Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99248
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋zh_TW
dc.contributor.advisorJian-Jang Huangen
dc.contributor.author余承叡zh_TW
dc.contributor.authorCheng-Jui Yuen
dc.date.accessioned2025-08-21T16:58:33Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citation[1] T. Wu et al., "Mini-LED and micro-LED: promising candidates for the next generation display technology," Applied sciences, vol. 8, no. 9, p. 1557, 2018.
[2] H. E. Lee et al., "Micro light‐emitting diodes for display and flexible biomedical applications," Advanced Functional Materials, vol. 29, no. 24, p. 1808075, 2019.
[3] A. R. Anwar, M. T. Sajjad, M. A. Johar, C. A. Hernández‐Gutiérrez, M. Usman, and S. Łepkowski, "Recent progress in micro‐LED‐based display technologies," Laser & Photonics Reviews, vol. 16, no. 6, p. 2100427, 2022.
[4] Y. Huang, E.-L. Hsiang, M.-Y. Deng, and S.-T. Wu, "Mini-LED, Micro-LED and OLED displays: present status and future perspectives," Light: Science & Applications, vol. 9, no. 1, p. 105, 2020.
[5] K. James Singh et al., "Micro-LED as a promising candidate for high-speed visible light communication," Applied Sciences, vol. 10, no. 20, p. 7384, 2020.
[6] Y. Wu, J. Ma, P. Su, L. Zhang, and B. Xia, "Full-color realization of micro-LED displays," Nanomaterials, vol. 10, no. 12, p. 2482, 2020.
[7] K. A. Bulashevich and S. Y. Karpov, "Impact of surface recombination on efficiency of III‐nitride light‐emitting diodes," physica status solidi (RRL)–Rapid Research Letters, vol. 10, no. 6, pp. 480-484, 2016.
[8] M. Boroditsky et al., "Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes," Journal of Applied Physics, vol. 87, no. 7, pp. 3497-3504, 2000.
[9] P. Royo, R. Stanley, M. Ilegems, K. Streubel, and K. Gulden, "Experimental determination of the internal quantum efficiency of AlGaInP microcavity light-emitting diodes," Journal of applied physics, vol. 91, no. 5, pp. 2563-2568, 2002.
[10] J.-T. Oh et al., "Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures," Optics express, vol. 26, no. 9, pp. 11194-11200, 2018.
[11] F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, "Influence of size-reduction on the performances of GaN-based micro-LEDs for display application," Journal of luminescence, vol. 191, pp. 112-116, 2017.
[12] M. S. Wong et al., "Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments," Optics express, vol. 28, no. 4, pp. 5787-5793, 2020.
[13] M. S. Wong et al., "Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation," Applied Physics Express, vol. 12, no. 9, p. 097004, 2019.
[14] S. Han et al., "AlGaInP-based Micro-LED array with enhanced optoelectrical properties," Optical Materials, vol. 114, p. 110860, 2021.
[15] Y.-Y. Li et al., "Analysis of size-dependent quantum efficiency in AlGaInP micro–light-emitting diodes with consideration for current leakage," IEEE Photonics Journal, vol. 14, no. 1, pp. 1-7, 2021.
[16] H.-H. Huang et al., "Investigation on reliability of red micro-light emitting diodes with atomic layer deposition passivation layers," Optics Express, vol. 28, no. 25, pp. 38184-38195, 2020.
[17] M. S. Wong et al., "Recovering the efficiency of AlGaInP red micro-LEDs using sidewall treatments," Applied Physics Express, vol. 16, no. 6, p. 066503, 2023.
[18] S.-H. Mun et al., "Improving the electrical and optical characteristics of algainp red micro-leds by double dielectric passivation," ECS Journal of Solid State Science and Technology, vol. 13, no. 2, p. 026002, 2024.
[19] M.-H. Li et al., "Highly Efficient AlGaInP-Based Micro-LEDs Achieved by Plasma Sidewall Treatment," IEEE Transactions on Electron Devices, 2025.
[20] Y.-C. Wang, C.-J. Yu, and J.-J. Huang, "Efficiency improvement of AlGaInP-based red micron-scale light-emitting diodes using sidewall steam oxidation," Discover Nano, vol. 20, no. 1, p. 57, 2025.
[21] N. Holonyak Jr and J. M. Dallesasse, "Native oxide of an aluminum-bearing group III-V semiconductor," ed: Google Patents, 1996.
[22] J. Dallesasse and N. Holonyak, "Oxidation of Al-bearing III-V materials: A review of key progress," Journal of Applied Physics, vol. 113, no. 5, 2013.
[23] F. Kish et al., "Dependence on doping type (p/n) of the water vapor oxidation of high‐gap Al x Ga1− x As," Applied physics letters, vol. 60, no. 25, pp. 3165-3167, 1992.
[24] K. Chang et al., "Microstructure and wet oxidation of low-temperature-grown amorphous (Al/Ga, As)," Journal of Applied Physics, vol. 89, no. 1, pp. 747-752, 2001.
[25] R.-M. Lin, J.-C. Li, Y.-L. Chou, and M.-C. Wu, "Using the Taguchi method to improve the brightness of AlGaInP MQW LED by wet oxidation," IEEE photonics technology letters, vol. 18, no. 15, pp. 1642-1644, 2006.
