Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99246
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃漢邦zh_TW
dc.contributor.advisorHan-Pang Huangen
dc.contributor.author麥心宇zh_TW
dc.contributor.authorHsin-Yu Maien
dc.date.accessioned2025-08-21T16:58:05Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citation[1] "About Hololens 2," accessed July 2025. <https://learn.microsoft.com/zh-tw/hololens/hololens2-hardware>
[2] M. Akdogan and M. Ozturk, "Minimal Surgery Technique in Rhegmatogenous Retinal Detachment," International Journal of Medical Science and Clinical Invention, vol. 5, no. 4, pp. 3747–3751, 2018.
[3] A. Arafa, M.H. Abouelfadl, A.M. Abdelhafeez, A.S. Mohamed, and A.E. Arafat, "Minimal Invasive Surgery in Total Colonic Aganglionosis," Springer Science and Business Media LLC, 2025–01–13, 2025.
[4] A. Aristidou, J. Lasenby, Y. Chrysanthou, and A. Shamir, "Inverse Kinematics Techniques in Computer Graphics: A Survey," Computer Graphics Forum, vol. 37, no. 6, pp. 35–58, 2018.
[5] K.S. Arun, T.S. Huang, and S.D. Blostein, "Least-Squares Fitting of Two 3-D Point Sets," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 5, pp. 698–700, 1987.
[6] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Macintyre, "Recent Advances in Augmented Reality," IEEE Computer Graphics and Applications, vol. 21, no. 6, pp. 34–47, 2001.
[7] H. Bonsmann, A.-N. Vo, A. Ladikos, D. Kuetting, J. Schmidt, J.C. Arensmeyer, and P. Feodorovici, "Towards Mixed Reality-Navigated Surgery: Point Cloud Surface Registration for Automated 3d Image Overlay," Springer Science and Business Media LLC, 2024–11–27, 2024.
[8] S. Bramhe and S.S. Pathak, "Robotic Surgery: A Narrative Review," Cureus, 2022.
[9] A. Bundy, "Catalogue of Artificial Intelligence Tools," Catalogue of Artificial Intelligence Tools: Springer, pp. 7–161, 1986.
[10] G.C. Burdea and P. Coiffet, Virtual Reality Technology. John Wiley & Sons, 2003.
[11] F. Buttussi and L. Chittaro, "Effects of Different Types of Virtual Reality Display on Presence and Learning in a Safety Training Scenario," IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 2, pp. 1063–1076, 2018.
[12] V.R. Buunen M, Hop WC, Kuhry E, Jeekel J, Haglind E, Påhlman L, Cuesta and M.S. MA, Morino M, Lacy A, Bonjer HJ. , "Survival after Laparoscopic Surgery Versus Open Surgery for Colon Cancer: Long-Term Outcome of a Randomised Clinical Trial," The Lancet Oncology, vol. 10, no. 1, pp. 44–52, 2009.
[13] J. Caballero-García, C. Aparicio-García, Y.J. Linares-Benavides, M. López-Sánchez, F.A. Abreu-Perdomo, and J. Huanca-Amaru, "Minimally Invasive 360-Degree Approach to Intraconal Orbital Tumors," American Journal of Ophthalmology, vol. 224, pp. 301–309, 2021.
[14] X. Cai, Z. Wang, S. Li, J. Pan, C. Li, and Y. Tai, "Implementation of a Virtual Reality Based Digital-Twin Robotic Minimally Invasive Surgery Simulator," Bioengineering, vol. 10, no. 11, p. 1302, 2023.
[15] A. Carrança, N. Sousa, J. Rocha, E. Santos, L. Evangelista, A. Ferreira, T. Adão, E. Sousa, and I. Margolis, "Augmented Reality Towards Industry 5.0: Improving Voice and Tap Interaction Based on User Experience Feedback," Lecture Notes in Electrical Engineering: Springer Nature Singapore, pp. 160–171, 2024.
[16] L.C. Cummings, C.P. Delaney, and G.S. Cooper, "Laparoscopic Versus Open Colectomy for Colon Cancer in an Older Population: A Cohort Study," World Journal of Surgical Oncology, vol. 10, no. 1, p. 31, 2012.
[17] V.P. Damle and S. Susan, "Dynamic Algorithm for Path Planning Using a-Star with Distance Constraint," 2022 2nd International Conference on Intelligent Technologies (CONIT): IEEE, pp. 1–5, 2022.
[18] M.P. DeLisi, L.A. Mawn, and R.L. Galloway Jr, "Image‐Guided Transorbital Procedures with Endoscopic Video Augmentation," Medical Physics, vol. 41, no. 9, p. 091901, 2014.
[19] E.W. Dijkstra, "A Note on Two Problems in Connexion with Graphs," Edsger Wybe Dijkstra: ACM, pp. 287–290, 2022.
[20] K. Dubron, E. Shaheen, R. Jacobs, C. Politis, and R. Willaert, "Validation of Mixed Reality in Planning Orbital Reconstruction with Patient-Specific Implants," Scientific Reports, vol. 15, no. 1, 2025.
[21] S. Dumani, E. Likaj, L. Dibra, S. Kuci, E. Rruci, A. Ibrahimi, A. Veseli, F. Mana, D. Pellumbi, A. Mehmeti, A. Refatllari, and A. Veshti, "Minimally Invasive Mitral Valve Surgery: Initial One-Team Experience and Short Review.," Albanian Journal of Trauma and Emergency Surgery, vol. 9, no. 1, pp. 1691–1697, 2025.
[22] P.M.G. Emmelkamp and K. Meyerbröker, "Virtual Reality Therapy in Mental Health," Annual Review of Clinical Psychology, vol. 17, no. 1, pp. 495–519, 2021.
[23] J. Falah, S. Khan, T. Alfalah, S.F.M. Alfalah, W. Chan, D.K. Harrison, and V. Charissis, "Virtual Reality Medical Training System for Anatomy Education," 2014 Science and Information Conference: IEEE, pp. 752–758, 2014.
[24] K.H. Fuchs, "Minimally Invasive Surgery," Endoscopy, vol. 34, no. 2, pp. 154–159, 2002.
[25] S.J. Gedde, K. Vinod, E.C. Bowden, N.N. Kolomeyer, V. Chopra, P. Challa, D.L. Budenz, M.X. Repka, and F. Lum, "Special Commentary: Reporting Clinical Endpoints in Studies of Minimally Invasive Glaucoma Surgery," Ophthalmology, vol. 132, no. 2, pp. 141–153, 2025.
[26] M.J. Gerber, M. Pettenkofer, and J.-P. Hubschman, "Advanced Robotic Surgical Systems in Ophthalmology," Eye, vol. 34, no. 9, pp. 1554–1562, 2020.
[27] A. Gijbels, J. Smits, L. Schoevaerdts, K. Willekens, E.B. Vander Poorten, P. Stalmans, and D. Reynaerts, "In-Human Robot-Assisted Retinal Vein Cannulation, a World First," Annals of Biomedical Engineering, vol. 46, no. 10, pp. 1676–1685, 2018.
[28] E. Gray and A. Sharma, "Minimally Invasive Cardiac Surgery," Basic Anesthesia Review, A. Abd-Elsayed and A. Abd-Elsayed Eds.: Oxford University Press, sec. Oxford Academic, p. 0, 2024.
[29] N.T. Guimarães, G.F. Moreira, R.B.A.R.d. Morais, L.T. Camurça, G.K. Castilho, D.M. Hildefonso, N.L.S. Cemin, M.M. Ferreira, J.G.G.M. Fernandes, A.A. Fonseca, G.d.A.L. Junior, K.H.L. Viali, S.V. Gomes, J.A.S.d. Souza, and Y.A.d. Vasconcelos, "Advances in the Surgical Management of Gastric Cancer: Minimally Invasive Techniques Versus Conventional Approaches," Seven Editora, 2025.
[30] P. Hart, N. Nilsson, and B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
[31] M.D. Heidi Nelson, Daniel J. Sargent,, H.S.W. Ph.D., Ph.D., James Flesh, M.D. man, Mehran Anvari, M.D., Steven, M.D. J. Stryker, Robert W. Beart, Jr., M.D.,, M.D. Michael Hellinger, Richard Flanagan,, M.D. Jr., Walter Peters, M.D., and David, and M.D. Ota, "A Comparison of Laparoscopically Assisted and Open Colectomy for Colon Cancer," New England Journal of Medicine, vol. 350, no. 20, pp. 2050–2059, 2004.
[32] Y. Huang, Y. Hu, U. Chan, P. Lai, Y. Sun, J. Dai, X. Cheng, and X. Yang, "Student Perceptions toward Virtual Reality Training in Dental Implant Education," PeerJ, vol. 11, p. e14857, 2023.
[33] A.D. Hwang and E. Peli, "An Augmented-Reality Edge Enhancement Application for Google Glass," Optometry and Vision Science, vol. 91, no. 8, pp. 1021–1030, 2014.
[34] T. Imai and A. Kishimoto, "A Novel Technique for Avoiding Plateaus of Greedy Best-First Search in Satisficing Planning," Proceedings of the International Symposium on Combinatorial Search, vol. 2, no. 1, pp. 197–198, 2021.
[35] A. Jakl, A.-M. Lienhart, C. Baumann, A. Jalaeefar, A. Schlager, L. Schoffer, and F. Bruckner, "Enlightening Patients with Augmented Reality," 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR): IEEE, 2020.
[36] D.G. Jayne, P.J. Guillou, H. Thorpe, P. Quirke, J. Copeland, A.M.H. Smith, R.M. Heath, and J.M. Brown, "Randomized Trial of Laparoscopic-Assisted Resection of Colorectal Carcinoma: 3-Year Results of the Uk Mrc Clasicc Trial Group," Journal of Clinical Oncology, vol. 25, no. 21, pp. 3061–3068, 2007.
[37] S. Kalan, S. Chauhan, R.F. Coelho, M.A. Orvieto, I.R. Camacho, K.J. Palmer, and V.R. Patel, "History of Robotic Surgery," Journal of Robotic Surgery, vol. 4, no. 3, pp. 141–147, 2010.
[38] I. Karakis, A.L. Goss, J.W. Templer, M.C. Johansen, and J.T. Willie, "Minimally Invasive Epilepsy Surgery," Annals of Neurology, vol. 97, no. 3, pp. 407–408, 2025.
[39] M.M. Koop, A.B. Rosenfeldt, J.D. Johnston, M.C. Streicher, J. Qu, and J.L. Alberts, "The Hololens Augmented Reality System Provides Valid Measures of Gait Performance in Healthy Adults," IEEE Transactions on Human-Machine Systems, vol. 50, no. 6, pp. 584–592, 2020.
[40] K. Krosl, C. Elvezio, L.R. Luidolt, M. Hurbe, S. Karst, S. Feiner, and M. Wimmer, "Cataract: Simulating Cataracts in Augmented Reality," 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR): IEEE, pp. 682–693, 2020.
[41] T. Lane, "A Short History of Robotic Surgery," The Annals of The Royal College of Surgeons of England, vol. 100, no. 6_sup, pp. 5–7, 2018.
[42] A. Lele, "Virtual Reality and Its Military Utility," Journal of Ambient Intelligence and Humanized Computing, vol. 4, no. 1, pp. 17–26, 2013.
[43] X. Liu, J. Zhang, G. Hou, and Z. Wang, "Virtual Reality and Its Application in Military," IOP Conference Series: Earth and Environmental Science, vol. 170, p. 032155, 2018.
[44] V. Lush, C. Buckingham, S. Wileman, S. Edwards, and U. Bernardet, "Augmented Reality for Accessible Digital Mental Healthcare," 2019 5th Experiment International Conference (exp.at'19): IEEE, pp. 274–275, 2019.
[45] R.A. Maclachlan, B.C. Becker, J.C. Tabares, G.W. Podnar, L.A. Lobes, and C.N. Riviere, "Micron: An Actively Stabilized Handheld Tool for Microsurgery," IEEE Transactions on Robotics, vol. 28, no. 1, pp. 195–212, 2012.
[46] H. Masoomi, B. Buchberg, B. Nguyen, V. Tung, M.J. Stamos, and S. Mills, "Outcomes of Laparoscopic Versus Open Colectomy in Elective Surgery for Diverticulitis," World Journal of Surgery, vol. 35, no. 9, pp. 2143–2148, 2011.
[47] S. Mcdowell, V. Ng, A. Mitchell, A.M. Lang, and N.J. Sikich, "Minimally Invasive Glaucoma Surgery: A Budget Impact Analysis and Evaluation of Patients' Experiences, Preferences, and Values," Ontario health technology assessment series, vol. 19 9, pp. 1–57, 2019.
[48] M. Menozzi, S. Ropelat, J. Köfler, and Y.-Y. Huang, "Development of Ophthalmic Microsurgery Training in Augmented Reality," Klinische Monatsblätter für Augenheilkunde, vol. 237, no. 04, pp. 388–391, 2020.
[49] H. Mi, R.E. Maclaren, and J. Cehajic-Kapetanovic, "Robotising Vitreoretinal Surgeries," Eye, vol. 39, no. 4, pp. 673–682, 2025.
[50] P. Milgram and F. Kishino, "A Taxonomy of Mixed Reality Visual Displays," IEICE TRANSACTIONS on Information and Systems, vol. 77, no. 12, pp. 1321–1329, 1994.
[51] O. Mosquera, D. Guzman, J. Zamudio, J. Garcia, C. Rodriguez, and D. Botero, "Complex Brain Networks and Simulated Military Reactions Using a Virtual Reality System," 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE): IEEE, pp. 553–556, 2019.
[52] S. Mustafa Imam, H. Kumar, F. Afsar, A. Ansari, and M. Adeel Karim, "Changing the Paradigm of Mixed Reality (Mr) in Education Sector through Microsoft Hololens," International Journal of Scientific and Engineering Research, vol. 11, 2020.
[53] F. Nascimben, A. Lachkar, F. Becmeur, F. Molinaro, R. Angotti, C. Andolfi, S. Geiss, and I. Talon, "Minimally Invasive Surgery for Adrenal Masses in Children: Results of a Bi-Centric Survey and Literature Review.," Research Square Platform LLC, 2024–01–03, 2024.
[54] A. Nowak, M. Woźniak, M. Pieprzowski, and A. Romanowski, "Towards Amblyopia Therapy Using Mixed Reality Technology," Annals of Computer Science and Information Systems, vol. 15: IEEE, pp. 279–282, 2018.
[55] S. Özeren and E. Top, "The Effects of Augmented Reality Applications on the Academic Achievement and Motivation of Secondary School Students," Malaysian Online Journal of Educational Technology, vol. 11, no. 1, pp. 25–40, 2023.
[56] J. Pan, W. Liu, P. Ge, F. Li, W. Shi, L. Jia, and H. Qin, "Real-Time Segmentation and Tracking of Excised Corneal Contour by Deep Neural Networks for Dalk Surgical Navigation," Computer Methods and Programs in Biomedicine, vol. 197, p. 105679, 2020.
[57] G. Pelizzo, F. Destro, U.M. Pierucci, S. Costanzo, A. Camporesi, V. Diotto, V. Calcaterra, and A.K. Saxena, "Minimal Access in Pediatric Surgery: An Overview on Progress Towards Dedicated Instrument Developments and Anesthesiologic Advances to Enhance Safe Completion of Procedures," Children, vol. 11, no. 6, p. 679, 2024.
[58] L. Pio, T. Zaghloul, and A.H. Abdelhafeez, "Minimally Invasive Approach of Paediatric Neuroblastoma with Thoracic Vascular Encasement," Journal of Minimal Access Surgery, vol. 20, no. 3, pp. 353–355, 2024.
[59] E. Rahimy, J. Wilson, T.-C. Tsao, S. Schwartz, and J.-P. Hubschman, "Robot-Assisted Intraocular Surgery: Development of the Iriss and Feasibility Studies in an Animal Model," Eye, vol. 27, no. 8, pp. 972–978, 2013.
[60] A. Rajesh, R.U. deAzevedo, N. Shaikh, and D.R. Farley, "Minimally Invasive Surgery: Laparotomy, Laparoscopy, and Robotic Surgery," Yamada's Textbook of Gastroenterology, pp. 2532–2546, 2022.
[61] S. Ropelato, M. Menozzi, D. Michel, and M. Siegrist, "Augmented Reality Microsurgery: A Tool for Training Micromanipulations in Ophthalmic Surgery Using Augmented Reality," Simulation in Healthcare, vol. 15, no. 2, pp. 122–127, 2020.
[62] A.D. Samala, F. Ranuharja, B.R. Fajri, Y. Indarta, and W. Agustiarmi, "Vict—Virtual Campus Tour Environment with Spherical Panorama: A Preliminary Exploration," International Journal of Interactive Mobile Technologies (iJIM), vol. 16, no. 16, pp. 205–225, 2022.
[63] H. Sang, C. Yang, F. Liu, J. Yun, G. Jin, and F. Chen, "A Zero Phase Adaptive Fuzzy Kalman Filter for Physiological Tremor Suppression in Robotically Assisted Minimally Invasive Surgery," The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 12, no. 4, pp. 658–669, 2016.
[64] S.S. Singh and R.K. Shinde, "Minimally Invasive Gastrointestinal Surgery: A Review," Cureus, 2023.
[65] T.A. Sitompul and M. Wallmyr, "Using Augmented Reality to Improve Productivity and Safety for Heavy Machinery Operators: State of the Art," Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry: ACM, 2019.
[66] M.M. Soma, K.V.S.S. Saikiran, and G.C. Mannam, "Minimally Invasive Cardiac Surgery," Indian Journal of Clinical Cardiology, vol. 4, no. 4, pp. 263–270, 2023.
[67] E. Tanuwidjaja, D. Huynh, K. Koa, C. Nguyen, C. Shao, P. Torbett, C. Emmenegger, and N. Weibel, "Chroma," Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: ACM, pp. 799–810, 2014.
[68] R. Tarjan, "Depth-First Search and Linear Graph Algorithms," 12th Annual Symposium on Switching and Automata Theory (swat 1971): IEEE, 1971.
[69] C. Teljeur, M. O'Neill, P. Moran, P. Harrington, M. Flattery, L. Murphy, and M. Ryan, "Economic Evaluation of Robot‐Assisted Hysterectomy: A Cost‐Minimisation Analysis," BJOG: An International Journal of Obstetrics & Gynaecology, vol. 121, no. 12, pp. 1546–1553, 2014.
[70] S. Tzima, G. Styliaras, and A. Bassounas, "Augmented Reality Applications in Education: Teachers Point of View," Education Sciences, vol. 9, no. 2, p. 99, 2019.
[71] L.L. Wang, "Emphasizing Precision Minimally Invasive Corneal Surgery," Chinese journal of ophthalmology, vol. 59, no. 10, pp. 775–778, 2023.
[72] K.J. Wilson, O. Kousha, H. Nkume, A.M. Liomba, N.A. Beare, and A. Blaikie, "Structured Simulation-Based Training with Frugal Ophthalmic Instruments Rapidly Equips Non-Ophthalmologists to Identify Malarial Retinopathy," Cold Spring Harbor Laboratory, 2025–01–25, 2025.
[73] R.Z. Ye and R. Iezzi, "Intraoperative Augmented Reality for Vitreoretinal Surgery Using Edge Computing," Journal of Personalized Medicine, vol. 15, no. 1, p. 20, 2025.
[74] C. Zhang and X. Fan, "Attaching Importance to the Health Economic Evaluation of Minimally Invasive Glaucoma Surgery," Chinese journal of ophthalmology, vol. 59 9, pp. 687–690, 2023.
[75] N. Zhang, P. Yan, L. Feng, X. Chu, J. Li, J. Li, K. Guo, T. Guo, X. Liu, and K. Yang, "Top 100 Most-Cited Original Articles, Systematic Reviews/Meta-Analyses in Robotic Surgery: A Scientometric Study," Asian Journal of Surgery, vol. 45, no. 1, pp. 8–14, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99246-
dc.description.abstract隨著智慧醫療與精準手術的需求日益增加,混合實境技術在提高手術訓練成效與機器人操作效率方面展現高度潛力。本論文提出一套基於混合實境之手術機器人互動控制架構,應用於眼科手術場景。透過 Microsoft HoloLens 2 與 MRTK3,本系統使使用者能以自然手勢直觀操作移動式平台與六自由度機械手臂,並整合前向/反向運動學、軌跡規劃與 Unity–ROS 即時通訊流程。
使用者可在 MR 環境中透過客製化手勢指定三維目標點並規劃操作路徑,系統則透過反向運動學與通訊模組,將控制指令即時傳送至實體機器人。本系統亦結合空間網格生成與 QR Code 模型註冊,實現虛實模型精確對齊;並設計自定義手勢以支援互動式操作與路徑規劃。
在控制模式方面,系統提供手動與自動雙模式,應用 A* 演算法與阻尼最小平方法進行導航與末端定位控制。此外,平台亦整合自主路徑規劃、CAD 模型視覺化、空間感知與 UI 操作等模組,建構一個直覺且沉浸式的手術模擬與訓練系統。
實驗結果顯示,該系統能穩定且準確地完成底盤導航與手臂操作任務,驗證其虛實整合與人機互動控制效能。研究成果為未來智慧型、協作式與遠距手術系統之發展提供了可行之基礎與應用潛力。
zh_TW
dc.description.abstractWith the growing demand for intelligent healthcare and precision surgery, mixed reality (MR) technologies have shown great potential in enhancing surgical training and improving robotic operation efficiency. This thesis proposes an MR-based interactive control framework for surgical robotics, specifically designed for ophthalmic scenarios. Leveraging Microsoft HoloLens 2 and MRTK3, the system enables users to intuitively operate a mobile robotic platform and a 6-degree-of-freedom robotic arm via natural hand gestures, integrating forward/inverse kinematics, trajectory planning, and Unity–ROS real-time communication.
Users can define 3D target points and designate movement paths within the MR environment using customized gestures. The system then calculates joint angles through inverse kinematics and transmits the commands to the physical robot via a communication module. By incorporating spatial mesh generation and QR code-based CAD model registration, precise alignment between virtual and physical components is achieved. Interactive gesture control is also implemented to facilitate real-time path designation and execution.
The system supports both manual and autonomous control modes, with A* path planning and Damped Least Squares applied for navigation and end-effector positioning. Additional modules—including autonomous path planning, CAD model visualization, spatial understanding, and UI interactions—form a comprehensive and immersive surgical simulation and training platform.
