請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99261完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊國鑫 | zh_TW |
| dc.contributor.advisor | Kuo-Hsin Yang | en |
| dc.contributor.author | 林琬潔 | zh_TW |
| dc.contributor.author | Wan-Chieh Lin | en |
| dc.date.accessioned | 2025-08-21T17:01:44Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | [1] 楊樹榮、林忠志、鄭錦桐、潘國標、蔡如君、李正利(2011)。臺灣常用山崩分類系統。第十四屆地工工程研討會論文集(The 14th Conference on Current Researches in Geotechnical Engineering in Taiwan),桃園,臺灣。
[2] 魏倫瑋、羅佳明、鄭添耀、鄭錦桐、襲樹勇(2012)。深層崩塌之地貌特徵-以台灣南部地區為例。中興工程,115,35–43。 [3] 行政法人國家災害防救科技中心(2015)。大規模崩塌災害防治行動綱領。 [4] 交通部(2020)。大地工程設計施工注意事項。 [5] 優美工程顧問有限公司(2020)。《高雄市六龜區高 133 線道路(3K+800~4K+250)地質鑽探及試驗工作報告》。委託單位:聯地工程顧問有限公司。 [6] 謝平城、王瀚衛(2004)。降雨滲流對邊坡穩定的影響。水土保持學報,36(2),135–142 [7] 張凱鈞(2022)。考慮降雨入滲三維邊坡穩定分析之研究 - 以萬山 D048 大規模崩塌潛勢區為例。國立成功大學土木工程學系碩士論文。台南,臺灣。 [8] 國立交通大學(2017)。國有林大規模崩塌潛勢區減災策略研擬及安全監測成果報告。行政院農業委員會林務局。 [9] Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33. [10] Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. New York, NY: Wiley [11] Mualem,Y.(1976),A new model for predicting the hydraulic conductivity of unsaturated porous media,Water Resour. Res., 12(3),513–522, https://doi.org/10.1029/WR012i003p00513 [12] Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898. [13] Fredlund, D. G., Rahardjo, H., & Fredlund, M. D. (2012). Unsaturated soil mechanics in engineering practice. Hoboken, NJ: Wiley. [14] Terzaghi, K. (1936). The shearing resistance of saturated soils. In Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering (Vol. 1, pp. 54–56). Cambridge, MA: Harvard University. [15] Bishop, A. W. (1954). The use of pore water coefficients in practice. Géotechnique, 4, 148–152. https://doi.org/10.1680/geot.1954.4.4.148 [16] Bishop, A. W. (1959). The principle of effective stress. Teknisk Ukeblad, 106(39), 859–863. [17] Fredlund, D. G., Morgenstern, N. R., & Widger, R. A. (1978). The shear strength of unsaturated soil. Canadian Geotechnical Journal, 15(3), 313–321. [18] Fredlund, D. G., & Morgenstern, N. R. (1977). Stress state variables for unsaturated soils. Journal of Geotechnical Engineering, 103, 441–446. [19] Vanapalli, S. K., Fredlund, D. G., Pufahl, D. E., & Clifton, A. W. (1996). Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal, 33, 379–392.https://doi.org/10.1139/t96-060 [20] Lu, N., & Likos, W. J. (2006). Suction‐stress characteristic curve for unsaturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 131– 142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131) [21] Lu, N., Godt, J. W., & Likos, W. J. (2010). A closed‐form equation for suction stress in unsaturated soil. Water Resources Research, 46(5), W05515. https://doi.org/10.1029/2009WR008646 [22] Mein, R. G., & Larson, C. L. (1973). Modeling infiltration during a steady rain. Water Resources Research, 9(2), 384–394. https://doi.org/10.1029/WR009i002p00384 [23] Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897–1910. https://doi.org/10.1029/2000WR900090 [24] Bentley Systems Incorporated. (2024). PLAXIS 3D 2024.2 – Material Models Manual. Bentley Systems Incorporated. [25] Tao, Y., Zhang, X., & Liu, Y. (2023). Experimental study and numerical analysis on rainfall induced instability of unsaturated slopes. Engineering Geology, 321, 107042. https://doi.org/10.1016/j.enggeo.2023.107042 [26] Yang, J., Song, D., Wang, L., & Fu, Y. (2017). Numerical