請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99255完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳榮傑 | zh_TW |
| dc.contributor.advisor | Rong-Jie Chein | en |
| dc.contributor.author | 黃柔潔 | zh_TW |
| dc.contributor.author | Rou-Jie Huang | en |
| dc.date.accessioned | 2025-08-21T17:00:24Z | - |
| dc.date.available | 2025-09-02 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | [1] Huang, R.-J.; Ong, T.-G.; Chein, R.-J. Total synthesis of cassane-type diterpenoid pikrosalvin. J. Chin. Chem. Soc. 2023, 70, 2127−2135.
[2] Hewage, R. T.; Huang, R.-J.; Lai, S.-J.; Lien, Y.-C.; Weng, S.-H.; Li, D.; Chen, Y.-J.; Wu, S.-H.; Chein, R.-J.; Lin, H.-C. An Enzyme-Mediated Aza-Michael Addition Is Involved in the Biosynthesis of an Imidazoyl Hybrid Product of Conidiogenone B. Org. Lett. 2021, 23, 1904−1909. [3] Chen, T.-H.; Chen, C.-T.; Lee, C.-F.; Huang, R.-J.; Chen, K.-L.; Lu, Y.-C.; Liang, S.-Y.; Pham, M.-T.; Rao, Y. K.; Wu, S.-H.; Chein, R.-J.; Lin, H.-C. The Biosynthetic Gene Cluster of Mushroom-Derived Antrocin Encodes Two Dual-Functional Haloacid Dehalogenase-like Terpene Cyclases. Angew. Chem. Int. Ed. 2023, 62, e202215566. [4] Brieskorn, C. H.; Fuchs, A. Über die Inhaltsstoffe von Salvia off L., XIII. Die Struktur des Pikrosalvins, eines Diterpen-o-diphenol-lactons aus dem Salbeiblatt. Chem. Ber. 1962, 95, 3034−3041. [5] Linde, H. Ein neues Diterpen aus Salvia officinalis L. und eine Notiz zur Konstitution von Pikrosalvin. Helv. Chim. Acta 1964, 47, 1234−1239. [6] (a) Dickson, R. A.; Houghton, P. J.; Hylands, P. J. Antibacterial and antioxidant cassane diterpenoids from Caesalpinia benthamiana. Phytochemistry 2007, 68, 1436−1441; (b) Ma, G.; Wu, H.; Chen, D.; Zhu, N.; Zhu, Y.; Sun, Z.; Li, P.; Yang, J.; Yuan, J.; Xu, X. Antimalarial and Antiproliferative Cassane Diterpenes of Caesalpinia sappan. J. Nat. Prod. 2015, 78, 2364−2371; (c) Jiang, R.-W.; Ma, S.-C.; But, P. P.-H.; Mak, T. C. W. New Antiviral Cassane Furanoditerpenes from Caesalpinia minax. J. Nat. Prod. 2001, 64, 1266−1272. [7] Favre-Godal, Q.; Dorsaz, S.; Queiroz, E. F.; Marcourt, L.; Ebrahimi, S. N.; Allard, P.-M.; Voinesco, F.; Hamburger, M.; Gupta, M. P.; Gindro, K.; Sanglard, D.; Wolfender, J.-L. Anti-Candida Cassane-Type Diterpenoids from the Root Bark of Swartzia simplex. J. Nat. Prod. 2015, 78, 2994−3004. [8] Schultes, R. E. De plantis toxicariis e mundo novo tropicale commentationes. XX. Medicinal and toxic uses of swartzia in the northwest Amazon. J. Ethnopharmacol. 1979, 1, 79−87. [9] Qiao, Y.; Xu, Q.; Hu, Z.; Li, X.-N.; Xiang, M.; Liu, J.; Huang, J.; Zhu, H.; Wang, J.; Luo, Z.; Xue, Y.; Zhang, Y. Diterpenoids of the Cassane Type from Caesalpinia decapetala. J. Nat. Prod. 2016, 79, 3134−3142. [10] Mahdjour, S.; Harche-Kaid, M.; Haidour, A.; Chahboun, R.; Alvarez-Manzaneda, E. Short Route to Cassane-Type Diterpenoids: Synthesis of the Supposed Structure of Benthaminin 1. Org. Lett. 2016, 18, 5964−5967. [11] (a) Stadler, P. A.; Eschenmoser, A.; Schinz, H.; Stork, G. Untersuchungen über den sterischen Verlauf säurekatalysierter Cyclisationen bei terpenoiden Polyenverbindungen. 3. Mitteilung. Zur Stereochemie der Bicyclofarnesylsäuren. 