請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99231完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱雪萍 | zh_TW |
| dc.contributor.advisor | Hsueh-Ping Chu | en |
| dc.contributor.author | 顏建平 | zh_TW |
| dc.contributor.author | Chien-Ping Yen | en |
| dc.date.accessioned | 2025-08-21T16:54:27Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | Aguilera, A., and García-Muse, T. (2012). R loops: from transcription byproducts to threats to genome stability. Molecular Cell 46, 115-124. 10.1016/j.molcel.2012.04.009.
Al-Minawi, A.Z., Saleh-Gohari, N., and Helleday, T. (2007). The ERCC1/XPF endonuclease is required for efficient single-strand annealing and gene conversion in mammalian cells. Nucleic Acids Research 36, 1-9. 10.1093/nar/gkm888. Amicone, L., Marchetti, A., and Cicchini, C. (2023). The lncRNA HOTAIR: a pleiotropic regulator of epithelial cell plasticity. Journal of Experimental & Clinical Cancer Research 42, 147. 10.1186/s13046-023-02725-x. Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., Bornholdt, J., Boyd, M., Chen, Y., Zhao, X., Schmidl, C., Suzuki, T., et al. (2014). An atlas of active enhancers across human cell types and tissues. Nature 507, 455-461. 10.1038/nature12787. Ashour, M.E., and Mosammaparast, N. (2021). Mechanisms of damage tolerance and repair during DNA replication. Nucleic Acids Research 49, 3033-3047. 10.1093/nar/gkab101. Austenaa, L.M.I., Piccolo, V., Russo, M., Prosperini, E., Polletti, S., Polizzese, D., Ghisletti, S., Barozzi, I., Diaferia, G.R., and Natoli, G. (2021). A first exon termination checkpoint preferentially suppresses extragenic transcription. Nature Structural & Molecular Biology 28, 337-346. 10.1038/s41594-021-00572-y. Babak, T., Blencowe, B.J., and Hughes, T.R. (2005). A systematic search for new mammalian noncoding RNAs indicates little conserved intergenic transcription. BMC Genomics 6, 104. 10.1186/1471-2164-6-104. Bagchi, D.N., and Iyer, V.R. (2016). The Determinants of Directionality in Transcriptional Initiation. Trends in Genetics 32, 322-333. 10.1016/j.tig.2016.03.005. Bao, S., and Xu, C. (2023). Molecular insight into the SETD1A/B N-terminal region and its interaction with WDR82. Biochemical and Biophysical Research Communications 658, 136-140. https://doi.org/10.1016/j.bbrc.2023.03.064. Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 57, 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x. Bhat, S.A., Ahmad, S.M., Mumtaz, P.T., Malik, A.A., Dar, M.A., Urwat, U., Shah, R.A., and Ganai, N.A. (2016). Long non-coding RNAs: Mechanism of action and functional utility. Non-coding RNA Research 1, 43-50. 10.1016/j.ncrna.2016.11.002. Blumthaler, M., and Ambach, W. (1990). Indication of increasing solar ultraviolet-B radiation flux in alpine regions. Science 248, 206-208. 10.1126/science.2326634. Bono, H., Yagi, K., Kasukawa, T., Nikaido, I., Tominaga, N., Miki, R., Mizuno, Y., Tomaru, Y., Goto, H., Nitanda, H., et al. (2003). Systematic expression profiling of the mouse transcriptome using RIKEN cDNA microarrays. Genome Research 13, 1318-1323. 10.1101/gr.1075103. Boros-Oláh, B., Dobos, N., Hornyák, L., Szabó, Z., Karányi, Z., Halmos, G., Roszik, J., and Székvölgyi, L. (2019). Drugging the R-loop interactome: RNA-DNA hybrid binding proteins as targets for cancer therapy. DNA Repair 84, 102642. https://doi.org/10.1016/j.dnarep.2019.102642. Britton, S., Dernoncourt, E., Delteil, C., Froment, C., Schiltz, O., Salles, B., Frit, P., and Calsou, P. (2014). DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Research 42, 9047-9062. 10.1093/nar/gku601. Brookman, K.W., Lamerdin, J.E., Thelen, M.P., Hwang, M., Reardon, J.T., Sancar, A., Zhou, Z.Q., Walter, C.A., Parris, C.N., and Thompson, L.H. (1996). ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs. Molecular and Cellular Biology 16, 6553-6562. 10.1128/mcb.16.11.6553. Brueckner, F., Hennecke, U., Carell, T., and Cramer, P. (2007). CPD damage recognition by transcribing RNA polymerase II. Science 315, 859-862. 