investigation of rainfall infiltration-induced slope failure considering hydraulic–mechanical coupling in unsaturated soils. Engineering Geology, 231, 34–45.https://doi.org/10.1016/j.enggeo.2017.10.012 [27] Troncone, A., Conte, E., & Vena, V. (2014). Modelling the progressive failure of a slope induced by excavation. Landslides, 11(4), 531–543. [28] Duncan, J. M. (1996). State of the art: Limit equilibrium and finite-element analysis of slopes. Journal of Geotechnical Engineering, 122(7), 577–596. [29] Janbu, N. (1954). Stability analysis of slopes with dimensionless parameters (Harvard Soil Mechanics Series No. 46). Cambridge, MA: Harvard University. [30] Bishop, A. W. (1955). The use of the slip circle in the stability analysis of slopes. Géotechnique, 5(1), 7–17. [31] Morgenstern, N. R., & Price, V. E. (1965). The analysis of the stability of general slip surfaces. Géotechnique, 15(1), 79–93. [32] Fredlund, D. G., & Krahn, J. (1977). Comparison of slope stability methods of analysis. Canadian Geotechnical Journal, 14(3), 429–439. [33] Griffiths, D. V., & Lane, P. A. (1999). Slope stability analysis by finite elements.Géotechnique, 49(3), 387–403. https://doi.org/10.1680/geot.1999.49.3.387 [34] Zhang, L. M., Zhang, S., & Tang, W. H. (2011). Rainfall-triggered slope failure: Stability analysis and probabilistic assessment. Journal of Geotechnical and Geoenvironmental Engineering, 137(5), 453–462. [35] Ng, C. W. W., & Shi, Q. (1998). Application of numerical methods to unsaturated soil mechanics. Dordrecht: Kluwer Academic Publishers. [36] Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. [37] Yang, K-H., Nguyen, T.S., Rahardjo, H.et al (2021). Deformation characteristics of unstable shallow slopes triggered by rainfall infiltration. Bull Eng Geol Environ 80, 317–344. [38] Yang, K-H, Uzuoka R., Thuo J.N., Lin G-L, and Nakai T., (2017) “Coupled Hydro- Mechanical Analysis of Two Unstable Unsaturated Slopes Subject to Rainfall Infiltration”, Engineering Geology, 216, 13-30. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99261 | - |
| dc.description.abstract | 臺灣山區地形陡峭、地層破碎,且強降雨事件頻繁,導致邊坡災害潛勢極高,尤以崩積層引發之淺層滑動最為常見。然傳統穩定性分析多假設土壤為飽和狀態,未能合理考量非飽和條件下基質吸力消散所致之抗剪強度下降,亦忽略水力傳導係數與含水量之非線性關係,限制其模擬降雨誘發破壞的能力。
本研究以高雄六龜地區一實際崩塌案例為對象,建立具備三維地形與水力-力學耦合之數值模型,探討極端降雨條件下非飽和邊坡之破壞行為。模擬採用 PLAXIS 3D,結合 van Genuchten–Mualem 模型描述非飽和滲流行為,並以 Hardening Soil 模型處理崩積層力學性質。模擬過程考量現地地層配置與2024年凱米颱風降雨歷程,並輔以監測資料進行模型參數校正與驗證。 模擬結果成功重現滑動範圍與破壞時機點,顯示強降雨造成之水分自地表滲入,蓄積於崩積層與破碎硬頁岩交界處,因滲透率差異形成瞬時高飽和區與正孔隙水壓,導致有效應力驟降與剪應變集中,最終沿層間界面發生滑動破壞。 研究結果證實,三維之水力-力學耦合模擬可有效掌握非飽和條件下破壞機制,對邊坡潛勢區辨識、災後成因分析具實務工程應用價值。 | zh_TW |
| dc.description.abstract | Taiwan’s mountainous regions are characterized by steep topography, fractured geological formations, and frequent heavy rainfall events, resulting in a high susceptibility to slope hazards. Among these, shallow landslides triggered within colluvial deposits are particularly common. However, conventional slope stability analyses often assume fully saturated soil conditions, which fail to reasonably account for the reduction in shear strength caused by the dissipation of matric suction under unsaturated conditions. In addition, the nonlinear relationship between hydraulic conductivity and volumetric water content is typically neglected, limiting the ability to accurately simulate rainfall-induced failures.