1957, 40, 2191−2198; (b) Stork, G.; Burgstahler, A. W. The Stereochemistry of Polyene Cyclization. J. Am. Chem. Soc. 1955, 77, 5068−5077. [12] (a) Corey, E. J.; Virgil, S. C.; Cheng, H.; Baker, C. H.; Matsuda, S. P. T.; Singh, V.; Sarshar, S. New Insights Regarding the Cyclization Pathway for Sterol Biosynthesis from (S)-2,3-Oxidosqualene. J. Am. Chem. Soc. 1995, 117, 11819−11820; (b) Corey, E. J.; Cheng, H.; Baker, C. H.; Matsuda, S. P. T.; Li, D.; Song, X. Studies on the Substrate Binding Segments and Catalytic Action of Lanosterol Synthase. Affinity Labeling with Carbocations Derived from Mechanism-Based Analogs of 2,3-Oxidosqualene and Site-Directed Mutagenesis Probes. J. Am. Chem. Soc. 1997, 119, 1289−1296; (c) Wendt, K. U.; Schulz, G. E.; Corey, E. J.; Liu, D. R. Enzyme Mechanisms for Polycyclic Triterpene Formation. Angew. Chem. Int. Ed. 2000, 39, 2812−2833. [13] (a) Ishihara, K.; Nakamura, S.; Yamamoto, H. The First Enantioselective Biomimetic Cyclization of Polyprenoids. J. Am. Chem. Soc. 1999, 121, 4906−4907; (b) Nakamura, S.; Ishihara, K.; Yamamoto, H. Enantioselective Biomimetic Cyclization of Isoprenoids Using Lewis Acid-Assisted Chiral Brønsted Acids: Abnormal Claisen Rearrangements and Successive Cyclizations. J. Am. Chem. Soc. 2000, 122, 8131−8140; (c) Nakamura, S.; Kaneeda, M.; Ishihara, K.; Yamamoto, H. Enantioselective Protonation of Silyl Enol Ethers and Ketene Disilyl Acetals with Lewis Acid-Assisted Chiral Brønsted Acids: Reaction Scope and Mechanistic Insights. J. Am. Chem. Soc. 2000, 122, 8120−8130; (d) Ishihara, K.; Ishibashi, H.; Yamamoto, H. Enantioselective Biomimetic Cyclization of Homo(polyprenyl)arenes. A New Entry to (+)-Podpcarpa-8,11,13-triene Diterpenoids and (−)-Tetracyclic Polyprenoid of Sedimentary Origin. J. Am. Chem. Soc. 2001, 123, 1505−1506. [14] Lin, S.-C.; Chein, R.-J. Total Synthesis of the Labdane Diterpenes Galanal A and B from Geraniol. J. Org. Chem. 2017, 82, 1575−1583. [15] Chou, T.-H.; Yu, B.-H.; Chein, R.-J. ZnI2/Zn(OTf)2-TsOH: a versatile combined-acid system for catalytic intramolecular hydrofunctionalization and polyene cyclization. Chem. Commun. 2019, 55, 13522−13525. [16] Liang, H.; Hu, L.; Corey, E. J. Di-tert-butylisobutylsilyl, Another Useful Protecting Group. Org. Lett. 2011, 13, 4120−4123. [17] (a) Mills, R. J.; Snieckus, V. Directed metalation of N,N-diethylbenzamides. Silylated benzamides for the synthesis of naturally occurring peri-methylanthraquinones and peri-methyl polycyclic aromatic hydrocarbons. J. Org. Chem. 1989, 54, 4386−4390; (b) de Silva, S. O.; Reed, J. N.; Billedeau, R. J.; Wang, X.; Norris, D. J.; Snieckus, V. Directed ortho metalation of n,n-diethyl benzamides. Methodology and regiospecific synthesis of useful contiguously tri- and tetra-substituted oxygenated aromatics, phthalides and phthalic anhydrides. Tetrahedron 1992, 48, 4863−4878. [18] Sharma, A. K.; Maheshwary, Y.; Singh, P.; Singh, K. N. Chiral lithium amide mediated asymmetric synthesis of 3-aryl-3,4-dihydroisocoumarins. ARKIVOC 2010, 2010, 54−62. [19] Youn, S. W.; Pastine, S. J.; Sames, D. Ru(III)-Catalyzed Cyclization of Arene-Alkene Substrates via Intramolecular Electrophilic Hydroarylation. Org. Lett. 2004, 6, 581−584. [20] Tada, M.; Kurabe, J.; Yasue, H.; Ikuta, T. Synthesis of Totarane Diterpenes: Totarol, Maytenoquinone, 6-Deoxymaytenoquinone and 8,11,13-Totaratriene-12,13-diol. Chem. Pharm. Bull. 2008, 56, 287−291. [21] Godeau, J.; Olivero, S.; Antoniotti, S.; Duñach, E. Biomimetic Cationic Polyannulation Reaction Catalyzed by Bi(OTf)3: Cyclization of 1,6-Dienes, 1,6,10-Trienes, and Aryl Polyenes. Org. Lett. 2011, 13, 3320−3323. [22] Hunag, R.-J. Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B. National Central University, 2018. [23] Kang, Y.-B.; Gade, L. H. Triflic Acid Catalyzed Oxidative Lactonization and Diacetoxylation of Alkenes Using Peroxyacids as Oxidants. J. Org. Chem. 2012, 77, 1610−1615. [24] Smith, A. B.; Zheng, J. Total synthesis of (−)-salicylihalamide A and related congeners. Tetrahedron 2002, 58, 6455−6471. [25] Fujita, M.; Yoshida, Y.; Miyata, K.; Wakisaka, A.; Sugimura, T. Enantiodifferentiating endo-Selective Oxylactonization of ortho-Alk-1-enylbenzoate with a Lactate-Derived Aryl-λ3-Iodane. Angew. Chem. Int. Ed. 2010, 49, 7068−7071. [26] (a) Stadler, P. A.; Stütz, P., Chapter 1 The Ergot Alkaloids. In The Alkaloids: Chemistry and Physiology, Manske, R. H. F., Ed. Academic Press: 1975; pp 1−40; (b) Ninomiya, I.; Kiguchi, T., Chapter 1 Ergot Alkaloids. In The Alkaloids: Chemistry and Pharmacology, Brossi, A., Ed. Academic Press: 1990; pp 1−156; (c) Gröcer, D.; Floss, H. G., Chapter 5 Biochemistry of Ergot Alkaloids—Achievements and Challenges. In The Alkaloids: Chemistry and Biology, Cordell, G. A., Ed. Academic Press: 1998; pp 171−218. [27] (a) Stauffacher, D.; Tscherter, H. Isomere des Chanoclavins aus Claviceps purpurea (Fr.) Tul. (Secale cornutum) 63. Mitteilung über Mutterkornalkaloid. Helv. Chim. Acta 1964, 47, 2186−2194; (b) Abe, M.; Ohmomo, S.; Ōhashi, T.; Tabuchi, T. Isolation of Chanoclavine-(I) and Two New Interconvertible Alkaloids, Rugulovasine A and B, from the Cultures of Penicillium concavo-rugulosum. Agric. Biol. Chem 1969, 33, 469−471. [28] Liegl, C. A.; McGrath, M. A. Ergotism: Case Report and Review of the Literature. The International journal of angiology : official publication of the International College of Angiology, Inc 2016, 25, e8−e11. [29] (a) Fehr, T.; Acklin, W.; Arigoni, D. The role of the chanoclavines in the biosynthesis of ergot alkaloids. Chem. Commun. (London) 1966, 801−802; (b) Jakubczyk, D.; Caputi, L.; Hatsch, A.; Nielsen, C. A. F.; Diefenbacher, M.; Klein, J.; Molt, A.; Schröder, H.; Cheng, J. Z.; Naesby, M.; O'Connor, S. E. Discovery and Reconstitution of the Cycloclavine Biosynthetic Pathway—Enzymatic Formation of a Cyclopropyl Group. Angew. Chem. Int. Ed. 2015, 54, 5117−5121. [30] Von K. Mothes, F. W., D. Gröger und H. Grisebach Untersuchungen zur Biosynthese der Mutterkorn-Alkaloide. Naturforscg 1958, 13b, 41−44. [31] Kozikowski, A. P.; Okita, M.; Kobayashi, M.; Floss, H. G. Probing ergot alkaloid biosynthesis: synthesis and feeding of a proposed intermediate along the biosynthetic pathway. A new amidomalonate for tryptophan elaboration. J. Org. Chem. 1988, 53, 863−869. [32] Kozikowski, A. P.; Chen, C.; Wu, J. P.; Shibuya, M.; Kim, C. G.; Floss, H. G. Probing ergot alkaloid biosynthesis: intermediates in the formation of ring C. J. Am. Chem. Soc. 1993, 115, 2482−2488. [33] Yao, Y.; An, C.; Evans, D.; Liu, W.; Wang, W.; Wei, G.; Ding, N.; Houk, K. N.; Gao, S.-S. Catalase Involved in Oxidative Cyclization of the Tetracyclic Ergoline of Fungal Ergot Alkaloids. J. Am. Chem. Soc. 2019, 141, 17517−17521. [34] Chaudhuri, S.; Bhunia, S.; Roy, A.; Das, M. K.; Bisai, A. Biomimetic Total Syntheses of Clavine Alkaloids. Org. Lett. 2018, 20, 288−291. [35] Kardos, N.; Genet, J.-P. Synthesis of (−)-chanoclavine I. Tetrahedron: Asymmetry 1994, 5, 1525−1533. [36] Yokoyama, Y.; Kondo, K.; Mitsuhashi, M.; Murakami, Y. Total synthesis of optically active chanoclavine-I. Tetrahedron Lett. 1996, 37, 9309−9312. [37] Lu, J.-T.; Shi, Z.-F.; Cao, X.-P. Total Synthesis of (−)-Chanoclavine I and an Oxygen-Substituted Ergoline Derivative. J. Org. Chem. 2017, 82, 7774−7782. [38] Bottecchia, C.; Noël, T. Photocatalytic Modification of Amino Acids, Peptides, and Proteins. 2019, 25, 26−42. [39] Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. Carboxylic Acids as A Traceless Activation Group for Conjugate Additions: A Three-Step Synthesis of (±)-Pregabalin. J. Am. Chem. Soc. 2014, 136, 10886−10889. [40] Regni, A.; Bartoccini, F.; Piersanti, G. Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine. Beilstein J. Org. Chem. 2023, 19, 918−927. [41] Hawkins, P. M. E.; Giltrap, A. M.; Nagalingam, G.; Britton, W. J.; Payne, R. J. Total Synthesis of Ecumicin. Org. Lett. 2018, 20, 1019−1022. [42] Cui, Z.; Chen, Y.-J.; Gao, W.-Y.; Feng, C.-G.; Lin, G.-Q. Enantioselective Alkenylation of Aldimines Catalyzed by a Rhodium–Diene Complex. Org. Lett. 2014, 16, 1016−1019. [43] Tanaka, M.; Hikawa, H.; Yokoyama, Y. Convenient synthesis of chiral tryptophan derivatives using Negishi cross-coupling. Tetrahedron 2011, 67, 5897−5901. [44] Haddad, M.; Imogaï, H.; Larchevêque, M. The First Enantioselective Synthesis of the cis-2-Carboxy-5-phenylpyrrolidine. J. Org. Chem. 1998, 63, 5680−5683. [45] Yamada, K.; Igarashi, Y.; Betsuyaku, T.; Kitamura, M.; Hirata, K.; Hioki, K.; Kunishima, M. An Isolable and Bench-Stable Epoxidizing Reagent Based on Triazine: Triazox. Org. Lett. 2018, 20, 2015−2019. [46] Subhas Bose, D.; K., K. K.; and Narsimha Reddy, A. V. A New Protocol for Selective Deprotection of N - tert -Butoxycarbonyl Protective Group ( t -Boc) with Sn(OTf)2. Synth. Commun. 2003, 33, 445−450. [47] (a) Sakaitani, M.; Ohfune, Y. Syntheses and reactions of silyl carbamates. 1. Chemoselective transformation of amino protecting groups via tert-butyldimethylsilyl carbamates. J. Org. Chem. 1990, 55, 870−876; (b) Chandrasekhar, S.; Yaragorla, S. R.; Sreelakshmi, L.; Reddy, C. R. Formal total synthesis of (−)-spongidepsin. Tetrahedron 2008, 64, 5174−5183. [48] Xie, Z.; Wu, P.; Cai, L.; Tong, X. Palladium-catalyzed cyclization of vinyl iodide-tethered allensulfonamide. Tetrahedron Lett. 2014, 55, 2160−2162. [49] Bartoccini, F.; Fanini, F.; Retini, M.; Piersanti, G. General synthesis of unnatural 4-, 5-, 6-, and 7-bromo-d-tryptophans by means of a regioselective indole alkylation. Tetrahedron Lett. 2020, 61, 151923. [50] Wang, L.; Lei, T.; Wang, F.; Jiang, S.; Yan, G. Total synthesis of indiacen A using a practical one-pot reaction: Promoted by a key waste product, and its utility in natural products synthesis. Tetrahedron Lett. 2021, 66, 152822. [51] Xu, Z.; Hu, W.; Liu, Q.; Zhang, L.; Jia, Y. Total Synthesis of Clavicipitic Acid and Aurantioclavine: Stereochemistry of Clavicipitic Acid Revisited. J. Org. Chem. 2010, 75, 7626−7635. [52] Speckmeier, E.; Zeitler, K. Desyl and Phenacyl as Versatile, Photocatalytically Cleavable Protecting Groups: A Classic Approach in a Different (Visible) Light. ACS Catal. 2017, 7, 6821−6826. [53] Liu, Q.; Li, Q.; Ma, Y.; Jia, Y. Direct Olefination at the C-4 Position of Tryptophan via C–H Activation: Application to Biomimetic Synthesis of Clavicipitic Acid. Org. Lett. 2013, 15, 4528−4531. [54] Speckmeier, E.; Padié, C.; Zeitler, K. Visible Light Mediated Reductive Cleavage of C–O Bonds Accessing α-Substituted Aryl Ketones. Org. Lett. 2015, 17, 4818−4821. [55] Fernandez-Rodriguez, P.; Legros, F.; Maier, T.; Weber, A.; Méndez, M.; Derdau, V.; Hessler, G.; Kurz, M.; Villar-Garea, A.; Ruf, S. Photoinduced Decarboxylative Radical Addition Reactions for Late Stage Functionalization of Peptide Substrates. Eur. J. Org. Chem. 2021, 2021, 782−787. [56] Inuki, S.; Sato, K.; Fukuyama, T.; Ryu, I.; Fujimoto, Y. Formal Total Synthesis of l-Ossamine via Decarboxylative Functionalization Using Visible-Light-Mediated Photoredox Catalysis in a Flow System. J. Org. Chem. 2017, 82, 1248−1253. [57] Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMillan, D. W. C.; Overman, L. E. Oxalates as Activating Groups for Alcohols in Visible Light Photoredox Catalysis: Formation of Quaternary Centers by Redox-Neutral Fragment Coupling. J. Am. Chem. Soc. 2015, 137, 11270−11273. [58] Walsh, C. T.; Fischbach, M. A. Natural Products Version 2.0: Connecting Genes to Molecules. J. Am. Chem. Soc. 2010, 132, 2469−2493. [59] Trefzer, A.; Pelzer, S.; Schimana, J.; Stockert, S.; Bihlmaier, C.; Fiedler, H.