-06-19 | |
| dc.identifier.citation | Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355.
Ausubel, F.M., Brenet, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (1996). Current Protocols in Molecular Biology. Bagga, S., Bracht, J., Shaun, H., Massirer, K., Holtz, J., Eachus, R., and Pasquinelli, A.E. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553-563. Bartel, D.P. (2004). MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116, 281-297. Bianchi, L., Tacchini, L., and Cairo, G. (1999). HIf-1-mediated activation of transferring receptor gene transcription by iron chelation. Nucleic Acids Res. 27, 4223-4227. Billy, E., Brondani, V., Zhang, H., Müller, U., and Filipowicz, W. (2001). Specific interference with gene expression induced by long, double-strand RNA in mouse embryonal teratocarcinoma cell line. Proc. Natl. Acad. Sci. USA 98, 14428-14433. Blain, S.W., Scher, H.I., Cordon-Carlos, C., and Koff, A. (2003). p27 as a target for cancer therapeutics. Cancer Cell 3, 111-114. Bloomston, M., Frankel, W.L., Petrocca, F., Volinia, S., Alder, H., Hagan, J.P., Liu, C.-G., Bhatt, D., Taccioli, C., and Croce, C.M. (2007). MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297, 1901-1907. Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of MicroRNA- target recognize. PLoS Biol. 3, 404-418. Bruick, R.K. (2000). Expression of gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc. Natl. Acad. Sci. USA 97, 9082-9087. Büchler, P., Reber, H.A., Büchler, M.W., Frless, H., Lavey, R.S., and Hines, O.J. (2003). Antiangiogenenic activity of genistein in pancreatic carcinoma cells is mediated by the inhibition of hypoxia-inducible factor-1 and the down-regulation of VEGF gene expression. Cancer 100, 201-210. Carmellet, P., Dor, Y., Herbert, J.-M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovltch, R., Maxwell, P., Koch, C.J., Ratcllffe, P., Moons, L., Jaln, R.K., Collen, D., and Keshet, E. (1998). Role of HIF-1α in hypoxia mediated apoptosis, cell proliferation and tumor angiogenesis. Nature 394, 485-490. Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F., and Maity, A. (2001). Regulation of glut1 mRNA by hypoxia-inducible factor-1. J. Biol. Chem. 276, 9519-9525. Chen, C.-Z., Li, L., Lodish, H.F., and Bartel, D.P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86. Ciafrè, S.A., Galardi, S., Mangiola, A.. Ferracin, M.. Liu, C.-G., Sabatino, G., Negrini, M., Maira, G., Croce, C.M., and Farace, M.G. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem. Biophys. Res. Commun. 334, 1351-1358. Cockman, M.E., Masson, N., Mole, D.R., Jaakkola, P., Chang, G.-W., Clifford, S.C., Maher, E.R., Pugh, C.W., J.Ratckiffe, P., and Maxwell, P.H. (2000). Hypoxia inducible factor-α bindig and ubiquitylation by von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 275, 25733-25741. Dang, C.V., Kim, J.-W., Gao, P., and Yustein, J. (2008). The interplay between MYC and HIF in cancer. Nat. Rev. Cancer 8, 51-56. Denli, A.M., Tops, B.B.J., Plasterk, R.H.A., Kettlng, R.F., and Hannon, G.J. (2004). Processing of primary microRNAs by the microprocessor complex. Nature 432, 231-235. Doench, J.G., and Sharp, P.A. (2004). Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504-511. Feldser, D., Agani, F., Iyer, N.V., Pak, B., Ferreira, G., and Semenza, G.L. (1999). Reciprocal positive regulation of hypoxia-inducible 1α and insulin-like growth factor 2. Cancer Res. 59, 3915-3918. Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santori, S., Valtieri, M., Calin, G. A., Liu, C.