10.1126/science.1135400. Castellano-Pozo, M., Santos-Pereira, J.M., Rondón, A.G., Barroso, S., Andújar, E., Pérez-Alegre, M., García-Muse, T., and Aguilera, A. (2013). R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Molecular Cell 52, 583-590. 10.1016/j.molcel.2013.10.006. Cerritelli, S.M., and Crouch, R.J. (2009). Ribonuclease H: the enzymes in eukaryotes. The FEBS Journal 276, 1494-1505. 10.1111/j.1742-4658.2009.06908.x. Core, L., and Adelman, K. (2019). Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes & Development 33, 960-982. 10.1101/gad.325142.119. Core, L.J., Waterfall, J.J., and Lis, J.T. (2008). Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters. Science 322, 1845-1848. doi:10.1126/science.1162228. Costantino, L., and Koshland, D. (2015). The Yin and Yang of R-loop biology. Current Opinion in Cell Biology 34, 39-45. 10.1016/j.ceb.2015.04.008. Cui, G., Zhou, J., Sun, J., Kou, X., Su, Z., Xu, Y., Liu, T., Sun, L., Li, W., Wu, X., et al. (2023). WD repeat domain 82 (Wdr82) facilitates mouse iPSCs generation by interfering mitochondrial oxidative phosphorylation and glycolysis. Cellular and Molecular Life Sciences 80, 218. 10.1007/s00018-023-04871-z. De Magis, A., Manzo, S.G., Russo, M., Marinello, J., Morigi, R., Sordet, O., and Capranico, G. (2019). DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proceedings of the National Academy of Sciences of the United States of America 116, 816-825. 10.1073/pnas.1810409116. Dexheimer, T.S. (2013). DNA Repair Pathways and Mechanisms. In DNA Repair of Cancer Stem Cells, L.A. Mathews, S.M. Cabarcas, and E.M. Hurt, eds. (Springer Netherlands), pp. 19-32. 10.1007/978-94-007-4590-2_2. Dinant, C., Houtsmuller, A.B., and Vermeulen, W. (2008). Chromatin structure and DNA damage repair. Epigenetics & Chromatin 1, 9. 10.1186/1756-8935-1-9. Dizdaroglu, M., Jaruga, P., Birincioglu, M., and Rodriguez, H. (2002). Free radical-induced damage to DNA: mechanisms and measurement1, 2 1This article is part of a series of reviews on “Oxidative DNA Damage and Repair.” The full list of papers may be found on the homepage of the journal. 2Guest Editor: Miral Dizdaroglu. Free Radical Biology and Medicine 32, 1102-1115. https://doi.org/10.1016/S0891-5849(02)00826-2. Duttke, S.H., Guzman, C., Chang, M., Delos Santos, N.P., McDonald, B.R., Xie, J., Carlin, A.F., Heinz, S., and Benner, C. (2024). Position-dependent function of human sequence-specific transcription factors. Nature 631, 891-898. 10.1038/s41586-024-07662-z. Estell, C., Davidson, L., Steketee, P.C., Monier, A., and West, S. (2021). ZC3H4 restricts non-coding transcription in human cells. eLife 10. 10.7554/eLife.67305. Fant, C.B., Levandowski, C.B., Gupta, K., Maas, Z.L., Moir, J., Rubin, J.D., Sawyer, A., Esbin, M.N., Rimel, J.K., Luyties, O., et al. (2020). TFIID Enables RNA Polymerase II Promoter-Proximal Pausing. Molecular Cell 78, 785-793.e788. 10.1016/j.molcel.2020.03.008. Feng, Y.Q., Zhang, H., Han, J.X., Cui, B.J., Qin, L.N., Zhang, L., Li, Q.Q., Wu, X.Y., Xiao, N.N., Zhang, Y., et al. (2023). HSF4/COIL complex-dependent R-loop mediates ultraviolet-induced inflammatory skin injury. Clinical and Translational Medicine 13, e1336. 10.1002/ctm2.1336. Fernandes, J.C.R., Acuña, S.M., Aoki, J.I., Floeter-Winter, L.M., and Muxel, S.M. (2019). Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA 5. 10.3390/ncrna5010017. Fuss, J.O., and Cooper, P.K. (2006). DNA repair: dynamic defenders against cancer and aging. PLoS Biology 4, e203. 10.1371/journal.pbio.0040203. Gaillard, H., and Aguilera, A. (2013). Transcription coupled repair at the interface between transcription elongation and mRNP biogenesis. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms 1829, 141-150. 10.1016/j.bbagrm.2012.09.008. García-Muse, T., and Aguilera, A. (2019). R Loops: From Physiological to Pathological Roles. Cell 179, 604-618. 