請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99232完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪一薰 | zh_TW |
| dc.contributor.advisor | I-Hsusan Hong | en |
| dc.contributor.author | 蔡瑀袾 | zh_TW |
| dc.contributor.author | Yu-Jhu Cai | en |
| dc.date.accessioned | 2025-08-21T16:54:43Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | Ahmadi, P., & Kjeang, E. (2017). Realistic simulation of fuel economy and life cycle metrics for hydrogen fuel cell vehicles. International Journal of Energy Research, 41(5), 714-727.
Al-Alawi, B. M., & Bradley, T. H. (2013). Review of hybrid, plug-in hybrid, and electric vehicle market modeling studies. Renewable and Sustainable Energy Reviews, 21, 190-203. Bass, F. M., Krishnan, T. V., & Jain, D. C. (1994). Why the Bass model fits without decision variables. Marketing science, 13(3), 203-223. Becker, T. A., Sidhu, I., & Tenderich, B. (2009). Electric vehicles in the United States: a new model with forecasts to 2030. Center for Entrepreneurship and Technology, University of California, Berkeley, 24, 1-32. Church, R., & Velle, C. R. (1974). The maximal covering location problem. Papers in regional science, 32(1), 101-118. Collantes, G. O. (2007). Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles. Technological Forecasting and Social Change, 74(3), 267-280. Cruz-Zambrano, M., Corchero, C., Igualada-Gonzalez, L., & Bernardo, V. (2013, May). Optimal location of fast charging stations in Barcelona: A flow-capturing approach. In 2013 10th International Conference on the European Energy Market (EEM) (pp. 1-6). IEEE. Daskin, M. S. (1983). A maximum expected covering location model: formulation, properties and heuristic solution. Transportation science, 17(1), 48-70. Frade, I., Ribeiro, A., Gonçalves, G., & Antunes, A. P. (2011). Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, Portugal. Transportation Research Record, 2252(1), 91-98. Fragiacomo, P., & Genovese, M. (2020). Technical-economic analysis of a hydrogen production facility for power-to-gas and hydrogen mobility under different renewable sources in Southern Italy. Energy Conversion and Management, 223, 113332. Guerra, C. F., García-Ródenas, R., Sánchez-Herrera, E. A., Rayo, D. V., & Clemente-Jul, C. (2016). Modeling of the behavior of alternative fuel vehicle buyers. A model for the location of alternative refueling stations. International Journal of Hydrogen Energy, 41(42), 19312-19319. Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations research, 12(3), 450-459. Hodgson, M. J. (1990). A flow‐capturing location‐allocation model. Geographical analysis, 22(3), 270-279. Hodgson, M. J., Rosing, K. E., Leontien, A., & Storrier, G. (1996). Applying the flow-capturing location-allocation model to an authentic network: Edmonton, Canada. European journal of operational research, 90(3), 427-443. Honma, Y., & Kuby, M. (2019). Node-based vs. path-based location models for urban hydrogen refueling stations: Comparing convenience and coverage abilities. International journal of hydrogen energy, 44(29), 15246-15261. IEA (2023), Global Hydrogen Review 2023, IEA, Paris https://www.iea.org/reports/global-hydrogen-review-2023, Licence: CC BY 4.0 Li Y, Chen DW, Liu M, Wang RZ. Life cycle cost and sensitivity analysis of a hydrogen system using low-price electricity in China. Int J Hydrogen Energy. 2017; 42(4): 1899-1911 Li, L., Manier, H., & Manier, M. A. (2020). Integrated optimization model for hydrogen supply chain network design and hydrogen fueling station planning. Computers & Chemical Engineering, 134, 106683. Liang, Y., & Hui, C. W. (2018). Convexification for natural gas transmission networks optimization. Energy, 158, 1001-1016. Marcus, S. M. (1981). Acoustic determinants of perceptual center (P-center) location. Perception & psychophysics, 30, 247-256. Miralinaghi, M., Lou, Y., Keskin, B. B., Zarrinmehr, A., & Shabanpour, R. (2017). Refueling station location problem with traffic deviation considering route choice and demand uncertainty. International Journal of Hydrogen Energy, 42(5), 3335-3351. Nicholas, M. A., & Ogden, J. (2006). Detailed analysis of urban station siting for California hydrogen highway network. Transportation Research Record, 1983(1), 121-128. Nicholas, M. A., Handy, S. L., & Sperling, D. (2004). Using geographic information systems to evaluate siting and networks of hydrogen stations. Transportation Research Record, 1880(1), 126-134. Park, S. Y., Kim, J. W., & Lee, D. H. (2011). Development of a market penetration forecasting model for Hydrogen Fuel Cell Vehicles considering infrastructure and cost reduction effects. Energy Policy, 39(6), 3307-3315. Qian, L., & Soopramanien, D. (2014). Using diffusion models to forecast market size in emerging markets with applications to the Chinese car market. Journal of Business Research, 67(6), 1226-1232. Ren, B., Shao, L. N., & You, J. X. (2013). Development of a generalized bass model for Chinese electric vehicles based on innovation diffusion theory. Soft Sci, 27(4), 17-22. ReVelle, C. S., & Swain, R. W. (1970). Central facilities location. Geographical analysis, 2(1), 30-42. ReVelle, C., & Hogan, K. (1989). The maximum availability location problem. Transportation science, 23(3), 