-C., Sorrentino, A., Croce, C. M., and Peschle, C. (2005). MicroRNAs 221 and 222 inhibitor normal erythopoiesis and erythroleukemic cell growth via kit receptor down-regulation. Proc. Natl. Acad. Sci. USA 102, 18081-18086. Filipowicz, W. (2005). RNAi: The nuts and bolts of the RISC machin. Cell 122, 17-20. Filipowicz, W., Jaskiewicz, L., Kolb, F.A., and Pillai, R.S. (2005). Post-transcriptional gene silencing by siRNAs and miRNAs. Cur. Opin. Struct. Biol. 15, 331-341. Forsythe, J.A., Jiang, B.-H., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., and Semenza, G.L. (1996). Activation of Vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604-4613. Galardi, S., Mercatelli, N., Giorda, E., Massalini, S., Frajese, G.V., Ciafrè, S.A., and Farace, G.M. (2007). miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by target p27kip1. J. Biol. Chem. 282, 23716-23724. Gradin, K., Takasaki, C., Yoshiaki, F.-K., and Sogawa, K. (2002). The transcriptional Activation function of the HIF-like factor requires phosphorylation at a conserved threonine. J. Biol. Chem. 277, 23508-23514. Grimson, A., Farh, K.K.-H., Johnston, W.K., Garrett-Engele, P., Lim, L.P., and Bartel, D.P. (2007). MicroRNA targeting specificity in mammals : Determinants beyond seed pairing. Mol. Cell 27, 91-105. Gwizdek, C., Bertrand, E., Dargemont, C., Lefebvre, J.-C., Blanchard, J.-M., Singer, R.H., and Doglio, A. (2001). Terminal minihelix, a novel RNA motif that directs polymerase III transcription to the cell cytoplasma. J. Biol. Chem. 276, 25910-25918. Gwizdek, C., Ossareh-Nazari, B., Brownawell, A.M., Doglio, A., Bertrand E., Macara I.G., and Dargemon, C. (2003). Expoitin-5 mediates nuclear export of minihelix-containing RNAs. J. Biol. Chem. 278, 5505-5508. Ha, I., Wightman, B., and Ruvkun, G. (1996). A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegant lin-4 temporal gradient formation. Genes Dev. 10, 3041-3050. Han, J., Lee Y., Yeom, K.-H., Kim, Y.-K., Jin, H., and Kim, V.N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016-3027. Huang, L.E., Gu, J., Schau, M., and Bunn, H.F. (1998). Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 95, 7987-7992. Hur, E., Chang, K.Y., Lee, E., Lee, S.-K., and Park, H. (2001). Mitogen-activated protein kinase kinase inhibitor PD98059 blocks the trans-activation but not the stability or DNA binding ability of hypoxia-inducible factor-1α. Mol. Pharmacol. 59, 1216-1224. Jeong, J.-W., Bag, M.-K., Ahn, M.-Y., Kim, S.-H., Sohn, T.-K., Bag, M.-H., Yoo, M.-A., Song, E.-J., Lee, K.-J., and Kim, K.-W. (2002). Regulation and destabilization of HIF-1α by ARD1- mediated acetylation. Cell 111, 709-720. Jiang, B.-H., Semenza, G.L., Bauer, C., and Marti, H.H. (1996). Hypoxia- inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. Cell Physiol. 271, 1172-1180. Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., Padova, F.D., Lin, S.-C., Gram, H., and Han, J. (2005). Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120, 623-634. Ke, Q., and Costa, M. (2006). Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 70, 1469-1480. Khvorova, A., Reynolds, A., Jayasena, S. D. (2003). Functional siRNA and miRNAs exhibit strand bias. Cell 115, 209-216. Kim, J.W., Tchernyshyov, I., Semenza, G.L., and Dang, C.V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase : A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 31, 77-185 Krishnamachary, B., Berg-Dixon, S., Kelly, B., Agani, F., Feldser, D., Ferreira, G., Iyer, N., LaRusch, J., Pak, B., Taghavi, P., and Semenza, G.L. (2003). Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res. 63, 1138-1143. Kung, A.L., Wang, S., Klco, J.M., Kaelin, JR, W.G., and Livingston, D.M. (2000). Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat. Med. 6, 1335-1340. Lai, E.C. (2002). MicroRNAs are complementary to 3’UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363-364. Lai, E.C., Tam, B., and Rubin, G.M. (2005). Pervasive regulation of Drosophila notch target gene by GY-box-, Brd-Box-, and K-Box-class microRNA. Genes Dev. 19, 1067-1080. Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L., and Bruick, R.K. (2002). HIF-1 is a asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 466-1471. Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J., and Whitelaw, M.K. (2002). Asparigine hydroxylation of the HIF transactivation domain : A hypoxia switch. Science 295, 858-862. Landthaler, M., Yalcin, A., and Tuschl, T. (2004). The human DiGeorge syndrome critical region gene 8 and its D. melangaster homolog are required for miRNA biogenesis. Curr. Biol. 14, 2162-2167. Lee, J.-W., Bae, S.-H., Jeong, J.-W., Kim, S.-H., and Kim, K.-W. (2004). Hypoxia-inducible factor (HIF-1)α : its protein stability and biological function. Exp. Mol. Med. 36, 1-12. Lee, Y., Jeon, K., Lee, J.-T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation : stepwise processing and subcellular localization. EMBO J. 21, 4663-4670. Lee, Y., Hur, I., Park, S.-Y., Kim, Y.-K., Suh, M.R., and Kim, N.Y. (2006). The role of PACT in the RNA silencing pathway. EMBO J. 25, 522-532. Lewis, B.P., Shih, I.-H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787-798. Lewis, B.P., Burge, C.B., and Bartel, D.P. (2006). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20. Li, Y.M., Zhou, B.P., Deng, J., Pan, Y., Hay, N., and Hung, M.-C. (2005). A hypoxia-independent hypoxia-inducible factor-1 activation pathway induced by phosphatidylinosiyol-3 kinase/Akt in HER2 overexpressing cells. Cancer Res. 65, 3257-3263. Liang, J., Zubovitz, J., Petrocelli, T., Kotchetkov, R., Connor, M.K., Han, K., Lee, J.-H., Ciarallo, S., Catzavelos, C., Beniston, R., Franssen, E., and Slingerland, J.M. (2002). PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat. Med. 8, 1153-1160. Lioyd, R.V., Erickson, L.A., Jin, L., Kulih, E., Qian, X., Cheville, J.C., and Scheithauer, B.W. (1999). p27kip1 : A multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am. J. Pathol. 154, 313-413. Lok, C.N., and Ponka, P. (1999). Identification of a hypoxia response element in the transferring receptor gene. J. Biol. Chem. 274, 24147-24152. Lu, S., Gu, X., Hoestje, S., and Epner, D.E. (2002). Identification of an additional hypoxia responsive element in the glyceraldehyde-3-phosphate dehydrogenase gene promoter. Biochim. Biophys. Acta. 1574, 152-156. Lund, E., Güttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursor. Science 303, 95-98. MacRae, I.J., Zhou, K., Li, F., Repic, A., Brooks, A.N., Cande, W.Z., Adams, P.D., and Doudna, J.A. (2006). Structure basis for double-stranded RNA processing by Dicer. Science 311, 195-198. MacRae, I.J., Ma, E., Zhou, M., Robinson, C.V., and Doudna, A. (2008). In vitro reconstitutation of the human RISC-loading complex. Proc. Natl. Acad. Sci. USA 105, 512-517. Marlower, J. L., Knudesen, E.S., Schwembergerll, S., and Puga, A. (2004). The ary hydrocarbon receptor displaces p300 from from E2F-dependent promoter and represses S phase-specific gene expression. J. Biol. Chem. 279, 29013-29022. Masson, N., Willam, C., Maxwell, P.H., Pugh, C.W., and Ratcliffe, P.J. (2001). Independent function of two destruction domain in hypoxia-inducible factor-α chain activated by prolyl hydroxylation. EMBO J. 20, 5197-5206. Maxwell, P.H., Dachs, C.U., Gleadle, J.M., Nicholis, L.G., Harris, A.L., Stratford, I.J., Hankinson, O., Pugh, C.W., and Ratcliffe, P.J. (1997). Hypoxia-inducible factor-1 modulates gene expression in solid tumor and influence both angiogenesis and tumor or growth. Proc. Natl. Acad. Sci. USA 94, 8104-8109. Millar, A.A., and Waterhouse, P.M. (2005). Plant and animal microRNAs : similarities and differences. Funct. Integr. Genomics 5, 129-135. Moss, E.G., Lee, R.C., and Ambros, V. 1997. The cold shock domain protein Lin-28 control developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88, 637-646. Pallante, P., Visone, R., Ferracin, M., Ferraro, A., Berlignien, M.T., Troncone, G., Chiappetta, G., Liu, C.G., Santoro, M., Negrin, M., Croce, C. M., and Fusco, A. (2006). MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer 13, 497-508. Peng, L., Mayhew, C.N., Schneckenburger, M., Knudsen, E.S., and Puga, A. (2008). Repression of Ah receptor and induction of transforming growth factor-β gene in DEN-induced mouse liver tumor. Toxicology 246, 242-247. Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K., Mercatanti, A., Hammond, S., and Rainaldi, G. (2006). MicroRNA modulate the angiogenic properties of HUVECs. Blood 108, 3068-3071. Postovit, L.-M., Abbott, D. E., Payne, S.L., Wheaton, W.W., Margaryan, N.V., Sullivan, R., Jansen, M.K., Csiszar, K., Hendrix, M.J.C., and Kirschmann, D.A. (2008). Hypoxia/reoxygenation: A dynamic regulator of lysyl oxidase-facilitated breast cancer migration. J. Cell. Biochem. 103, 69-1378. Provost, P., Dishart, D., Doucet, J., Frendewey, D., Samuelsson, B., and Radmark, O. (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. 21, 5964-5874. Sage, C.I., Nagel, R., Egan, D.A., Schrier, M., Mesman, E., Mangiola, A., Anile, C., Maria, G., Mercatelli, N., Ciafrè, S.A., Farance, M.G., and Agami, R. (2007). Regulation of the p27kip1 tumor suppressor by miR-221 and miR-222 promoter cancer proliferation. EMBO J. 26, 3699-3708. Schwarz, D.S., Hutvágner, G., Du, T., Du, Z., Aronin, N., and Zamore, P.D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208. Semenza, G. L. (2003). Target HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721-732. Semenza, G. L. (2007). Oxygen-dependent regulation of mitochondria respiration by hypoxia-inducible factor 1. Biochem. J. 405, 1-9. Semenza, G.L., Nejfelt, M.K., Chi, S.M., and Antonarakis, S.E. (1991). Hypoxia-inducible nuclear factor bind to an enhancer element located 3’ to the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 88, 680-5684. Semenza, G.L., Jiang, B.-H., Leung, S.W., Passantino, R., Concordet, J.-P., Maire, P., and Giallongo, A. (1996). Hypoxia response element in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoter contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 32529-32537. Sowter, H.M., Ratcliffe, P.J., Wastson, P., Greenberg, A.H., and Harris, A.L. (2001). HIF-1-dependent regulation of Hypoxia induction of the cell death factor BNIP3 and NIX in human tumor. Cancer Res. 61, 6669-6673. Tanimoto, K., Makino, Y., Pereira, T., and Poellinger, L. (2000). Mechanism of regulation of the hypoxia-inducible factor-1α by von Hippel-Lindau tumor suppressor protein. EMBO J. 19, 4298-4309. Visone, R., Russo, L., Pallante, P., Martino, I. D., Ferraro, A., Leone, V., Borbone, E., Petrocca F., Alder, H., Croce, C. M., and Fusco, A. (2007). MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27kip1 protein levels and cell cycle. Endocr. Relat. Cancer 14, 791-798. Watanabe, Y., Yachie, N., Numata, K., Saito, R., Kanai, A., and Tomita, M. (2006). Computational analysis of microRNA target in Caenorhabditis elegans. Gene 365, 2-10. Willian, G., and Jr. K. (2005). Proline hydroxylation and gen expression. Annu. Rev. Biochem. 