10.1016/j.cell.2019.08.055. Gorthi, A., Romero, J.C., Loranc, E., Cao, L., Lawrence, L.A., Goodale, E., Iniguez, A.B., Bernard, X., Masamsetti, V.P., Roston, S., et al. (2018). EWS–FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature 555, 387-391. 10.1038/nature25748. Guttman, M., Garber, M., Levin, J.Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M.J., Gnirke, A., Nusbaum, C., et al. (2010). Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology 28, 503-510. 10.1038/nbt.1633. Hildesheim, J., Bulavin, D.V., Anver, M.R., Alvord, W.G., Hollander, M.C., Vardanian, L., and Fornace, A.J., Jr. (2002). Gadd45a Protects against UV Irradiation-induced Skin Tumors, and Promotes Apoptosis and Stress Signaling via MAPK and p5312. Cancer Research 62, 7305-7315. Hollander, M.C., Alamo, I., Jackman, J., Wang, M.G., McBride, O.W., and Fornace, A.J., Jr. (1993). Analysis of the mammalian gadd45 gene and its response to DNA damage. Journal of Biological Chemistry 268, 24385-24393. Hou, Y., Zhang, C., Liu, L., Yu, Y., Shi, L., and Qin, Y. (2024). WDR61 ablation triggers R-loop accumulation and suppresses breast cancer progression. The FEBS Journal 291, 3417-3431. 10.1111/febs.17145. Huarte, M., Guttman, M., Feldser, D., Garber, M., Koziol, M.J., Kenzelmann-Broz, D., Khalil, A.M., Zuk, O., Amit, I., Rabani, M., et al. (2010). A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409-419. 10.1016/j.cell.2010.06.040. Jensen, T.H., Jacquier, A., and Libri, D. (2013). Dealing with pervasive transcription. Molecular Cell 52, 473-484. 10.1016/j.molcel.2013.10.032. Kajitani, G.S., Quayle, C., Garcia, C.C.M., Fotoran, W.L., dos Santos, J.F.R., van der Horst, G.T.J., Hoeijmakers, J.H.J., and Menck, C.F.M. (2022). Photorepair of Either CPD or 6-4PP DNA Lesions in Basal Keratinocytes Attenuates Ultraviolet-Induced Skin Effects in Nucleotide Excision Repair Deficient Mice. Frontiers in Immunology Volume 13 - 2022. 10.3389/fimmu.2022.800606. Kerr, J. (2005). Understanding the factors that affect surface ultraviolet radiation. Optical Engineering 44. 10.1117/1.1886817. Kerr, J.B., and Fioletov, V.E. (2008). Surface ultraviolet radiation. Atmosphere-Ocean 46, 159-184. 10.3137/ao.460108. Kerr, J.B., and McElroy, C.T. (1993). Evidence for Large Upward Trends of Ultraviolet-B Radiation Linked to Ozone Depletion. Science 262, 1032-1034. doi:10.1126/science.262.5136.1032. Kireeva, M.L., Komissarova, N., Waugh, D.S., and Kashlev, M. (2000). The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. Journal of Biological Chemistry 275, 6530-6536. 10.1074/jbc.275.9.6530. Klein Douwel, D., Boonen, R.A., Long, D.T., Szypowska, A.A., Räschle, M., Walter, J.C., and Knipscheer, P. (2014). XPF-ERCC1 acts in Unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Molecular Cell 54, 460-471. 10.1016/j.molcel.2014.03.015. Kotake, Y., and Matsunaga, N. (2019). 39P - The regulation of INK4 locus by long non-coding RNAs. Annals of Oncology 30, v11-v12. https://doi.org/10.1093/annonc/mdz238.038. Lago, S., Poli, V., Fol, L., Botteon, M., Busi, F., Turdo, A., Gaggianesi, M., Ciani, Y., D’Amato, G., Fagnocchi, L., et al. (2025). ANP32E drives vulnerability to ATR inhibitors by inducing R-loops-dependent transcription replication conflicts in triple negative breast cancer. Nature Communications 16, 4602. 10.1038/s41467-025-59804-0. Landgraf, R., Chen, C.-h.B., and Sigman, D.S. (1995). R-loop stability as a function of RNA structure and size. Nucleic Acids Research 23, 3516-3523. 10.1093/nar/23.17.3516. Laugesen, A., Højfeldt, J.W., and Helin, K. (2019). Molecular Mechanisms Directing PRC2 Recruitment and H3K27 Methylation. Molecular Cell 74, 8-18. 10.1016/j.molcel.2019.03.011. Lee, J.H., and Skalnik, D.G. (2008). Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Molecular and Cellular Biology 28, 609-618. 10.1128/mcb.01356-07. Lee, J.H., You, J., Dobrota, E., and Skalnik, D.G. (2010). Identification and characterization of a novel human PP1 phosphatase complex. Journal of Biological Chemistry 285, 24466-24476. 10.1074/jbc.M110.109801. Lelli, K.M., Slattery, M., and Mann, R.S. (2012). Disentangling the many layers of eukaryotic transcriptional regulation. Annual Review of Genetics 46, 43-68. 10.1146/annurev-genet-110711-155437. Li, M., Li, L., Zhang, X., Yan, Y., and Wang, B. (2018). LncRNA RP11-670E13.6 Regulates Cell Cycle Progression in UVB Damaged Human Dermal Fibroblasts. Photochemistry and Photobiology 94, 589-597. 10.1111/php.12858. Li, Y., Wang, Z., Shi, H., Li, H., Li, L., Fang, R., Cai, X., Liu, B., Zhang, X., and Ye, L. (2016). HBXIP and LSD1 Scaffolded by lncRNA Hotair Mediate Transcriptional Activation by c-Myc. Cancer Research 76, 293-304. 10.1158/0008-5472.Can-14-3607. Ma, L., Bajic, V.B., and Zhang, Z. (2013). On the classification of long non-coding RNAs. RNA Biology 10, 925-933. 10.4161/rna.24604. Ma, X., Liu, S., St. Dollente, V., Chen, Z., Xu, Z., Li, J., Zhai, Y., Ishibashi, T., and Huang, J. (2025). BPS2025 - DDX21 facilitates human RNA polymerase II from R-loop-mediated pausing. Biophysical Journal 124, 570a. 10.1016/j.bpj.2024.11.2962. Massé, E., and Drolet, M. (1999). Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. Journal of Biological Chemistry 274, 16659-16664. 10.1074/jbc.274.23.16659. Mayne, L.V., and Lehmann, A.R. (1982). Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Research 42, 1473-1478. Mei Kwei, J.S., Kuraoka, I., Horibata, K., Ubukata, M., Kobatake, E., Iwai, S., Handa, H., and Tanaka, K. (2004). Blockage of RNA polymerase II at a cyclobutane pyrimidine dimer and 6-4 photoproduct. Biochemical and Biophysical Research Communications 320, 1133-1138. 10.1016/j.bbrc.2004.06.066. Mercer, T.R., Dinger, M.E., Sunkin, S.M., Mehler, M.F., and Mattick, J.S. (2008). Specific expression of long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America 105, 716-721. 10.1073/pnas.0706729105. Mersaoui, S.Y., Yu, Z., Coulombe, Y., Karam, M., Busatto, F.F., Masson, J.Y., and Richard, S. (2019). Arginine methylation of the DDX5 helicase RGG/RG motif by PRMT5 regulates resolution of RNA:DNA hybrids. The EMBO Journal 38, e100986. 10.15252/embj.2018100986. Miller, R.G. (1981). Simultaneous statistical inference / Rupert G. Miller, Jr, 2nd Edition (Springer-Verlag). Mohni, K.N., Kavanaugh, G.M., and Cortez, D. (2014). ATR pathway inhibition is synthetically lethal in cancer cells with ERCC1 deficiency. Cancer Research 74, 2835-2845. 10.1158/0008-5472.Can-13-3229. Nguyen, H.D., Leong, W.Y., Li, W., Reddy, P.N.G., Sullivan, J.D., Walter, M.J., Zou, L., and Graubert, T.A. (2018). Spliceosome Mutations Induce R Loop-Associated Sensitivity to ATR Inhibition in Myelodysplastic Syndromes. Cancer Research 78, 5363-5374. 10.1158/0008-5472.Can-17-3970. Nguyen, H.D., Yadav, T., Giri, S., Saez, B., Graubert, T.A., and Zou, L. (2017). Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1. Molecular Cell 65, 832-847.e834. 10.1016/j.molcel.2017.01.029. Ougolkov, A., Zhang, B., Yamashita, K., Bilim, V., Mai, M., Fuchs, S.Y., and Minamoto, T. (2004). Associations Among β-TrCP, an E3 Ubiquitin Ligase Receptor, β-Catenin, and NF-κB in Colorectal Cancer. Journal of the National Cancer Institute 96, 1161-1170. 10.1093/jnci/djh219. Pan, X., Jiang, N., Chen, X., Zhou, X., Ding, L., and Duan, F. (2014). R-loop structure: the formation and the effects on genomic stability. Yi Chuan 36, 1185-1194. 10.3724/sp.J.1005.2014.1185. Park, K., Zhong, J., Jang, J.S., Kim, J., Kim, H.J., Lee, J.H., and Kim, J. (2022). ZWC complex-mediated SPT5 phosphorylation suppresses divergent antisense RNA transcription at active gene promoters. Nucleic Acids Research 50, 3835-3851. 10.1093/nar/gkac193. Rahl, P.B., Lin, C.Y., Seila, A.C., Flynn, R.A., McCuine, S., Burge, C.B., Sharp, P.A., and Young, R.A. (2010). c-Myc regulates transcriptional pause release. Cell 141, 432-445. 10.1016/j.cell.2010.03.030. Ramírez, F., Dündar, F., Diehl, S., Grüning, B.A., and Manke, T. (2014). deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Research 42, W187-191. 10.1093/nar/gku365. Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dündar, F., and Manke, T. (2016). deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Research 44, W160-165. 10.1093/nar/gkw257. Ramirez, P., Crouch, R.J., Cheung, V.G., and Grunseich, C. (2021). R-Loop Analysis by Dot-Blot. Journal of Visualized Experiments. 10.3791/62069. Ramsköld, D., Wang, E.T., Burge, C.B., and Sandberg, R. (2009). An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Computational Biology 5, e1000598. 10.1371/journal.pcbi.1000598. Rastogi, R.P., Singh, S.P., Häder, D.P., and Sinha, R.P. (2010). Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochemical and Biophysical Research Communications 397, 603-607. 10.1016/j.bbrc.2010.06.006. Rockx, D.A., Mason, R., van Hoffen, A., Barton, M.C., Citterio, E., Bregman, D.B., van Zeeland, A.A., Vrieling, H., and Mullenders, L.H. (2000). UV-induced inhibition of transcription involves repression of transcription initiation and phosphorylation of RNA polymerase II. Proceedings of the National Academy of Sciences of the United States of America 97, 10503-10508. 10.1073/pnas.180169797. Rondón, A.G., and Aguilera, A. (2019). R-Loops as Promoters of Antisense Transcription. Molecular Cell 76, 529-530. https://doi.org/10.1016/j.molcel.2019.11.001. Roy, D., Zhang, Z., Lu, Z., Hsieh, C.L., and Lieber, M.R. (2010). Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site. Molecular and Cellular Biology 30, 146-159. 10.1128/mcb.00897-09. Santos-Pereira, J.M., and Aguilera, A. (2015). R loops: new modulators of genome dynamics and function. Nature Reviews Genetics 16, 583-597. 10.1038/nrg3961. Sanz, L.A., and Chédin, F. (2019). High-resolution, strand-specific R-loop mapping via S9.6-based DNA–RNA immunoprecipitation and high-throughput sequencing. Nature Protocols 14, 1734-1755. 10.1038/s41596-019-0159-1. Seila, A.C., Calabrese, J.M., Levine, S.S., Yeo, G.W., Rahl, P.B., Flynn, R.A., Young, R.A., and Sharp, P.A. (2008). Divergent Transcription from Active Promoters. Science 322, 1849-1851. doi:10.1126/science.1162253. Skourti-Stathaki, K., Proudfoot, Nicholas J., and Gromak, N. (2011). Human Senataxin Resolves RNA/DNA Hybrids Formed at Transcriptional Pause Sites to Promote Xrn2-Dependent Termination. Molecular Cell 42, 794-805. https://doi.org/10.1016/j.molcel.2011.04.026. Slieman, T.A., and Nicholson, W.L. (2000). Artificial and solar UV radiation induces strand breaks and cyclobutane pyrimidine dimers in Bacillus subtilis spore DNA. Applied and Environmental Microbiology 66, 199-205. 10.1128/aem.66.1.199-205.2000. Sollier, J., Stork, C.T., García-Rubio, M.L., Paulsen, R.D., Aguilera, A., and Cimprich, K.A. (2014). Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Molecular Cell 56, 777-785. 10.1016/j.molcel.2014.10.020. Song, C., Hotz-Wagenblatt, A., Voit, R., and Grummt, I. (2017). SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability. Genes & Development 31, 1370-1381. 10.1101/gad.300624.117. Soria, G., Polo, Sophie E., and Almouzni, G. (2012). Prime, Repair, Restore: The Active Role of Chromatin in the DNA Damage Response. Molecular Cell 46, 722-734. 10.1016/j.molcel.2012.06.002. Staresincic, L., Fagbemi, A.F., Enzlin, J.H., Gourdin, A.M., Wijgers, N., Dunand-Sauthier, I., Giglia-Mari, G., Clarkson, S.G., Vermeulen, W., and Schärer, O.D. (2009). Coordination of dual incision and repair synthesis in human nucleotide excision repair. The EMBO Journal 28, 1111-1120. 10.1038/emboj.2009.49. Stein, H., and Hausen, P. (1969). Enzyme from Calf Thymus Degrading the RNA Moiety of DNA-RNA Hybrids: Effect on DNA-Dependent RNA Polymerase. Science 166, 393-395. doi:10.1126/science.166.3903.393. Szlachta, K., Thys, R.G., Atkin, N.D., Pierce, L.C.T., Bekiranov, S., and Wang, Y.H. (2018). Alternative DNA secondary structure formation affects RNA polymerase II promoter-proximal pausing in human. Genome Biology 19, 89. 10.1186/s13059-018-1463-8. Tan-Wong, S.M., Dhir, S., and Proudfoot, N.J. (2019). R-Loops Promote Antisense Transcription across the Mammalian Genome. Molecular Cell 76, 600-616.e606. https://doi.org/10.1016/j.molcel.2019.10.002. Temiakov, D., Patlan, V., Anikin, M., McAllister, W.T., Yokoyama, S., and Vassylyev, D.G. (2004). Structural basis for substrate selection by t7 RNA polymerase. Cell 116, 381-391. 10.1016/s0092-8674(04)00059-5. Thomas, M., White, R.L., and Davis, R.W. (1976). Hybridization of RNA to double-stranded DNA: formation of R-loops. Proceedings of the National Academy of Sciences of the United States of America 73, 2294-2298. 10.1073/pnas.73.7.2294. Thyss, R., Virolle, V., Imbert, V., Peyron, J.F., Aberdam, D., and Virolle, T. (2005). NF‐κB/Egr‐1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. The EMBO Journal 24, 128-137. https://doi.org/10.1038/sj.emboj.7600501. Tian, M., and Alt, F.W. (2000). Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. Journal of Biological Chemistry 275, 24163-24172. 10.1074/jbc.M003343200. Visscher, P.M., Hill, W.G., and Wray, N.R. (2008). Heritability in the genomics era — concepts and misconceptions. Nature Reviews Genetics 9, 255-266. 10.1038/nrg2322. Wada, T., Takagi, T., Yamaguchi, Y., Ferdous, A., Imai, T., Hirose, S., Sugimoto, S., Yano, K., Hartzog, G.A., Winston, F., et al. (1998). DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes & Development 12, 343-356. 10.1101/gad.12.3.343. Werner, M., Trauner, M., Schauer, T., Ummethum, H., Márquez-Gómez, E., Lalonde, M., Lee, C.S.K., Tsirkas, I., Sajid, A., Murriello, A.C., et al. (2025). Transcription-replication conflicts drive R-loop-dependent nucleosome eviction and require DOT1L activity for transcription recovery. Nucleic Acids Research 53. 10.1093/nar/gkaf109. Westover, K.D., Bushnell, D.A., and Kornberg, R.D. (2004). Structural Basis of Transcription: Nucleotide Selection by Rotation in the RNA Polymerase II Active Center. Cell 119, 481-489. https://doi.org/10.1016/j.cell.2004.10.016. Williamson, L., Saponaro, M., Boeing, S., East, P., Mitter, R., Kantidakis, T., Kelly, G.P., Lobley, A., Walker, J., Spencer-Dene, B., et al. (2017). UV Irradiation Induces a Non-coding RNA that Functionally Opposes the Protein Encoded by the Same Gene. Cell 168, 843-855.e813. 10.1016/j.cell.2017.01.019. Wu, M., Wang, P.F., Lee, J.S., Martin-Brown, S., Florens, L., Washburn, M., and Shilatifard, A. (2008). Molecular regulation of H3K4 trimethylation by Wdr82, a component of human Set1/COMPASS. Molecular and Cellular Biology 28, 7337-7344. 10.1128/mcb.00976-08. Wu, Q., Kim, Y.C., Lu, J., Xuan, Z., Chen, J., Zheng, Y., Zhou, T., Zhang, M.Q., Wu, C.I., and Wang, S.M. (2008). Poly A- transcripts expressed in HeLa cells. PLOS ONE 3, e2803. 10.1371/journal.pone.0002803. Wu, T., and Du, Y. (2017). LncRNAs: From Basic Research to Medical Application. International Journal of Biological Sciences 13, 295-307. 10.7150/ijbs.16968. Wysocka, J., Swigut, T., Milne, T.A., Dou, Y., Zhang, X., Burlingame, A.L., Roeder, R.G., Brivanlou, A.H., and Allis, C.D. (2005). WDR5 Associates with Histone H3 Methylated at K4 and Is Essential for H3 K4 Methylation and Vertebrate Development. Cell 121, 859-872. 10.1016/j.cell.2005.03.036. Yan, Q., Shields, E.J., Bonasio, R., and Sarma, K. (2019). Mapping Native R-Loops Genome-wide Using a Targeted Nuclease Approach. Cell Reports 29, 1369-1380.e1365. 10.1016/j.celrep.2019.09.052. Yin, Y.W., and Steitz, T.A. (2004). The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 116, 393-404. 10.1016/s0092-8674(04)00120-5. Zatreanu, D., Han, Z., Mitter, R., Tumini, E., Williams, H., Gregersen, L., Dirac-Svejstrup, A., Roma, S., Stewart, A., Aguilera, A., and Svejstrup, J. (2019). Elongation Factor TFIIS Prevents Transcription Stress and R-Loop Accumulation to Maintain Genome Stability. Molecular Cell 76. 10.1016/j.molcel.2019.07.037. Zhang, D.W., Mosley, A.L., Ramisetty, S.R., Rodríguez-Molina, J.B., Washburn, M.P., and Ansari, A.Z. (2012). Ssu72 Phosphatase-dependent Erasure of Phospho-Ser7 Marks on the RNA Polymerase II C-terminal Domain Is Essential for Viability and Transcription Termination*. Journal of Biological Chemistry 287, 8541-8551. https://doi.org/10.1074/jbc.M111.335687. Zhu, X.D., Niedernhofer, L., Kuster, B., Mann, M., Hoeijmakers, J.H., and de Lange, T. (2003). ERCC1/XPF removes the 3' overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Molecular Cell 12, 1489-1498. 10.1016/s1097-2765(03)00478-7. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99231 | - |
