請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99235完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李宇修 | zh_TW |
| dc.contributor.advisor | Yu-Hsiu Lee | en |
| dc.contributor.author | 李承翰 | zh_TW |
| dc.contributor.author | Cheng-Han Li | en |
| dc.date.accessioned | 2025-08-21T16:55:26Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | [1] Zahra Izadifar, Zohreh Izadifar, Dean Chapman, and Paul Babyn. An introduction to high intensity focused ultrasound: systematic review on principles, devices, and clinical applications. Journal of clinical medicine, 9(2):460, 2020.
[2] Osama Al-Bataineh, Jürgen Jenne, and Peter Huber. Clinical and future applications of high intensity focused ultrasound in cancer. Cancer treatment reviews, 38(5):346–353, 2012. [3] David Melodelima, William A N’Djin, Naomi R Miller, Jeffrey C Bamber, and JeanYves Chapelon. Comparative study of the effects of respiratory motion on in-vivo hifu treatments in the liver. In 2009 IEEE International Ultrasonics Symposium, pages 1314–1317, 2009. [4] Gail ter Haar and Constantin Coussios. High intensity focused ultrasound: physical principles and devices. International journal of hyperthermia, 23(2):89–104, 2007. [5] Islam Ahmed Shehata. Treatment with high intensity focused ultrasound: secrets revealed. European journal of radiology, 81(3):534–541, 2012. [6] Franklin J Berkey. Managing the adverse effects of radiation therapy. American family physician, 82(4):381–388, 2010. [7] Kausik Ray and Rajani Choudhuri. Effects of radiation on the reproductive system. In Reproductive and developmental toxicology, pages 291–299. Elsevier, 2011. [8] Eugene J Koay, Dawn Owen, and Prajnan Das. Radiation-induced liver disease and modern radiotherapy. Seminars in Radiation Oncology, 28(4):321–331, 2018. Live and Bile Duct Cancer. [9] RO Illing, JE Kennedy, F Wu, GR Ter Haar, AS Protheroe, PJ Friend, FV Gleeson, DW Cranston, RR Phillips, and MR Middleton. The safety and feasibility of extracorporeal high-intensity focused ultrasound (hifu) for the treatment of liver and kidney tumours in a western population. British journal of cancer, 93(8):890–895, 2005. [10] W Apoutou N’Djin, Jean-Yves Chapelon, and David Melodelima. An ultrasound image-based dynamic fusion modeling method for predicting the quantitative impact of in vivo liver motion on intraoperative hifu therapies: Investigations in a porcine model. PloS one, 10(9):e0137317, 2015. [11] Yi-Hsuan Hsiao, Shou-Jen Kuo, Horng-Der Tsai, Ming-Chih Chou, and GuangPerng Yeh. Clinical application of high-intensity focused ultrasound in cancer therapy. Journal of cancer, 7(3):225, 2016. [12] Edward D Brandner, Andrew Wu, Hungcheng Chen, Dwight Heron, Shalom Kalnicki, Krishna Komanduri, Kristina Gerszten, Steve Burton, Irfan Ahmed, and Zhenyu Shou. Abdominal organ motion measured using 4d ct. International Journal of Radiation Oncology* Biology* Physics, 65(2):554–560, 2006. [13] Xinzhou Li, Yu-Hsiu Lee, Samantha Mikaiel, James Simonelli, Tsu-Chin Tsao, and Holden H Wu. Respiratory motion prediction using fusion-based multi-rate kalman filtering and real-time golden-angle radial mri. IEEE Transactions on Biomedical Engineering, 67(6):1727–1738, 2019. [14] Kuo-Tai Teng, Kai-Hsiang Chang, Yung-Yaw Chen, and Tsu-Chin Tsao. Respiration induced liver motion tracking control for high intensity focused ultrasound treatment. In 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pages 57–62, 2012. [15] Bernard Widrow and Michel Bilello. Adaptive inverse control. In Proceedings of 8th IEEE International Symposium on Intelligent Control, pages 1–6, 1993. [16] Bernard Widrow and Eugene Walach. Adaptive Inverse Control: A Signal Processing Approach. John Wiley & Sons, Ltd, 2007. ISBN 9780470231616. doi:https://doi.org/10.1002/9780470231616. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470231616. [17] Dan Xiong, Li Chai, and Jingxin Zhang. Sparse system identification in pairs of pulse and takenaka–malmquist bases. SIAM Journal on Control and Optimization, 58(2):965–985, 2020. [18] Masayoshi Tomizuka. On the design of digital tracking controllers. Journal of Dynamic Systems, Measurement, and Control, 115:412–418, 1993. [19] T Oliveira e Silva. Laguerre filters–an introduction. Revista do DETUA, 1(3):237–248, 1995. [20] Christos Boukis, Danilo P Mandic, Anthony G Constantinides, and Lazaros C Polymenakos. A novel algorithm for the adaptation of the pole of laguerre filters. IEEE Signal Processing Letters, 13(7):429–432, 2006. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99235 | - |
| dc.description.abstract | 高強度聚焦超聲波(High-intensity focused ultrasound, HIFU)為一具發展潛力之醫療技術,具備非侵入性、無電離輻射及可縮短住院時間等優點,因而在臨床治療中日益受到重視與採用。然而,治療成效高度仰賴超音波探頭之定位精度與安全性,而該定位精度常受到呼吸所導致之器官移動的影響。為解決此問題,目前臨床上常採用「「呼吸中止法」以降低呼吸干擾,惟此法可能對患者造成額外負擔與副作用。因此,允許病患在自然呼吸狀態下進行 HIFU 治療將更為理想。為達成此目標,本研究將此問題視為一實時位置追蹤控制問題,旨在於病患自然呼吸期間,精確追蹤因呼吸所造成的腫瘤位移,進而實現超音波探頭之精確定位。為此,本論文建構一模擬肝腫瘤消融手術之實驗平台,平台包含線性滑軌、馬達、編碼器、馬達驅動器與微控制器等硬體元件。本研究採用適應性逆控制(Adaptive inverse control, AIC)架構進行追蹤控制,以因應呼吸引起之腫瘤運動。其中,為降低遞迴最小平方(Recursive least squares, RLS)演算法之時間複雜度,本文以拉格爾濾波器(Laguerre filter)取代傳統有限脈衝響應(FIR)濾波器。此外,為補償單一拉格爾濾波器於均方誤差(MSE)上的劣勢,本研究亦探討結合 Laguerre 與 FIR 濾波器之混合型自適應控制策略。實驗結果顯示,AIC 架構相較於基準 PID 控制器具有更佳之追蹤效能,能有效降低腫瘤與超音波探頭間之位置誤差。本論文最後將對不同濾波器與控制架構之性能差異進行比較與討論。 | zh_TW |
| dc.description.abstract | High-Intensity Focused Ultrasound (HIFU) is a promising medical modality possessing advantages, including non-invasiveness, non-ionization, and reduced hospitalization, that make it receive increasing acceptance in treatments. Since treatment safety and accuracy of the position of the ultrasound probe are strongly affected by respiration-induced organ motions, a “breath-hold” strategy is applied during the treatment to overcome the inefficacies. However, this strategy may lead to side effects, and thus, allowing breathing during HIFU treatment is preferable. To allow breathing and provide optimal positioning of the ultrasound probe, we consider this issue as a real-time position-tracking control problem. The goal is to achieve accurate positioning by predicting and precisely tracking the displacement of the target tissue induced by respiration during HIFU treatment. In this thesis, we construct a platform consisting of linear guides, motors, encoders, motor driver, and microcontroller to simulate the surgery process of liver tumor ablation conducted by HIFU. Adaptive inverse control (AIC) is applied to track the tumor motion caused by respiration. A Laguerre filter replaces the FIR filter to reduce the time complexity of the recursive least square (RLS) algorithm. Moreover, to compensate for the MSE of the Laguerre filter, we explore the combined Laguerre-FIR structured AIC. The results revealed that AIC effectively improved the tracking performance compared to the baseline PID controller, and therefore, the position error between the target tumor and the ultrasound probe was reduced. A comparison of the performance of different filters and structures is also discussed. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:55:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:55:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