-P.; Welzel, K.; Vente, A.; Bechthold, A. Biosynthetic Gene Cluster of Simocyclinone, a Natural Multihybrid Antibiotic. Antimicrob. Agents Chemother. 2002, 46, 1174−1182. [60] (a) Du, L.; Li, D.; Zhu, T.; Cai, S.; Wang, F.; Xiao, X.; Gu, Q. New alkaloids and diterpenes from a deep ocean sediment derived fungus Penicillium sp. Tetrahedron 2009, 65, 1033−1039; (b) Du, L.; Feng, T.; Zhao, B.; Li, D.; Cai, S.; Zhu, T.; Wang, F.; Xiao, X.; Gu, Q. Alkaloids from a deep ocean sediment-derived fungus Penicillium sp. and their antitumor activities. J. Antibiot. 2010, 63, 165−170; (c) Ries, M. I.; Ali, H.; Lankhorst, P. P.; Hankemeier, T.; Bovenberg, R. A.; Driessen, A. J.; Vreeken, R. J. Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway. J. Biol. Chem. 2013, 288, 37289−37295. [61] (a) Hiltunen, J. K.; Schonauer, M. S.; Autio, K. J.; Mittelmeier, T. M.; Kastaniotis, A. J.; Dieckmann, C. L. Mitochondrial Fatty Acid Synthesis Type II: More than Just Fatty Acids*. J. Biol. Chem. 2009, 284, 9011−9015; (b) Parsons, J. B.; Rock, C. O. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery? Curr. Opin. Microbiol. 2011, 14, 544−549; (c) Zheng, C. J.; Sohn, M.-J.; Lee, S.; Kim, W.-G. Meleagrin, a New FabI Inhibitor from Penicillium chryosogenum with at Least One Additional Mode of Action. PLOS ONE 2013, 8, e78922. [62] (a) Kawai, K.; Nozawa, K.; Nakajima, S.; Iitaka, Y. Studies on Fungal Products. VII. The Structures of Meleagrin and 9-O-p-Bromobenzoylmeleagrin. Chem. Pharm. Bull. 1984, 32, 94−98; (b) Mady, M. S.; Mohyeldin, M. M.; Ebrahim, H. Y.; Elsayed, H. E.; Houssen, W. E.; Haggag, E. G.; Soliman, R. F.; El Sayed, K. A. The indole alkaloid meleagrin, from the olive tree endophytic fungus Penicillium chrysogenum, as a novel lead for the control of c-Met-dependent breast cancer proliferation, migration and invasion. Bioorg. Med. Chem. 2016, 24, 113−122. [63] (a) Roncal, T.; Ugalde, U. Conidiation induction in Penicillium. Res. Microbiol. 2003, 154, 539−546; (b) Shiina, T.; Nakagawa, K.; Fujisaki, Y.; Ozaki, T.; Liu, C.; Toyomasu, T.; Hashimoto, M.; Koshino, H.; Minami, A.; Kawaide, H.; Oikawa, H. Biosynthetic study of conidiation-inducing factor conidiogenone: heterologous production and cyclization mechanism of a key bifunctional diterpene synthase. Biosci., Biotechnol., Biochem. 2019, 83, 192−201. [64] (a) Hou, S.-H.; Tu, Y.-Q.; Wang, S.-H.; Xi, C.-C.; Zhang, F.-M.; Wang, S.-H.; Li, Y.-T.; Liu, L. Total Syntheses of the Tetracyclic Cyclopiane Diterpenes Conidiogenone, Conidiogenol, and Conidiogenone B. Angew. Chem. Int. Ed. 2016, 55, 4456−4460; (b) Roncal, T.; Cordobés, S.; Sterner, O.; Ugalde, U. Conidiation in Penicillium cyclopium Is Induced by Conidiogenone, an Endogenous Diterpene. Eukaryotic Cell 2002, 1, 823−829; (c) Roncal, T.; Cordobés, S.; Ugalde, U.; He, Y.; Sterner, O. Novel diterpenes with potent conidiation inducing activity. Tetrahedron Lett. 2002, 43, 6799−6802. [65] Zhou, Z.-F.; Kurtán, T.; Yang, X.-H.; Mándi, A.; Geng, M.-Y.; Ye, B.-P.; Taglialatela-Scafati, O.; Guo, Y.