| dc.description.abstract | DNA損傷會嚴重阻礙核糖核酸聚合酶II(RNAPII)的進程,並引發轉錄阻斷性損傷,從而導致 R-loop 的累積。R-loop 是一種包含 DNA:RNA 雜合體和被置換的單鏈去氧核糖核酸的三鏈結構。持續的 R-loops 會觸發基因組不穩定並導致細胞死亡。R-loops 可以通過轉錄耦合核苷酸切除修復 (TC-NER) 因子被加工成去氧核糖核酸雙鏈斷裂。在紫外線損傷的反應中,大多數 RNA表現量會減少,但長非編碼核糖核酸的比例卻顯著增加。有趣的是,某些反義股長非編碼核糖核酸的轉錄水平上升,而鄰近的編碼基因在紫外線暴露後下調。值得注意的是,這些反義長非編碼核糖核酸基因和編碼基因是以頭對頭的方式排列的。驅動這些長非編碼核糖核酸上調的機制及其在紫外線壓力下的功能作用仍然知之甚少。在這篇研究裡,我發現紫外線損傷會導致WDR82 與核糖核酸聚合酶II 的分離,進而促進長非編碼核糖核酸的表達。此外,這一現象伴隨著紫外線誘導的長非編碼核糖核酸雙向啟動子處的 R-loop 形成。在紫外線損傷後,核糖核酸聚合酶 II的聚集會從編碼基因的啟動子轉移到了反義長非編碼核糖核酸基因的啟動子。抑制WDR82的表現後,紫外線誘導的長非編碼核糖核酸會增加。這些結果表明,紫外線損傷會在雙向啟動子處引發核糖核酸聚合酶 II的轉移,並且WDR82與核糖核酸聚合酶II 的分離是紫外線誘導的長非編碼核糖核酸表達的關鍵促進因子。 | zh_TW |
| dc.description.abstract | DNA damage can severely block RNA polymerase II (RNAPII) progression, leading to transcription-blocking lesions and the accumulation of R-loops, a triple-stranded structure containing a DNA:RNA hybrid and a displaced single-stranded DNA. Persistent R-loops trigger genome instability and lead to cell death. R-loops can be processed into DNA double-strand breaks by transcription-coupled nucleotide excision repair (TC-NER) factors. In response to UV damage, while the levels of most RNA are reduced, a substantial fraction of long non-coding RNAs (lncRNAs) are increased. Interestingly, the transcription levels of certain antisense lncRNAs are elevated, while the nearby coding genes are downregulated following exposure to UV. Notably, these antisense lncRNA genes and coding genes are arranged in a head-to-head orientation. The mechanism underlying the upregulation of these non-coding RNAs and their functions they undertake in response to UV stress remain poorly understood. This study reveals that the dissociation of WDR82 from RNAPII triggers the expression of lncRNAs upon UV damage. Moreover, this phenomenon is accompanied by R-loop formation at the bidirectional promoters of UV-induced lncRNAs. The RNAPII occupancy shifts from the promoters of coding genes to the promoters of antisense lncRNA genes upon UV damage. Furthermore, CUT&RUN-seq analysis reveals that the RNAPII-S5 occupancy at TSS is increased in lncRNA genes with bidirectional promoters upon UV stress, while the occupancy of WDR82 is lost. Depletion of WDR82 results in elevated expression of UV-induced lncRNAs, which is associated with increased R-loop accumulation. These results suggest that WDR82 suppresses the expression of UV-induced lncRNAs, and that the dissociation of WDR82 from RNAPII triggers shifts in RNAPII occupancy at bidirectional promoters, thereby promoting lncRNA expression upon UV damage. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:54:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:54:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract v Content vii Content of Figures xii Content of Tables xiv Abbreviations xv Chapter1 Introduction 1 1.1 UV Induces DNA Damage and RNA Pol II Stalling. 1 1.2 UV Irradiation-Induced lncRNAs 3 1.3 R-Loop 4 1.4 Nascent RNAs Re-Invade to Form R-Loops in Cis 5 1.5 The Role of R-Loops in Transcription Regulation and Genome Stability 6 1.6 DNA Damages Trigger G Clusters R-Loop Formation 7 1.7 Laser Induces DNA Damage and R-Loop Formation 9 1.8 XPF 9 1.9 Resolution of R-Loops via TC-NER (Transcription-Coupled Nucleotide Excision Repair) 12 1.10 Long Non-Coding RNA-Mediated Transcriptional Regulation 13 1.11 UV Irradiation-Induced lncRNAs and R-Loops 15 1.12 The Function of UV-Induced lncRNAs in the Cell Cycle 16 1.13 Regulatory Mechanisms of lncRNA Transcription in Bidirectional Transcription Regions 17 1.14 WDR82 21 1.15 The ZWC Complex 23 1.16 Hypothesis 24 Chapter2 Materials and Methods 27 2.1 Cell Culture and UVC Treatment 27 2.2 siRNA Transfection 27 2.3 DRIP-qPCR 28 2.4 RNA Extraction 29 2.5 cDNA Synthesis 30 2.6 Western Blot 30 2.7 CUT&RUN 31 2.8 MapR 32 2.9 RNAPII pS5- WDR82 PLA (Proximity Ligation Assay) 34 2.10 Statistical Analysis for Images 35 2.11 Illumina Library Preparation for CUT&RUN and MapR 36 2.12 NGS Sequencing for CUT&RUN and MapR 36 2.13 Enrichment Analysis by Hypergeometric Test 38 Chapter3 Results 41 3.1 UV Induces Expression of lncRNAs Driven by Bidirectional Promoters 41 3.2 UV Exposure Increases RNAPII pS5 at the TSS-Proximal Region of UV-Induced lncRNAs 42 3.3 UV Induces R-Loop Formation near Transcription Start Sites 42 3.4 XPF Deficiency Dysregulates Expression of UV-Induced-lncRNAs 43 3.5 WDR82 Deficiency Triggers the Transcription of UV-Induced lncRNAs in Bidirectional Transcription Regions 44 3.6 RNAPII pS5 Occupancy is Enriched at TSS-Proximal Regions of Bidirectional Genes upon UV Damage 44 3.7 XPF Depletion Results in Reduced RNAPII pS5 Occupancy at TSS-Proximal Regions of UV-Induced RNAPII pS5 Genes 46 3.8 RNAPII pS5 Occupancy is Reduced in siWdr82 Knockdown at TSS-Proximal Regions of UV-Induced RNAPII pS5 Occupancy Genes 47 3.9 Increased RNAPII pS5 Occupancy at TSS in Response to UV Stress upon Depletion of XPF and WDR82 48 3.10 Clusters of Differential RNAPII pS5 Coverage in UV-Induced lncRNA Genes in Response to UV Damage, XPF or WDR82 Depletion 50 3.11 Increased Occupancy of UV-Induced RNAPII pS5 at the TSS-Proximal Region in XPF or WDR82 Deficient Cells 51 3.12 Elevated R-Loop Occupancy under UV Stress at the TSS Regions of Bidirectional Transcription Genes 52 3.13 Genes with Elevated R-Loop Occupancy upon XPF Depletion are Associated with Increased R-Loop Formation in Response to UV Stress 53 3.14 WDR82 Depletion Results in Elevated R-Loop Occupancy at TSS of UV-Induced R-Loop Occupancy Genes 54 3.15 Increased R-Loop Occupancy at TSS-Proximal Regions in XPF and WDR82 Deficient Cells upon UV Stress 56 3.16 Genes with Increased RNAPII pS5 Occupancy are Associated with Increased R-Loops at the TSS in Response to UV Stress 57 3.17 Clusters of Differential R-Loop Coverage in UV-Induced lncRNA Genes in Response to UV Damage, XPF or WDR82 Depletion 58 3.18 UV-Induced R-Loop Formation in the TSS-Proximal Regions is Compromised in XPF and WDR82 Deficient cells 59 3.19 WDR82 Dissociates from RNAPII pS5 upon UV Stress 59 Chapter4 Conclusion 61 Chapter5 Discussion 63 Chapter6 Supplementary information 121 Chapter7 References 132 | - |
| dc.language.iso | en | - |
| dc.subject | 紫外線 | zh_TW |
| dc.subject | 核糖核酸聚合酶II | zh_TW |
| dc.subject | 長非編碼核糖核酸 | zh_TW |
| dc.subject | R-loop | zh_TW |
| dc.subject | XPF | zh_TW |
| dc.subject | WDR82 | zh_TW |
| dc.subject | long non-coding RNA (lncRNA) | en |
| dc.subject | Ultraviolet (UV) | en |
| dc.subject | WDR82 | en |
| dc.subject | XPF | en |
| dc.subject | R-loop | en |
| dc.subject | RNA polymerase II (RNAP II) | en |
| dc.title | WDR82在紫外線損傷下調控雙向啟動子區長鏈非編碼RNA表達及R環形成的作用機制 | zh_TW |
| dc.title | WDR82-Mediated Regulation of LncRNA Expression and R-loop Formation at Bidirectional Promoters in Response to UV Damage | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 高承福;冀宏源;吳青錫;朱家瑩 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Fu Kao;Peter Hung-Yuan Chi;Ching-Shyi Wu;Chia-Ying Chu | en |
| dc.subject.keyword | 紫外線,核糖核酸聚合酶II,長非編碼核糖核酸,R-loop,XPF,WDR82, | zh_TW |
| dc.subject.keyword | Ultraviolet (UV),RNA polymerase II (RNAP II),long non-coding RNA (lncRNA),R-loop,XPF,WDR82, | en |
| dc.relation.page | 144 | - |
| dc.identifier.doi | 10.6342/NTU202502996 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-09 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 基因體與系統生物學學位學程 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 基因體與系統生物學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 39.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