Page 致謝 i 摘要 ii Abstract iv 目次 vii 圖次 xi 第一章 緒論 1 1.1 高強度聚焦超聲波手術 . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 高強度聚焦超聲波原理簡介 . . . . . . . . . . . . . . . . . . . . 2 1.1.2 高強度聚焦超聲波手術的優點與缺點 . . . . . . . . . . . . . . . 3 1.1.3 高強度聚焦超聲波手術的實現方式 . . . . . . . . . . . . . . . . 5 1.2 高強度聚焦超聲波手術應用於肝癌治療 . . . . . . . . . . . . . . . . 6 1.3 研究目標 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 研究方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 第二章 實驗平台與基準控制器 12 2.1 實驗平台 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 基準控制器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 摩擦力補償 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 第三章 自適應控制架構 24 3.1 適應性逆控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 自適應前饋控制架構 (Feedforward, FF) . . . . . . . . . . . . . . 25 3.1.2 自適應前饋與反饋控制架構 (Joint FF+FB) . . . . . . . . . . . . 26 3.1.3 自適應反饋控制架構 (Feedback, FB) . . . . . . . . . . . . . . . . 27 3.2 Laguerre-based Adaptive Inverse Control . . . . . . . . . . . . . . . . 29 3.2.1 數值例子: 拉格爾濾波器與有限脈衝響應濾波器的比較 . . . . . 30 3.3 Parallel Laguerre-FIR Structured Adaptive Inverse Control . . . . . . . 31 3.3.1 數值例子: 拉格爾-FIR 濾波器 . . . . . . . . . . . . . . . . . . . 32 第四章 實驗結果 34 4.1 系統識別 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.1 狀態空間模型之系統識別 (State-Space Model ID) . . . . . . . . . 35 4.2 適應性有限脈衝響應濾波器 . . . . . . . . . . . . . . . . . . . . . . 37 4.2.1 適應性濾波器階數設定 . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.2 Software-in-the-loop (SIL) . . . . . . . . . . . . . . . . . . . . . . 39 4.2.3 Hardware-in-the-loop (HIL) . . . . . . . . . . . . . . . . . . . . . 40 4.3 適應性拉格爾濾波器 . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.1 Software-in-the-loop (SIL) . . . . . . . . . . . . . . . . . . . . . . 44 4.4 適應性拉格爾-FIR 濾波器 . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4.1 Software-in-the-loop (SIL) . . . . . . . . . . . . . . . . . . . . . . 49 第五章 結論與未來展望 52 5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 參考文獻 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 適應性逆控制 | zh_TW |
| dc.subject | 高強度聚焦超聲波 | zh_TW |
| dc.subject | Takenaka-Malmquist (TM) 基底 | zh_TW |
| dc.subject | 拉格爾濾波器 | zh_TW |
| dc.subject | Laguerre filter | en |
| dc.subject | Takenaka-Malmquist (TM) bases | en |
| dc.subject | Adaptive inverse control | en |
| dc.subject | High-intensity focused ultrasound | en |
| dc.title | 基於三種基底函數之自適應濾波器應用於雙軸測試平台上之高強度聚焦超聲波探頭運動控制 | zh_TW |
| dc.title | Adaptive Filters Based on Three Types of Basis Functions for Motion Control of a High-Intensity Focused Ultrasound (HIFU) Probe on a Dual-Axis Test Platform | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鍾孝文;張秉純 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiao-Wen Chung;Biing-Chwen Chang | en |
| dc.subject.keyword | 高強度聚焦超聲波,適應性逆控制,拉格爾濾波器,Takenaka-Malmquist (TM) 基底, | zh_TW |
| dc.subject.keyword | High-intensity focused ultrasound,Adaptive inverse control,Laguerre filter,Takenaka-Malmquist (TM) bases, | en |
| dc.relation.page | 57 | - |
| dc.identifier.doi | 10.6342/NTU202502885 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