[26] S. Weidenfeld, H. Niederbracht, M. Eichfelder, M. Jetter, and P. Michler, "Transverse mode and polarization characteristics of AlGaInP-based VCSELs with integrated multiple oxide apertures," in Semiconductor Lasers and Laser Dynamics V, 2012, vol. 8432: SPIE, pp. 43-50.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99248-
dc.description.abstract在本論文探討側壁水蒸氣氧化處理對不同尺寸之AlGaInP紅光微發光二極體(µLED)元件性能的影響,尺寸範圍涵蓋從100 × 100 μm²至5 × 5 μm²。透過調控氧化時間,我們發現適當的側壁氧化可有效提升元件發光強度並抑制非輻射複合現象。研究結果顯示,隨著元件尺寸縮小,最佳氧化時間呈現遞減趨勢,而在低溫環境下,此現象更加明顯,顯示氧化條件應依尺寸與操作溫度調整。經由ABC模型擬合與內部量子效率分析可得知,側壁氧化有助於降低Shockley–Read–Hall複合率,並提升輻射複合效率,尤以小尺寸元件最為顯著。本研究成果可作為未來高解析度AlGaInP µLED顯示器製程優化之重要依據。zh_TW
dc.description.abstractThis thesis investigates the influence of sidewall steam oxidation on the performance of AlGaInP red micro-light-emitting diodes (µLEDs) with varying mesa sizes, ranging from 100 × 100 μm² to 5 × 5 μm². By applying different oxidation durations, we demonstrate that appropriate sidewall oxidation effectively enhances optical output and mitigates nonradiative recombination. Notably, the optimal oxidation time becomes shorter as the device size decreases. This trend is further intensified at cryogenic temperatures, indicating that the oxidation condition should be tailored based on both geometry and temperature. Through ABC model fitting and internal quantum efficiency (IQE) analysis, we confirm that sidewall oxidation reduces Shockley–Read–Hall recombination and improves radiative efficiency, especially in smaller devices. These findings provide valuable insights for process optimization in the development of high-resolution AlGaInP µLED displays.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:58:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:58:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 II
致謝 III
中文摘要 IV
英文摘要 V
CONTENTS VI
LIST OF FIGURES VIII
LIST OF TABLE XIV
Chapter 1 Introduction 1
1.1 Overview of Micro-LED Technology 1
1.2 Research Motivation 2
1.3 Objectives of This Study 5
1.4 Thesis outline 6
Chapter 2 Wet Oxidation Treatment of Red Micro-LEDs 8
2.1 Introduction to Wet Oxidation 8
2.1.1 Background of wet oxidation 8
2.1.2 Setup of sidewall oxidation 9
2.2 Fabrication of Micro-LEDs with sidewall oxidation 11
2.2.1 Process Flow of red micro-LEDs 11
2.2.2 Photolithography 15
2.2.3 Wet etching 17
2.2.4 Metal Evaporation 19
Chapter 3 Results and Discussion 21
3.1 TLM Measurement and Contact Resistance 21
3.2 Electrical Characteristics of the Device 25
3.2.1 Current density–Voltage Characteristics 25
3.2.2 Current Density–Light Output Characteristics 33
3.2.3 Low-Temperature Current Density–Light Output Characteristics 41
Chapter 4 Analysis of Simulated Parameters 47
4.1 Fitting Methodology Based on DE Algorithm 47
4.2 Analysis of A Coefficient: Shockley–Read–Hall Nonradiative Recombination 50
4.2.1 At room temperature 50
4.2.2 At different cryogenic temperatures 53
4.3 Analysis of B Coefficient: Radiative Recombination 59
4.3.1 At room temperature 59
4.3.2 At different cryogenic temperatures 61
4.4 Analysis of C Coefficient: Auger Recombination 66
4.4.1 At room temperature 66
4.4.2 At different cryogenic temperatures 68
Chapter 5 Conclusion 73
Reference 76
-
dc.language.isoen-
dc.subject側壁氧化zh_TW
dc.subjectABC模型zh_TW
dc.subject紅光微發光二極體zh_TW
dc.subject磷化鋁銦鎵zh_TW
dc.subject低溫zh_TW
dc.subjectCryogenic Temperatureen
dc.subjectAlGaInPen
dc.subjectRed µLEDen
dc.subjectSidewall Oxidationen
dc.subjectABC modelen
dc.title基於ABC模型之AlGaInP紅光µLED在低溫下側壁氧化與復合行為最佳化分析zh_TW
dc.titleABC Model-Based Optimization of Sidewall Oxidation and Recombination in AlGaInP Red µLEDs under Cryogenic Conditionsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳肇欣;林建中;賴韋志zh_TW
dc.contributor.oralexamcommitteeChao-Hsin Wu;Chien-Chung Lin;Wei-Chih Laien
dc.subject.keywordABC模型,側壁氧化,低溫,磷化鋁銦鎵,紅光微發光二極體,zh_TW
dc.subject.keywordABC model,Sidewall Oxidation,Cryogenic Temperature,AlGaInP,Red µLED,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202503413-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved