請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99239完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃育熙 | zh_TW |
| dc.contributor.advisor | Yu-Hsi Huang | en |
| dc.contributor.author | 葉哲廷 | zh_TW |
| dc.contributor.author | Che-Ting Yeh | en |
| dc.date.accessioned | 2025-08-21T16:56:28Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | [1] H. Fandiño-Toro, Y. Aristizábal-López, A. Restrepo-Martínez, and J. Briñez-de León, “Fringe Pattern Analysis to Evaluate Light Sources and Sensors in Digital Photoelasticity,” *Applied Optics*, vol. 62, no. 10, 2023.
[2] A. Dave, T. Zhang, A. Young, R. Raskar, W. Heidrich, and A. Veeraraghavan, “NeST: Neural Stress Tensor Tomography by leveraging 3D Photoelasticity,” *ACM Transactions on Graphics*, vol. 43, no. 2, 2025. [3] C. Chen, M. Zhu, Q. Li, P. Xu, C. Ding, Y. Zhang, C. Geng, and R. Yang, “Design and application of a dynamic photoelasticity–digital image correlation comprehensive experimental system for blast loads,” *Applied Optics*, vol. 64, no. 2, pp. 287–295, 2025. [4] J. W. Dally and W. F. Rilley, *Experimental Stress Analysis*, New York, NY, USA: McGraw-Hill, 1978. [5] E. F. Coker and L. N. G. Filon, *Treatise on Photoelasticity*, Cambridge, U.K.: University Press, 1931. [6] 洪光民, 黃國興, 林文輝, “ㄧ維傅利葉分析應用在光弾影像上的相位擷取,” 二十六屆中國機械工程師學會年會, (2009) [7] A. Chen, T. I. Lin, C. Y. Hsieh, I. Y. Li, W. T. Dai, and J. Leu, “Effect of Thermomechanical Properties of TAC and PSA on Polarizer Light Leakage in TFT-LCD,” in *Proc. Int. Display Manufacturing Conf.*, 2011. [8] I. Nam, K. Ha, K. Lee, L. J. Kim, M. Kim, I. Seong, and T. Chang, “Novel versatile pressure-sensitive adhesives for polarizing film of TFT-LCDs: Viscoelastic characteristics and light leakage performance,” *International Journal of Adhesion and Adhesives*, vol. 31, no. 7, pp. 708–714, 2011. [9] J. C. Briñez de León, M. Rico García, H. López Osorio, and H. Fandiño Toro, “Deep learning as a powerful tool in digital photoelasticity: Developments, challenges, and implementation,” *Optics and Lasers in Engineering*, 2024. [10] J. C. Briñez de León, M. Rico García, and A. Restrepo Martínez, “PhotoelastNet: A deep convolutional neural network for evaluating the stress field by using a single color photoelasticity image,” *Applied Optics*, vol. 61, no. 7, pp. D50–D62, 2022. [11] P. P. Natali, L. Montalto, L. Scalise, F. Davì, N. Paone, and D. Rinaldi, “Fringe modelling and photoelastic stress measurement method in tetragonal PWO observed in the plane normal to a crystallographic a-axis,” *Journal of Instrumentation*, vol. 15, P09037, 2020. [12] J. Carazo-Alvarez, S. J. Haake, and E. A. Patterson, “Completely automated photoelastic fringe analysis,” *Optics and Lasers in Engineering*, vol. 21, pp. 133–149, 1994. [13] Y. Ju, Z. Ren, L. Wang, L. Mao, and F.-P. Chiang, “Photoelastic method to quantitatively visualise the evolution of whole-field stress in 3D printed models subject to continuous loading processes,” *Optics and Lasers in Engineering*, vol. 100, pp. 248–258, 2018. [14] C. Meyer, J.-L. Kahn, P. Boutemi, and A. Wilk, “Photoelastic analysis of bone deformation in the region of the mandibular condyle during mastication,” *Journal of Cranio-Maxillofacial Surgery*, vol. 30, pp. 160–169, 2002. [15] X. Chen, J. Xi, T. Jiang, and Y. Jin, “Research and development of an accurate 3D shape measurement system based on fringe projection: Model analysis and performance evaluation,” *Precision Engineering*, vol. 32, pp. 215–221, 2008. [16] G. H. Notni and G. Notni, “Digital fringe projection in 3D shape measurement – an error analysis,” in *Optical Measurement Systems for Industrial Inspection III*, Proc. SPIE, vol. 5144, pp. 372–383, 2003. [17] H. Zhang, C. K. P. Vallabh, Y. Xiong, and X. Zhao, “A systematic study and framework of fringe projection profilometry with improved measurement performance for in-situ LPBF process monitoring,” *Measurement*, vol. 191, 110796, 2022. [18] M. Halioua and H.-C. Liu, “Optical three-dimensional sensing by phase measuring profilometry,” *Optics and Lasers in Engineering*, vol. 11, pp. 185–215, 1989. [19] P. Xu, J. Liu, W. Zhang, S. Shan, J. Wang, M. Shao, and Z. Deng, “Few-fringe-based phase-shifting profilometry employing Hilbert transform,” *Precision Engineering*, vol. 83, pp. 1–11, 2023. [20] Y. Peng, G. Liu, Y. Quan, and Q. Zeng, “The depth measurement of internal defect based on laser speckle shearing interference,” *Optics & Laser Technology*, vol. 92, pp. 69–73, 2017. [21] J. Jin, J. W. Kim, C. S. Kang, J. A. Kim, and S. Lee, “Precision depth measurement of through silicon vias (TSVs) on 3D semiconductor packaging process,” *Optics Express*, vol. 20, no. 3, pp. 3301–3310, 2012. [22] Y. Fainman, E. Lenz, and J. Shamir, “Optical profilometer: a new method for high sensitivity and wide dynamic range,” *Applied Optics*, vol. 21, no. 17, pp. 3200–3208, 1982. [23] Z. Ren, Q. Zhang, Y. Ju, and H. Xie, “Determination of the full-field stress and displacement using photoelasticity and sampling moiré method in a 3D-printed model,” *Theoretical and Applied Mechanics Letters*, vol. 12, 100380, 2022. [24] B. Schürger, M. Pástor, P. Frankovský, and P. Lengvarský, “Photoelasticity as a tool for stress analysis of re-entrant auxetic structures,” *Applied Sciences*, vol. 15, 1250, 2025. [25] F. Bu, R. Wang, X. Wang, Z. Hou, and Y. Zhou, “Calibration method for fringe projection profilometry based on rational function lens distortion model,” *Measurement*, vol. 217, 112996, 2023. [26] S. Lv, D. Tang, X. Zhang, D. Yang, W. Deng, and K. Qian, “Fringe projection profilometry method with high efficiency, precision, and convenience: theoretical analysis and development,” *Optics Express*, vol. 30, no. 19, pp. 33515–33530, 2022. [27] T. Kuparinen, V. Kyrki, J. Mielikainen, and P. Toivanen, “On surface topography reconstruction from gradient fields,” *IEEE Transactions on Image Processing*, vol. 30, pp. 4521–4534, 2021. [28] B. Sokolenko, D. Poletaev, and S. Halilov, “Phase shifting profilometry with optical vortices,” *Journal of Physics: Conference Series*, vol. 917, 062047, 2017. [29] K. Grochalski, M. Wieczorowski, J. H’Roura, and G. Le Goic, “The optical aspect of errors in measurements of surface asperities using the optical profilometry method,” *Frontiers in Mechanical Engineering*, vol. 6, 12, 2020. [30] F. Guo and P. L. Wong, “A multi-beam intensity-based approach for lubricant film measurements in non-conformal contacts,” *Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology*, vol. 216, pp. 281–289, 2002. [31] M. Kang, S. Kim, E. Go, D. Paek, G. Lim, et al., “In-situ and non-contact etch depth prediction in plasma etching via machine learning (ANN & BNN) and digital image colorimetry,” *Semiconductor Science and Technology*, vol. 40, no. 2, 025007, 2024. [32] A. Radić, S. M. Lambrick, N. A. von Jeinsen, A. P. Jardine, and D. J. Ward, “3D surface profilometry using neutral helium atoms,” *Review of Scientific Instruments*, vol. 95, 055001, 2024. [33] Z. Wang, C. Bai, X. Sun, and C. Hu, “Optical method for depth measurement of high aspect ratio 3D microstructure,” in *Proc. SPIE*, vol. 12769, 1276909, 2023. [34] E. Ventsel and T. Krauthammer, *Thin Plates and Shells: Theory, Analysis, and Applications*, New York, NY, USA: Marcel Dekker, 2001. [35] K. Bhaskar and T. K. Varadan, *Plates: Theories and Applications*, Cham, Switzerland: Springer, 2021. [36] S. Toll, S. Tang, and J. Hovanesian, “Computerized photoelastic fringe multiplication,” *Experimental Techniques*, vol. 14, no. 4, pp. 21–23, 1990. [37] B. Han, “Interferometric methods with enhanced sensitivity by optical/digital fringe multiplication,” *Applied Optics*, vol. 32, no. 25, pp. 4713–4718, 1993. [38] T. Y. Chen and C. E. Taylor, “Computerised fringe analysis in photomechanics,” *Experimental Mechanics*, vol. 29, no. 3, pp. 323–329, 1989. [39] K. Ramesh and R. K. Singh, “Comparative performance evaluation of various fringe thinning algorithms in photomechanics,” *Journal of Electronic Imaging*, vol. 4, no. 1, pp. 71–83, 1995. [40] L. Yang, X. Xie, L. Zhu, S. Wu, and Y. Wang, “Review of electronic speckle pattern interferometry (ESPI) for three-dimensional displacement measurement,” *Chinese Journal of Mechanical Engineering*, vol. 27, no. 1, 2014. [41] Y. Emery, E. Cuche, F. Marquet, N. Aspert, P. Marquet, J. Kühn, M. Botkine, T. Colomb, F. Montfort, F. Charrière, C. Depeursinge, P. Debergh, and R. Conde, “Digital holographic microscopy (DHM) for metrology and dynamic characterization of MEMS and MOEMS,” in *Proc. SPIE*, vol. 6186, 2006. [42] G. A. Rosales Sosa, C. Vargas Salgado, N. Bermeo Moreno, and C. Osorio Rodríguez, “Indentation stress fields in brittle materials: A micro photoelastic investigation in silicate glasses,” *International Journal of Solids and Structures*, vols. 256–257, pp. 111–123, 2024. [43] D. J. Mitchell, R. Kumar, and J. Zhu, “An investigation of Hertzian contact in soft materials using photoelastic tomography,” *Experimental Mechanics*, vol. 64, no. 3, pp. 451–464, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99239 | - |
| dc.description.abstract | 本研究提出一套以干涉條紋觀測為基礎的下壓深度分析技術,結合雙折射材料的光彈效應與數位影像處理,建立具光學高解析與可視化的量測系統,研究重點為分析干涉條紋形貌與材料受力變形間的定量關係,進而推估下壓變形區域的深度與作用力。
傳統的表面輪廓與平整度量測多採用接觸示掃描形貌量測與非接觸干涉技術,而本研究採用光彈材料受到外力作用,因應力場導致局部折射率的變化而產生清晰條紋,其條紋階數與主應力差值依序對應,能精確擷取條紋並建立其級數與幾何變形間的關係,獲得受力變形深度與應力分佈之數學模型,進而一次性快速探索整個平面的深度形貌。本研究設計一實驗系統,將光彈材料以圓形邊界固定邊緣,利用中央尖凸之載具下壓,使光彈應力集中區域產生相應階數的干涉條紋。透過圓偏振片光系統採亮/暗場條件下擷取干涉條紋圖像,控制機構調控下壓深度同時紀錄條紋與載荷變化。圖形處理的流程包括灰階化與雜訊濾波,利用影像相減獲得條紋倍增的資訊,並多方向掃描影像之強度變化接著進行全域細線化以提取條紋位置,可獲得清晰的條紋藉以對比下壓深度建立相互關係。 理論解析則依據圓板理論推導軸對稱彈性材料受集中載荷的變形函數,可與光彈實驗的條紋位置與下壓深度建立相互關係,結果顯示本方法可成功擷取至少四階干涉條紋並準確反推下壓深度與應力分佈,條紋形貌與理論模型具良好對應性,相較於傳統三維形貌輪廓儀與先進的共軛焦量測儀,本研究的量測方法具一次性、即時性與可視化的優勢。總結來說,本研究建立一套基於光學元件受力後經由干涉條紋量測深度形貌的技術,透過數位影像處理與光彈與高等材料力學理論,連結條紋階數、光學應力與受力深度,實現高解析的光測力學幾何形貌反算技術,預期未來導入演算法與自動化分析,可拓展至微尺度之變形與應力分析將具更強大的應用範疇。 | zh_TW |
| dc.description.abstract | This study proposes an indentation depth analysis technique based on interference fringe observation, integrating the photoelastic effect of birefringent materials with digital image processing to establish a high-resolution, optical, and visualized measurement system. The research focuses on quantifying the relationship between fringe patterns and material deformation under stress, enabling the estimation of indentation depth and applied force within the deformation region.
While conventional surface profiling and flatness measurements typically rely on contact-based scanning or non-contact interferometric techniques, this study utilizes photoelastic materials that produce distinct interference fringes due to local refractive index variations under external loads. These fringe orders correspond directly to the differences in principal stress, allowing for precise fringe extraction and correlation with geometric deformation. A mathematical model is thus developed to describe the stress distribution and deformation depth, enabling full-field, one-shot surface profiling. An experimental setup is designed in which the photoelastic material is fixed with circular boundaries and indented at the center using a pointed indenter to generate interference fringes in the stress-concentrated region. Fringe patterns are captured under light-field and dark-field conditions using a circular polarizer-based optical system. The indentation depth and corresponding load changes are recorded simultaneously. The image processing workflow involves grayscale conversion and noise filtering, followed by fringe enhancement through image subtraction. Multi-directional intensity scanning and global thinning are then applied to accurately extract fringe positions and enhance fringe clarity for further correlation with indentation depth. Theoretical analysis is conducted using circular plate theory to derive the axisymmetric deformation function of elastic materials under concentrated loading. A strong correlation is established between fringe positions observed in photoelastic experiments and the corresponding indentation depths. Experimental results demonstrate that this method can successfully capture at least four fringe orders and accurately reconstruct both indentation depth and stress distribution. The fringe patterns show good agreement with theoretical models. Compared to traditional 3D profilometers and advanced confocal instruments, the proposed method offers advantages in one-shot, real-time, and visualized measurement. In summary, this research develops a fringe-based optical technique for reconstructing deformation geometry through stress-induced interference in birefringent materials. By linking fringe order, optical stress, and indentation depth through digital image processing and advanced mechanics, a high-resolution optical inverse method is achieved. With future integration of algorithms and automation, the system holds great potential for micro-scale deformation and stress analysis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:56:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:56:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員會審定書 I 中文摘要 II Abstract III 目次 V 圖次 VII 表次 IX 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3文獻回顧 2 1.4論文架構 4 第二章 相關理論與研究方法 6 2.1光彈理論 6 2.1.1光的波動理論 6 2.1.2雙折射性材料(Birefringent Material) 6 2.1.3光學元件介紹 7 2.1.4應力─光學定律(Stress-Optic Law) 8 2.1.5平面偏光系統(Plane Polariscope) 10 2.1.6圓偏光系統(Circular Polariscope) 12 2.2厚度h的圓盤受軸向均勻壓力之理論解 18 2.3影像處理 27 2.3.1傅立葉轉換濾波 28 2.3.2光彈條紋倍增 29 2.3.3條紋細線化 30 2.3.4條紋階數判別與標定 33 第三章 實驗設備 34 3.1實驗設備介紹 34 3.2實驗試片與模具 36 3.3實驗步驟與條件說明 41 第四章 光彈圓盤實驗分析與討論 43 4.1實驗條紋圖樣觀測結果 43 4.2下壓深度計算結果 49 4.3理論分析與應力場對應 50 4.4誤差來源與分析 53 第五章 結論與未來展望 54 5.1結論 54 5.2研究限制與改進建議 55 5.2未來研究方向 56 參考文獻 57 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 光彈性力學 | zh_TW |
| dc.subject | 圓板分析 | zh_TW |
| dc.subject | 軸對稱 | zh_TW |
| dc.subject | 下壓深度 | zh_TW |
| dc.subject | 影像處理 | zh_TW |
| dc.subject | 細線化 | zh_TW |
| dc.subject | axisymmetry | en |
| dc.subject | photoelasticity | en |
| dc.subject | fringe thinning | en |
| dc.subject | image processing | en |
| dc.subject | indentation depth | en |
| dc.subject | circular plate analysis | en |
| dc.title | 基於干涉條紋之下壓深度分析研究 | zh_TW |
| dc.title | Investigation of Indentation Depth via Interference Fringe Patterns | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉建豪;廖展誼 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Hao Liu;Chan-Yi Liao | en |
| dc.subject.keyword | 光彈性力學,圓板分析,軸對稱,下壓深度,影像處理,細線化, | zh_TW |
| dc.subject.keyword | photoelasticity,circular plate analysis,axisymmetry,indentation depth,image processing,fringe thinning, | en |
| dc.relation.page | 62 | - |
| dc.identifier.doi | 10.6342/NTU202503148 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 重點科技研究學院 | - |
| dc.contributor.author-dept | 奈米工程與科學學位學程 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 奈米工程與科學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 3.32 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