This study investigates an actual landslide case in Liouguei District, Kaohsiung, and establishes a three-dimensional hydro-mechanical coupled numerical model to examine the failure behavior of unsaturated slopes under extreme rainfall conditions. The PLAXIS 3D software is employed for the simulation, integrating the van Genuchten–Mualem model to characterize unsaturated seepage behavior and applying the Hardening Soil model to represent the mechanical properties of the colluvium. The model setup considers the actual subsurface stratigraphy and the rainfall history associated with Typhoon Kompasu (2024), and is calibrated and validated using site monitoring data. Simulation results successfully reproduce the observed sliding extent and failure timing. The analysis reveals that intense rainfall leads to downward infiltration and water accumulation at the interface between the colluvium and underlying fractured shale. Due to contrasting permeability between the two layers, a transient high-saturation zone and positive pore water pressure develop, resulting in a rapid drop in effective stress and localized shear strain concentration, ultimately inducing sliding along the interlayer boundary. The findings confirm that a three-dimensional hydro-mechanical coupling approach provides effective insights into failure mechanisms under unsaturated conditions, and offers practical value for slope hazard zoning and post-failure forensic analysis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:01:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T17:01:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目 次 iv 圖 次 vii 表 次 x 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 研究架構與流程 3 1.4 邊坡崩塌災害之多尺度分析流程 5 1.5 研究計畫來源 6 第二章 文獻回顧 7 2.1 崩塌類型與破壞機制 7 2.1.1 山崩分類系統 7 2.1.2 淺層與深層破壞機制 9 2.2 非飽和土壤 10 2.2.1 非飽和土壤組成 11 2.2.2 吸力 12 2.2.3 Van Genuchten–Mualem模型 12 2.2.4 非飽和有效應力與抗剪強度模型 15 2.3 降雨入滲對邊坡穩定性的影響 17 2.3.1 降雨入滲特性 17 2.3.2 降雨入滲破壞之研究 19 2.4 數值軟體理論與應用 20 2.4.1 邊坡穩定分析 20 2.4.2 PLAXIS 軟體概述 21 2.4.3 組成律模型 23 2.4.4 PLAXIS非飽和土數值模擬理論 27 2.4.5 強度折減法 29 第三章 研究區域概況 30 3.1 地理位置 30 3.2 地形 31 3.3 區域地質與地層構造 33 3.4 地層分布與岩性特性 36 3.5 室內與現地試驗 39 3.6 邊坡歷史災害 40 3.7 現地監測儀器配置 46 3.8 邊坡監測數據彙整 48 3.8.1 降雨歷線 48 3.8.2 地下水位 49 3.8.3 邊坡變形歷程 50 第四章 數值模型建立 51 4.1 幾何建模與地形處理 51 4.1.1 建立流程 51 4.1.2 幾何與網格設定 54 4.2 材料模型與參數設定 56 4.2.1 粒徑分布與土壤分類 56 4.2.2 土壤物理與力學參數 60 4.2.3 非飽和水力參數 63 4.2.4 土壤組成律 66 4.3 初始狀態設定 66 4.3.1 初始應力場設定 66 4.3.2 初始地下水位設定 68 4.3.3 邊界條件 68 4.3.4 降雨入滲模擬設定 71 第五章 數值模擬結果與討論 72 5.1 模型驗證 73 5.1.1 崩塌位置比對 73 5.1.2 潛在崩塌發展趨勢比對 75 5.1.3 位移滑動趨勢比對 77 5.1.4 滑動深度 78 5.2 邊坡破壞機制探討 81 5.2.1 邊坡破壞分析剖面選擇 81 5.2.2 變形發展歷程分析 82 5.2.3 降雨入滲與滑動深度之關係 86 5.2.4 破壞機制綜整 89 5.2.5 SAA2位置之位移機制 92 5.3 潛在崩塌發展趨勢分析 93 5.4 邊坡滑動對於橋梁基樁的影響評估 95 第六章 結論與建議 98 6.1 結論 98 6.2 建議 99 參考文獻 102 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 非飽和土壤 | zh_TW |
| dc.subject | 邊坡破壞 | zh_TW |
| dc.subject | 水力-力學耦合 | zh_TW |
| dc.subject | PLAXIS 3D | zh_TW |
| dc.subject | 降雨入滲 | zh_TW |
| dc.subject | rainfall infiltration | en |
| dc.subject | hydro-mechanical coupling | en |
| dc.subject | unsaturated soil | en |
| dc.subject | slope failure | en |
| dc.subject | PLAXIS 3D | en |
| dc.title | 降雨入滲作用下非飽和邊坡之破壞行為分析 -以高雄六龜邊坡為例 | zh_TW |
| dc.title | Analysis of Failure Behavior in Unsaturated Slopes under Rainfall Infiltration: A Case Study of the Liugui Slope, Kaohsiung | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄧福宸;陳家漢 | zh_TW |
| dc.contributor.oralexamcommittee | FU-CHEN TENG;Chia-Han Chen | en |
| dc.subject.keyword | 邊坡破壞,非飽和土壤,降雨入滲,PLAXIS 3D,水力-力學耦合, | zh_TW |
| dc.subject.keyword | slope failure,unsaturated soil,rainfall infiltration,PLAXIS 3D,hydro-mechanical coupling, | en |
| dc.relation.page | 104 | - |
| dc.identifier.doi | 10.6342/NTU202503186 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 12.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