192-200. Riemann, R., Wang, D. Z., & Busch, F. (2015). Optimal location of wireless charging facilities for electric vehicles: Flow-capturing location model with stochastic user equilibrium. Transportation Research Part C: Emerging Technologies, 58, 1-12. Ryu, H., Lee, D., Shin, J., Song, M., Lee, S., Kim, H., & Kim, B. I. (2023). A web-based decision support system (DSS) for hydrogen refueling station location and supply chain optimization. International Journal of Hydrogen Energy, 48(93), 36223-36239. Santa-Eulalia, L. A., Neumann, D., & Klasen, J. (2011, October). A simulation-based innovation forecasting approach combining the bass diffusion model, the discrete choice model and system dynamics-an application in the German market for electric cars. In Proceedings of Electric Vehicle Symposium (Vol. 27). Sun, H., He, C., Wang, H., Zhang, Y., Lv, S., & Xu, Y. (2017). Hydrogen station siting optimization based on multi-source hydrogen supply and life cycle cost. International journal of hydrogen energy, 42(38), 23952-23965. Suzuki, A., & Drezner, Z. (1996). The p-center location problem in an area. Location science, 4(1-2), 69-82. Tafakkori, K., Bozorgi-Amiri, A., & Yousefi-Babadi, A. (2020). Sustainable generalized refueling station location problem under uncertainty. Sustainable Cities and Society, 63, 102497. Tao, Y., Qiu, J., Lai, S., Zhang, X., & Wang, G. (2020). Collaborative planning for electricity distribution network and transportation system considering hydrogen fuel cell vehicles. IEEE Transactions on Transportation Electrification, 6(3), 1211-1225. Wenjing Dong, Chengcheng Shao, Xuliang Li, Dandan Zhu, Qian Zhou, Xifan Wang, Integrated planning method of green hydrogen supply chain for hydrogen fuel cell vehicles, International Journal of Hydrogen Energy,2023, Wu, H., Zhang, S., Li, X., Liu, S., & Liang, L. (2022). A multivariate coupled economic model study on hydrogen production by renewable energy combined with off-peak electricity. International Journal of Hydrogen Energy, 47(58), 24481-24492. Yao F, Jia Y, Mao Z.(2010) The cost analysis of hydrogen life cycle in China. Int J Hydrogen Energy.; | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99232 | - |
| dc.description.abstract | 隨著氫燃料電池汽車市場發展及其加氫需求的增長,如何建立完整氫氣供應鏈與汽車加氫站成爲了一個值得研究的議題。本文回顧了不同目標下的加氫站選址與氫燃料電池汽車需求不確定性下選址規劃。本研究介紹了一個適用於地小人稠的島嶼國家的氫氣供應鏈與加氫站選址模型,在滿足一定氫燃料電池汽車加氫需求下,以最小化氫氣成本、加氫站選址優化為目標。針對氫氣生產資源匱乏的島嶼國家特點,構建海路運輸進口與現場加氫站結合的氫氣供應鏈。考慮氫氣管道運輸與車輛運輸結合,探討長期規劃下投資氫氣管道運輸可行性。 | zh_TW |
| dc.description.abstract | With the development of the hydrogen fuel cell vehicle market and the increasing demand for hydrogen refueling, how to establish a complete hydrogen supply chain and hydrogen refueling stations has become a topic worthy of research. This paper reviews the site selection of hydrogen refueling stations under different objectives and the planning under the uncertainty of hydrogen fuel cell vehicle demand. This study proposes a hydrogen supply chain and hydrogen refueling station location model suitable for island nations with limited land and dense populations, aiming to minimize hydrogen costs and optimize the location of hydrogen refueling stations while meeting certain hydrogen refueling demands for fuel cell vehicles. Considering the characteristics of island nations with scarce hydrogen production resources, a hydrogen supply chain combining maritime transport imports and on-site hydrogen refueling stations is constructed. The feasibility of investing in hydrogen pipeline transportation under long-term planning is explored, taking into account the combination of hydrogen pipeline transportation and vehicle transportation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:54:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:54:43Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目 次
誌謝 i 摘要 ii Abstract iii 目次 iv 第一章 緒論 1 第二章 不同目標下的加氫站選址 3 2.1以最小化氫氣成本為目標的加氫站選址規劃 3 2.2以最大化覆蓋率為目標的選址優化 8 第三章 加氫站建設不確定性 12 3.1氫燃料電池汽車增長與加氫站相互影響下的加氫站選址 12 3.2長期規劃下的加氫站選址 14 第四章 氫氣供應鏈與加氫站選址規劃 18 4.1問題描述 18 4.2數學模型 19 4.2.1目標式: 23 4.2.2限制條件 26 4.2.3氫氣需求 31 第五章 結論 33 參考文獻 35 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 氫氣供應鏈 | zh_TW |
| dc.subject | 加氫站選址 | zh_TW |
| dc.subject | 加氣站覆蓋率 | zh_TW |
| dc.subject | 氫氣生命周期成本 | zh_TW |
| dc.subject | 不確定性 | zh_TW |
| dc.subject | uncertainty | en |
| dc.subject | hydrogen life cycle cost | en |
| dc.subject | refueling station coverage | en |
| dc.subject | hydrogen supply chain | en |
| dc.subject | Hydrogen refueling station site selection | en |
| dc.title | 適用地小人稠島嶼的氫氣供應鏈與加氫站選址規劃 | zh_TW |
| dc.title | Hydrogen Supply Chain and Hydrogen Refueling Station Site Planning for Small, Densely Populated Islands | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳文智;黃奎隆 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-chih Chen;Craig Huang | en |
| dc.subject.keyword | 加氫站選址,氫氣供應鏈,不確定性,氫氣生命周期成本,加氣站覆蓋率, | zh_TW |
| dc.subject.keyword | Hydrogen refueling station site selection,hydrogen supply chain,uncertainty,hydrogen life cycle cost,refueling station coverage, | en |
| dc.relation.page | 38 | - |
| dc.identifier.doi | 10.6342/NTU202504033 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 827 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