-W. Penibruguieramine A, a Novel Pyrrolizidine Alkaloid from the Endophytic Fungus Penicillium sp. GD6 Associated with Chinese Mangrove Bruguiera gymnorrhiza. Org. Lett. 2014, 16, 1390−1393. [66] (a) García-Estrada, C.; Ullán, Ricardo V.; Albillos, Silvia M.; Fernández-Bodega, María Á.; Durek, P.; von Döhren, H.; Martín, Juan F. A Single Cluster of Coregulated Genes Encodes the Biosynthesis of the Mycotoxins Roquefortine C and Meleagrin in Penicillium chrysogenum. Chem. Biol. 2011, 18, 1499−1512; (b) Newmister, S. A.; Gober, C. M.; Romminger, S.; Yu, F.; Tripathi, A.; Parra, L. L. L.; Williams, R. M.; Berlinck, R. G. S.; Joullié, M. M.; Sherman, D. H. OxaD: A Versatile Indolic Nitrone Synthase from the Marine-Derived Fungus Penicillium oxalicum F30. J. Am. Chem. Soc. 2016, 138, 11176−11184; (c) Newmister, S. A.; Romminger, S.; Schmidt, J. J.; Williams, R. M.; Smith, J. L.; Berlinck, R. G. S.; Sherman, D. H. Unveiling sequential late-stage methyltransferase reactions in the meleagrin/oxaline biosynthetic pathway. Org. Biomol. Chem. 2018, 16, 6450−6459. [67] (a) Miyanaga, A. Michael additions in polyketide biosynthesis. Nat. Prod. Rep. 2019, 36, 531−547; (b) Zhang, Y.; Zhao, Y.; Gao, X.; Jiang, W.; Li, Z.; Yao, Q.; Yang, F.; Wang, F.; Liu, J. Kinetic model of the enzymatic Michael addition for synthesis of mitomycin analogs catalyzed by immobilized lipase from T. laibacchii. Mol. Catal. 2019, 466, 146−156. [68] Lakshmi Kantam, M.; Neelima, B.; Venkat Reddy, C.; Chakravarti, R. Aza-Michael Addition of Imidazoles to α,β-Unsaturated Compounds and Synthesis of β-Amino Alcohols via Nucleophilic Ring Opening of Epoxides Using Copper(II) Acetylacetonate (Cu(acac)2) Immobilized in Ionic Liquids. Ind. Eng. Chem. Res. 2007, 46, 8614−8619. [69] Fu, N.; Zhang, L.; Luo, S.; Cheng, J.-P. Chiral primary amine catalysed asymmetric conjugate addition of azoles to α-substituted vinyl ketones. Org. Chem. Front. 2014, 1, 68−72. [70] Huang, Z.-Y.; Ye, R.-Y.; Yu, H.-L.; Li, A.-T.; Xu, J.-H. Mining methods and typical structural mechanisms of terpene cyclases. Bioresour. Bioprocess. 2021, 8, 66. [71] Li, D.; Zhang, S.; Song, Z.; Li, W.; Zhu, F.; Zhang, J.; Li, S. Synthesis and bio-inspired optimization of drimenal: Discovery of chiral drimane fused oxazinones as promising antifungal and antibacterial candidates. Eur. J. Med. Chem. 2018, 143, 558−567. [72] Poigny, S.; Huor, T.; Guyot, M.; Samadi, M. Synthesis of (−)-Hyatellaquinone and Revision of Absolute Configuration of Naturally Occurring (+)-Hyatellaquinone. J. Org. Chem. 1999, 64, 9318−9320. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99255 | - |
| dc.description.abstract | 本論文第一章敘述 (±)-pikrosalvin、(+)-simplexene C、(+)-simplexene D 和 (±)-swartziarboreol G 之全合成。合成關鍵步驟為仿生多烯環化與內酯化反應,此仿生合成途逕來自於Stork–Eschenmoser 的假說啟發,可以有效地構建這些天然物特有的A/B環結構、芳香族C環以及內酯D環。以香草酸與香葉醇為起始物,經官能基轉換與保護後引入三甲基矽基團,並利用一鍋化反應生成二烯中間體。此中間體經碘化鋅或三氟甲磺酸鋅搭配對甲苯磺酸催化多烯環化,建構反式十氫萘骨架。三甲基矽基團轉換為碘化物後,經偶聯反應生成苯乙烯衍生物,再進行內酯化反應形成甲基內酯,並在水解甲基芳基醚後完成 (±)-pikrosalvin 之合成,此部分研究成果已發表。
以同樣苯乙烯衍生物經氧化內酯化、去保護及層析分離獲得四個異構物,其中一個為 (+)-simplexene C,另一異構物經水解甲基芳基醚後得到 (+)-simplexene D。此外,將苯乙烯衍生物中的醯胺轉為羧酸,經乙酰氧基內酯化建構六環後,獲得四個同分異構物,經結晶與 X 光單晶繞射確認結構,最終去保護得到 (±)-swartziarboreol G。此全合成共歷經十一至十四步。 第二章探討麥角生物鹼 (−)-chanoclavine-I 之合成研究。因其六環的生合成機制至今仍未明確,我們提出一種仿生合成策略,嘗試以氨基酸合成 (−)-chanoclavine-I。關鍵步驟包括環氧化的合成及光催化去羧基環化反應,本研究仍在進行中。 第三章探討一種結合 (−)-conidiogenone 與 meleagrin 的特殊萜烯–生物鹼混合型天然物 meleagrin B 之生物合成途徑。林曉青老師發現 (−)-conidiogenone B 可經雙萜合酶與 P450 單加氧酶催化生成,隨後與咪唑在 α,β-水解酶(Con-ABH)催化下進行 aza-Michael 加成反應,形成 3S-imidazolyl conidiogenone B。我們以化學合成方式獲得該化合物,並藉X光單晶繞射確認其絕對立體結構,提供給林老師做更進一步研究,此研究成果已發表。 第四章探討一種蕈類次級代謝物 (−)-antrocin,其被推測由法尼基焦磷酸 (FPP) 經萜烯環化酶催化生成,但其生合成機制尚未完全明瞭。在林曉青老師的研究中,發現 (+)-albicanol 為FPP轉化為 (−)-antrocin的中間體。為探討此轉化過程中萜烯環化酶的作用,我們以化學合成方法 (+)-albicanyl pyrophosphate,利用(+)-sclareolide 為起始物,經六步反應成功獲得 (+)-albicanyl pyrophosphate,並將其提供給林老師作為生合成中間體做測試,證實酵素 AncC 在此合成機制中具有兩個功能區域:萜類環化酶 (terpene cyclase, TC) 與焦磷酸酶(pyrophosphatase, PPase)。其中,TC 區域可將 FPP 環化生成 (+)-albicanyl pyrophosphate,接著由 PPase 區域催化去除焦磷酸基團,產生 (+)-albicanol。此研究成果已發表。 | zh_TW |
| dc.description.abstract | The total synthesis of four cassane-type diterpenoids, pikrosalvin, simplexene C, simplexene D, and (±)-swartziarboreol G, was accomplished via a biomimetic polyene cyclization strategy followed by a late-stage lactonization, completed in 11–14 steps from commercially available vanillic acid and geraniol. This synthetic approach, inspired by the Stork–Eschenmoser hypothesis, enabled the efficient construction of the decalin A/B rings, the aromatic C ring, and the lactone D ring characteristic of these natural products. This part of the study has been published.
Chapter two explores the synthetic studies of the ergot alkaloid (−)-chanoclavine-I. Since the biosynthetic mechanism of its 6-membered ring remains unclear, we propose a biomimetic synthetic strategy that attempts to access (−)-chanoclavine-I from amino acid precursors. Key steps include the construction of the epoxide intermediate and a photoredox-catalyzed decarboxylative cyclization. This research is still ongoing. In chapter three, the biosynthesis of Meleagrin B, a unique terpene–alkaloid hybrid natural product combining (−)-conidiogenone and meleagrin scaffolds, was investigated. We characterized the enzyme-mediated pathway in which a diterpene synthase and a P450 monooxygenase generate (−)-conidiogenone B, followed by an α,β-hydrolase (Con-ABH)-catalyzed aza-Michael addition with imidazole to form 3S-imidazolyl conidiogenone B. This hybrid compound was chemically synthesized, and its absolute configuration was confirmed by X-ray crystallography. This work has been published. Chapter four investigates the biosynthesis of a fungal secondary metabolite, (−)-antrocin. Its biosynthetic mechanism has not yet been fully elucidated. In this study, we identified (+)-albicanol as an intermediate in the conversion of FPP to (−)-antrocin. To investigate the role of the terpene cyclase involved in this transformation, we chemically synthesized (+)-albicanyl pyrophosphate from (+)-sclareolide in six steps. This compound was then tested as a biosynthetic intermediate, confirming that the enzyme AncC possesses two functional domains in the biosynthetic mechanism: a terpene cyclase (TC) and a pyrophosphatase (PPase). The TC domain first cyclizes FPP to form (+)-albicanyl pyrophosphate, which is subsequently dephosphorylated by the PPase domain to yield (+)-albicanol. This work has been published. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:00:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T17:00:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 ii
中文摘要 iii Abstract v Table of Contents viii List of Schemes xiii List of Figures xvii List of Tables xviii Abbreviations xix Chapter 1. Total Synthesis of (±)-Pikrosalvin,1 (+)-Simplexene C, (+)-Simplexene D and (±)-Swartziarboreol G 1 1.1 Introduction 1 1.1.1 Background 1 1.1.2 Review of the Total Synthesis of Cassane-Type Natural Products 4 1.1.3 Polyene Cyclization 6 1.2 Result and Discussion 9 1.2.1 Retrosynthetic Analysis 9 1.2.2 Synthesis of Compound (±)-27 through Biomimetic Polyene Cyclization 10 1.2.3 Total Synthesis of (±)-Pikrosalvin (1),1 (+)-Simplexene C (10) and (+)-Simplexene D (11) 13 1.2.4 Hydrolysis of Amide (±)-26 under Basic Conditions 15 1.2.5 Lactonization of Amide (±)-26 under Acidic Conditions 17 1.2.6 Convert Amide (±)-26 to Acid (±)-37 through Methyl Ester 18 1.2.7 Total Synthesis of (±)-Swartziarboreol G (8) 20 1.2.8 Enantioselective Polyene Cyclization 23 1.3 Conclusion 26 Chapter 2. Synthetic Studies toward Ergot Alkaloid (–)-Chanoclavine I 27 2.1 Introduction 27 2.1.1 Background of Ergot Alkaloid (–)-Chanoclavine I 27 2.1.2 Possible Mechanism from L-Tryptophan to (–)-Chanoclavine I (61) 29 2.1.3 Literature Review of the Total Synthesis of (−)-Chanoclavine I (61) 31 2.1.4 Photoredox Catalysis Enabling Decarboxylative Radical Cyclization 33 2.2 Results and Discussion 36 2.2.1 Retrosynthetic Analysis I 36 2.2.2 Synthesis of β-Iodo-L-alanine 81, N-Cbz Diene 86, N-Cbz Epoxide 92 37 2.2.3 Retrosynthetic Analysis II 44 2.2.4 Synthesis of Epoxide via Regioselective C3-Alkylation and Examination of Photoreaction 45 2.2.5 Replace Methyl Ester to Butyl Ester to Synthesize Epoxide for Photoreaction. 53 2.2.6 Synthesis of Free-Protected Epoxide 57 2.2.7 Introduction of a Photocleavable Protecting Group for Application in Decarboxylative Cyclization Reaction 58 2.2.8 Cyclization Enabled by Leaving Group Installation on the Side Chain 71 2.3 Conclusions 74 Chapter 3. Biosynthetic Investigation of the Terpene–Alkaloid Hybrid Meleagrin B2 75 3.1 Introduction 75 3.1.1 Background 75 3.1.2 Hybridization of (−)-Conidiogenone B (160) and Meleagrin (162) via Aza-Michael Addition 78 3.1.3 Synthesis of Imidazole–(−)-Conidiogenone B via Aza-Michael Addition 79 3.2 Results and Discussion 80 3.2.1 A Model Substrate for Aza-Michael Addition 80 3.2.2 Aza-Michael Addition of (−)-Conidiogenone B (160) and Imidazole 81 3.2.3 Aza-Michael Addition of (−)-Conidiogenone B (160) and Meleagrin (162) 84 3.3 Conclusions 87 Chapter 4. Biosynthetic Investigation of the Mushroom-Derived Natural Product (−)-Antrocin 3 88 4.1 Introduction 88 4.1.1 Background 88 3.1.2 Biosynthetic Pathway of (−)-Antrocin (166) from Farnesyl Pyrophosphate (FPP) 88 4.2 Results and Disscusion 91 4.3 Conclusions 94 References 95 Supporting Information 105 1. General Methods 105 2. Pictures of Photoredox-Catalyzed Reaction Experimental Setup 106 3. Experimental Procedures 107 4. NMR Spectral Data 169 5. X-ray Crystallographic Data 302 6. HPLC data 349 | - |
| dc.language.iso | en | - |
| dc.subject | 雙萜化合物 | zh_TW |
| dc.subject | 天然物全合成 | zh_TW |
| dc.subject | 蕈類天然物 | zh_TW |
| dc.subject | 仿生策略 | zh_TW |
| dc.subject | 生物合成機制 | zh_TW |
| dc.subject | 多烯環化反應 | zh_TW |
| dc.subject | 麥角生物鹼 | zh_TW |
| dc.subject | total synthesis | en |
| dc.subject | cassane-type diterpenoid | en |
| dc.subject | hybrid compound | en |
| dc.subject | natural product synthesis | en |
| dc.subject | biomimetic strategy | en |
| dc.subject | mushroom-derived natural product | en |
| dc.subject | biosynthetic investigation | en |
| dc.subject | polyene cyclization | en |
| dc.title | Cassane 類雙萜化合物與麥角生物鹼 (−)-Chanoclavine-I 之全合成;雜環萜類天然物 Meleagrin B 與蕈類天然物(−)-Antrocin 的生物合成途徑研究 | zh_TW |
| dc.title | Total Synthesis of Cassane-Type Diterpenoids and the Ergot Alkaloid (−)-Chanoclavine-I; Biosynthetic Investigation of the Terpene–Alkaloid Hybrid Meleagrin B and the Mushroom-Derived Natural Product (−)-Antrocin | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 王朝諺 | zh_TW |
| dc.contributor.coadvisor | Tiow-Gan Ong | en |
| dc.contributor.oralexamcommittee | 李瑜章;林曉青;侯敦仁;謝俊結 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Jang Li;Hsiao-Ching Lin;Duen-Ren Hou;Jiun-Jie Shie | en |
| dc.subject.keyword | 天然物全合成,雙萜化合物,麥角生物鹼,多烯環化反應,生物合成機制,仿生策略,蕈類天然物, | zh_TW |
| dc.subject.keyword | total synthesis,biomimetic strategy,natural product synthesis,polyene cyclization,biosynthetic investigation,mushroom-derived natural product,hybrid compound,cassane-type diterpenoid, | en |
| dc.relation.page | 349 | - |
| dc.identifier.doi | 10.6342/NTU202503325 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 26.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