74, 115-130. Yang, J., Zhang, L., Erbel, P.J.A., Gardner, K.H., Ding, K., Garcia, J.A., and Bruick, R.K. (2006). Functions of the Per/ARNT/Sim domains of the hypoxia-inducible factor. J. Biol. Chem. 280, 36047-36054. Yekta, S., Shin, I.-H., and Bartel, D.P. (2008). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594-596. Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and shot hairpin RNAs. Genes Dev. 17, 3011-3016. Zeng, Y. 2006. Principles of micro-RNA production and maturation. Oncogene 25, 6156-6162. Zeng, Y., and Cullen, B.R. (2003). Sequence requirements for micro RNA processing and function in human cells. RNA 9, 112-123. Zhang, H., Kolb, F. A., Brondani, V., Billy, E., and Filipowicz, W. (2002). Human Dicer preferentially cleaves dsRNA at their termini without a requirement foe ATP. EMBO J. 21, 5875-5885. Zhang, H., Gao, P., Fukuda, R., Kumar, G., Krishnamachary, B., Zeller, K.I., Dang, C.V., and Semenza, G.L. (2007). HIF-1 inhibits mitochondria biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407-420. Zhang, L., Zhou, W., Velculescu, V.E., Kern, S.E., Hruban, R.H., Hamilton, S.R., Vogelstein, B., and Kinzler, K.W. (1997). Gene expression profiles in normal and cancer cells. Science 276, 1268-1272. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9926 | - |
| dc.description.abstract | MicroRNAs (miRNAs)為由21∼23個核醣核酸所組成,不具轉譯意義的小片段單股RNA,能藉由translational repression或mRNA cleavage的方式抑制標的基因的表現;它們被證實在人體內參與許多重要生理現象的調控,包括胚胎細胞的發育、細胞的分化及腫瘤細胞的生成和增生等。過去許多的研究顯示,microRNA-221/222 (miR-221/222)於多種腫瘤細胞中呈現大量表現的現象。因此,本論文即以miR-221/222為目標;我們首先從miRNA資料庫中搜尋miR-221/222可能的標的基因,從其中我們篩選出了HIF-1β基因為可能的標的基因。HIF-1β為組成Hypoxia-inducible factor-1 (HIF-1)轉錄因子的其中一子單元,HIF-1轉錄因子在許多重要的細胞活動扮演重要的角色。
為證實HIF-1β是否確實受到miR-221/222的調控,我們以消化道系統癌細胞株做為研究的細胞模型;我們於細胞株中轉殖miR-221/222 mimic或其inhibitor,接著以西方點墨法分析HIF-1β蛋白的表現;實驗的結果證實HIF-1β蛋白的表現確可受到miR-221/222的抑制。而後我們建構載有正常或miR-221/222 seed site辨識序列突變的HIF-1β基因3’-untranslated region (3’-UTR)片段的報導基因質體;報導基因活性分析的實驗,證實HIF-1β確為miR-221/222的標的基因。我們也以即時同步定量RT-PCR分析HIF-1β蛋白表現受miR-221/222抑制的細胞,其HIF-1β transcript的表現量,來探討miR-221/222對HIF-1β表現的抑制是藉由translational repression或mRNA cleavage的方式。 上述一系列的研究,顯示miR-221/222確實可調控HIF-1β的表現;而這些初步的研究成果,也顯現了調控HIF-1轉錄因子活性的一條可能的新路徑。由於miR-221/222在胰臟癌癌化過程中,呈現大量表現的情形;因此我們也進一步以miRNA inhibitor抑制胰臟癌細胞株的內生性miR-221/222,並將之注射至裸鼠,觀察miR-221/222對胰臟癌細胞增生的影響。但在兩種不同胰臟癌細胞株中我們卻觀察到不同的結果,一為明顯的抑制腫瘤細胞的增生,另一卻為促進。此項研究還需要未來更多的實驗進一步探討,但此兩種不同的結果皆已顯示miR-221/222對胰臟癌細胞增生的顯著影響。 | zh_TW |
| dc.description.abstract | MicroRNAs (miRNAs) are non-coding, single-stranded RNAs of 21∼23 nucleotides in length, which suppress the expressions of target genes through translational repression or mRNA cleavage. MiRNAs involve in the regulations of many important cellular activities, including embryo development, cell differentiation, tumorigenesis, and tumor cell proliferation, etc.. Previous investigations have shown that the expressions of microRNA-221 and microRNA-222 (miR-221/222) significantly elevate in the oncogenetic processes of several cancers; thus we focus on miR-221/222 in the present investigation. First, we searched for the potential target genes of miR-221/222 in miRNA databanks. HIF-1β was selected for further investigation. HIF-1β is one of the two subunits that constitute HIF-1 (hypoxia-inducible factor-1) transcription factor, which plays significant roles in many cellular activities.
We employed gastrointestinal cancer cell lines as study models to investigate whether miR-221/222 regulate the expression of HIF-1β. MiR-221/222 mimics and specific inhibitors for miR-221/222 were transfected into the gastrointestinal cancer cells, and western blotting analyses for the expressions of HIF-1β were followed. The results demonstrated the inhibitory function of miR-221/222 on HIF-1β expression. In the successive experiments, the reporter plasmids bearing the 3’-untranslated region (3’-UTR) fragments, wild-type or miR-221/222-seed site mutated, of HIF-1β gene were constructed, and the results obtained from the reporter gene activity assays of the constructs suggested that HIF-1β gene is the target of miR-221/222. In addition, the expressions of HIF-1β transcript in the cell models were quantitatively analyzed through real-time RT-PCR to elucidate which mechanism, translational repression or mRNA cleavage, leading to the suppression of HIF-1β-protein expression by miR-221/222. Our investigations demonstrate that miR-221/222 can inhibit the expression of HIF-1β. This suggests a novel route through which the activity of HIF-1 transcription factor could be regulated. As the significant elevation of miR-221/222 expressions in pancreatic cancer has been well documented, we used miRNA inhibitors to neutralize the endogenous miR-221/222 in pancreatic cancer cell lines, and employed human-nude mice xenograft model to examine the effects of miR-221/222 on the tumor formation of pancreatic cancer cells. However, opposite results were observed from the experiments of two different cell lines, with significant inhibition of tumor formation observed in one cell line while promotion in the other. More studies are expected for further exploration on this subject; nonetheless, the two opposite results obtained from the two cell lines both demonstrate the significant role of miR-221/222 in pancreatic cancer. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:49:52Z (GMT). No. of bitstreams: 1 ntu-97-R95b46030-1.pdf: 2276428 bytes, checksum: fe9d7bea2b7c846726c40f510af25ba0 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目錄
縮寫表..............................................................1 摘要................................................................3 英文摘要............................................................4 緒論 一、 miR-221/222的生成與生理意義.....................................5 1. miRNA的生成....................................................5 2. miRNA的功能....................................................6 3. miR-221/222的生理意義............................................6 二、 HIF-1的組成與生理意義...........................................7 1. HIF-1的組成單元.................................................7 2. HIF-1的調控.....................................................8 3. HIF-1的功能及生理意義...........................................9 三、 研究構想與目的..................................................11 實驗材料與方法 一、 細胞培養.......................................................12 二、 細胞蛋白萃取與西方點墨法 (Western blot)分析.......................12 三、 小片段RNA萃取及miRNA同步定量RT-PCR........................13 四、 轉殖miRNA mimic及miRNA inhibitor..............................13 五、構築報導質體與Luciferase-Reporter assays............................14 六、 RNA萃取及同步定量RT-PCR分析.................................15 七、腫瘤增生實驗....................................................16 結果 一、 miR-221/222可能的標的基因的預測.................................17 二、分析HIF-1β蛋白質及miR-221在消化道癌細胞株中的表現.............18 三、 miR-221及miR-222對HIF-1β蛋白表現的影響........................19 四、 miR-221及miR-222調控HIF-1β基因表現的專一性探討................20 五、 miR-221/222抑制HIF-1β表現的機制探討............................22 六、 miR-221/222對胰臟癌細胞增生的影響...............................23 討論...............................................................25 參考文獻...........................................................41 圖表目錄 表1.Primer序列.....................................................29 表2.實驗中所選用的癌細胞株.........................................30 圖1. HIF-1β為miR-221/222的可能標的基因.............................31 圖2.HIF-1β蛋白及miR-221在消化道癌細胞株中的表現...................32 圖3.轉殖miR-221 mimic及miR-222 mimic抑制HIF-1β表現................33 圖4.轉殖miR-221 inhibitor及miR-222 inhibitor回復HIF-1β表現.............34 圖5. miR-221/222對Luciferase報導基因表現的影響.......................35 圖6.以Luciferase活性變化分析預測的seed site對miR-221/222調控標的基因的 重要性........................................................36 圖7.分析miR-221/222抑制HIF-1β表現的機制............................37 圖8.以miR-221/222 inhibitor抑制內生性miR-221/222......................38 圖9. miR-221/222對MIAPaCa-2胰臟癌細胞增生的影響....................39 圖10.miR-221/222對ASPC-1胰臟癌細胞增生的影響......................40 附圖1.細胞轉殖時間表...............................................50 附圖2.報導質體pGL3-control Map......................................51 | |
| dc.language.iso | zh-TW | |
| dc.title | MicroRNA-221/222調控HIF-1β蛋白表現的探討 | zh_TW |
| dc.title | Studies of the regulatory function of microRNA-221/222 on the expression of HIF-1β | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱善德,曾婉芳,張?仁 | |
| dc.subject.keyword | 胰臟癌細胞株,轉錄因子, | zh_TW |
| dc.subject.keyword | MicroRNA,HIF-1β, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2008-06-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf | 2.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