Experimental results confirm that the proposed system enables stable and precise navigation and manipulation within MR environments. This research demonstrates a feasible foundation for the development of intelligent, collaborative, and remote-controlled surgical robotic systems in future clinical applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:58:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:58:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
摘要 iv
Abstract vi
Contents viii
List of Tables xii
List of Figures xiii
Chapter 1 Introduction 1
1.1 Motivations 1
1.2 Contributions 2
1.3 Organization 4
Chapter 2 Literature Review 7
2.1 Extended Reality 7
2.1.1 Virtual Reality 9
2.1.2 Augmented Reality 9
2.1.3 Mixed Reality 10
2.2 Mixed Reality in Ophthalmology 12
2.3 Robotic Surgical System in Ophthalmology 16
2.4 Summary 21
Chapter 3 System Architecture and Robot Control in Mixed Reality 23
3.1 Kinematics of Robots 23
3.1.1 Forward Kinematics 25
3.1.2 Inverse Kinematics 27
3.1.3 Trajectory Planning 30
3.2 Robotic Control Architecture 31
3.2.1 System Architecture 31
3.2.2 Coordinate Relationship 33
3.2.3 CAD Model Registration 34
3.3 Mobile Platform and Manipulator Control 43
3.3.1 Robotic Platform Control 44
3.3.2 Robotic Arm Control 45
3.4 Summary 47
Chapter 4 Mixed Reality Interaction 49
4.1 Hand Joints Recognition and Hand Gestures Design 49
4.1.1 DoubleTip Gesture 50
4.1.2 Pinching Gesture 51
4.2 Spatial Understanding and Map Generation 52
4.2.1 Spatial Mesh from MR Device 52
4.2.2 Grid Map Generation 53
4.3 Path Planning 57
4.3.1 Manual Path Planning 57
4.3.2 Autonomous Path Planning 59
4.4 Visual and UI Interaction Design 65
4.4.1 User Interface 65
4.4.2 Visualization of CAD Models 74
4.5 Summary 79
Chapter 5 Simulations and Experiments 81
5.1 Hardware 81
5.1.1 Mobile Robot 81
5.1.2 Head-mounted Display 87
5.2 Software 89
5.2.1 Unity 89
5.2.2 Mixed Reality Toolkit 90
5.2.3 Robotic Control System 90
5.3 Simulation and Experiment Results 91
5.3.1 Platform Movement 91
5.3.2 Arm Movement 104
5.3.3 Mobile Robot Movement 114
5.3.4 Discussion 122
5.4 Summary 123
Chapter 6 Conclusions and Future Work 125
6.1 Conclusions 125
6.2 Future Work 125
References 127
-
dc.language.isoen-
dc.subject手術機器人zh_TW
dc.subject手勢辨識zh_TW
dc.subject機械手臂zh_TW
dc.subject路徑規劃zh_TW
dc.subjectUnityzh_TW
dc.subjectMRTK3zh_TW
dc.subject混合實境zh_TW
dc.subject逆向運動學zh_TW
dc.subject人機互動zh_TW
dc.subjectHoloLens 2zh_TW
dc.subjectSurgical Roboten
dc.subjectRobotic Armen
dc.subjectGesture Recognitionen
dc.subjectMixed Realityen
dc.subjectHoloLens 2en
dc.subjectInverse Kinematicsen
dc.subjectHuman-Robot Interactionen
dc.subjectMRTK3en
dc.subjectUnityen
dc.subjectPath Planningen
dc.title基於混合實境之互動式手術機器人控制zh_TW
dc.titleInteractive Surgical Robot Control Using Mixed Realityen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳達慶;陳湘鳳;李宇修zh_TW
dc.contributor.oralexamcommitteeTa-Ching Chen;Shana Smith;Yu-Hsiu Leeen
dc.subject.keyword混合實境,手術機器人,人機互動,逆向運動學,HoloLens 2,手勢辨識,機械手臂,路徑規劃,Unity,MRTK3,zh_TW
dc.subject.keywordMixed Reality,Surgical Robot,Human-Robot Interaction,Inverse Kinematics,HoloLens 2,Gesture Recognition,Robotic Arm,Path Planning,Unity,MRTK3,en
dc.relation.page131-
dc.identifier.doi10.6342/NTU202503224-
dc.rights.note未授權-
dc.date.accepted2025-08-04-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
8.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved