請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99224完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李國譚 | zh_TW |
| dc.contributor.advisor | Kuo-Tan Li | en |
| dc.contributor.author | 黃偉俊 | zh_TW |
| dc.contributor.author | Ng Wei Jin | en |
| dc.date.accessioned | 2025-08-21T16:52:44Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | 朱亭錚. 2007. 臺灣草苺栽培之過去與前瞻. 國立臺灣大學園藝學系碩士論文. 台北.
何孟勳、李國譚. 2014. The plastic tunnel system reduced irradiance, and whole plant photosynthesis and vegetative growth in strawberry cultivation. 臺灣園藝 60:41-49. 農業部農糧屬. 2023. 農業資料開放平臺. <https://data.moa.gov.tw/index.aspx>. 農業部農糧屬. 2025. 農產品產地價格查報系統. <https://apis.afa.gov.tw/pagepub/appinquirypage.aspx>. 吳岱融、黃勝泉、盧美君. 2017. 草莓種苗育苗現況與因應策略. 苗栗區農業專訊 80:22-22. 吳岱融、盧美君、張廣淼. 2019. 草苺新品種‘苗栗1號’特性之研究. 臺灣園藝 65:67-74. 呂嘉彬. 2009. 摘除老葉、走莖與花對臺灣冬季草莓生長發育與生產之影響. 國立臺灣大學園藝學系碩士論文. 台北. 李怡蓓. 2021. 草莓品種特性對栽培之影響. 苗栗區農業專訊 96:7-9. 李怡蓓. 2022. 草莓種苗低溫預處理對始花期調節之評估. 苗栗區農業專訊 100:17-19. 李怡蓓. 2023. DNA分子標誌於草莓育種之應用. 苗栗區農業專訊 104:15-17. 李青珍. 2011. 精選熊蜂在設施栽培番茄與草莓之授粉潛力評估. 國立臺灣大學園藝學系碩士論文. 台北. 李國譚. 2011. 草莓園夏季休耕與輪作植株管理. 臺大農業推廣通訊 88:3-7. 李窓明. 1993. 台灣草莓產業演進四十年, p. 315-328. 刊於:杜金池、蕭吉雄、楊偉正主編. 臺灣蔬菜產業演進四十年專集. 臺灣省農業試驗所. 台中. 李窓明. 1994. 草莓本圃管理要點. 桃園區農業專訊 9:25-28. 李窓明. 2001. 草莓疏果對生產大型果實之效應. 桃園區農業改良場研究彙報 45:1-5. 李窓明、吳秋芬. 1985. 短日、遮光、斷根處理對草莓開花期與產量之影響. 中國園藝 31:232-239. 李窓明、李聯興. 1999. 草莓桃園三號之育成. 桃園區農業改良場研究彙報 39:1-17. 李窓明、李聯興、倪萬丁. 1993. 草莓新品種「桃園二號」育種研究. 桃園區農業改良場研究報告 13:1-18. 李窓明、洪立. 1982. 草莓之育種(Ⅰ). 中國園藝 28:116-131. 李裕娟、張定霖、蕭翌柱、余志儒、蔡志濃、林鳳琪、陳金枝. 2017. 草莓種苗生產之環境整合管理技術. 2016設施蔬果病蟲害管理暨安全生產研討會論文集 (電子書). 行政院農業委員會農業試驗所出版. p. 86-97. 林昭雄. 1981. 熱帶地區草莓生產及發展可行性之研究. 中華農業研究 30: 173-185. 施昭彰、何琦琛、謝廷芳、蔡武雄、黃山內. 2000. 有機草莓生產模式之建立. 輔導有機農業經營-作物有機栽培應用技術. 中華永續農業協會編印. p. 98-101. 張起良. 2020. 氣候變遷對台灣草莓產業之影響. 國立臺灣大學園藝學系碩士論文. 台北. 張廣淼、吳添益. 2008. 草莓高架栽培管理. 苗栗區農業專訊 41:4-6. 張廣淼、彭淑貞、黃勝泉. 2009. 草莓產業的發展及展望. 苗栗區農業專訊 48:2-4. 張廣淼、蔡正賢、吳添益. 2007. 肥料用量對高架草莓生育及產量之影響. 苗栗區農業改良場研究彙報 1:1-14. 黃瑞彰、黃山內、林晉卿、卓家榮、吳建銘、林經偉. 2007. 設施栽培土壤肥培管理實例. 臺南區農業專訊 61:17-24. 葉人豪. 2022. 全球草莓品種育種概況. 苗栗區農業專訊 100:20-23. 葉人豪. 2023. 日本草莓栽培技術發展概述. 苗栗區農業專訊 104:18-20. 劉增城. 1998. 草莓王國大湖鄉. 苗栗區農業專訊 4:28-33. 蔡敏嘉、曾煥東. 1992. 草莓採收成熟度與包裝貯運之改進. 桃園區農業改良場研究報告 9:37-51. 蕭翌柱. 2022. 醇厚香氣. 深紅豔麗 草莓「台農1號」-製作甜點首選的草莓新品種. 豐年雜誌 72:6-7. 蕭翌柱. 2024. 草莓‘台農1號᾿之技術授權與推廣栽培現況. 農業試驗所技術服務季刊 139:6-10. 鍾國雄. 2003. 草莓產銷現況與問題探討. 苗栗區農情月刊 40:3-4. 羅國偉. 2012a. 草莓田間管理技術. 桃園區農業技術專輯 9:9-13. 羅國偉. 2012b. 草莓高架栽培介紹. 桃園區農業專訊 81:10-12. 羅國偉. 2012c. 草莓產業概況. 桃園區農業技術專輯 9:1-5. 羅國偉. 2016a. 因應氣候變遷之草莓逆境栽培管理. 桃園區農業專訊 98:16-19. 羅國偉. 2016b. 草苺畸形果發生原因及預防措施. 桃園區農業專訊 97:7-9. 羅國偉、李窓明、張志展. 2012. 草莓新品種桃園4號之育成. 桃園區農業改良場研究彙報 72:1-10. 鐘珮哲、吳竑毅. 2020. 草莓育苗病害管理策略. 苗栗區農業專訊 89:9-11. 鐘珮哲、彭淑貞. 2013. 草莓育苗期重要病害管理. 苗栗區農業專訊 61:9-10. 鐘珮哲、黃勝泉、蔡正賢、吳添益、張訓堯、張素貞、吳登楨. 2014. 草莓健康管理生產體系之研究. 102年度重點作物健康管理生產體系及關鍵技術之研發成果研討會論文集. 行政院農業委員會農業試驗所編印. p. 46-57. 農林水産省. 2025. 農業資料開放平臺. <https://www.hinshu2.maff.go.jp/vips/cmm/apCMM110.aspx?MOSS=1>. 三浦周行、吉田澪、山崎篤. 1994. イチゴ果実の大きさに及ぼす温度の影響. 園芸學會雜誌 62:769-774. 大坪竜太、石橋哲也、浦田貴子、富永慧、中山敏文. 2015. イチゴ「さがほのか」の先絞り果はホウ酸塩肥料の葉面散布によって軽減できる. 佐賀県研究成果情報 (平成 26 年度). <https://www.pref.saga.lg.jp/kiji00310825/3_10825_7_h26seika_07.pdf. 大橋隆、重野貴、小島夏実、畠山昭嗣、鶴見理沙、中西達郎、大橋幸雄、植木正明. 2018. 摘花が極大果系イチゴ品種栃木i27号の果実糖度および生育 収量に及ぼす影響. 栃木県農業試験場研究報告 77:39-50. 大森誉紀、横田仁子. 2011. 水耕栽培で再現したイチゴ'あまおとめ'のカルシウムとホウ素の欠乏症状. 愛媛県農林水産研究所企画環境部・農業研究部研究報告 3:20-26. 吉田裕一. 2024. イチゴの花芽と果実の発育異常. 園芸学研究 23:63-71. 吉田裕一、谷本圭一郎. 1999. イチゴ‘女峰’花粉稔性の変化と日射量, 気温並びに体内炭水化物, 無機養分濃度との関係. 岡山大学農学部学術報告 88:39-45. 竹内隆、藤浪裕幸、河田智明、松村雅彦. 1999. イチゴ新品種‘紅ほっぺ(仮称)’の育成経過と主特性. 静岡県農業試験場研究報告 44:13-24. 竹内隆、佐々木麻衣. 2008. イチゴ‘紅ほっぺ’の育苗方法が生育と収量に及ぼす影響. 静岡県農林技術研究所研究報告 1:1-10. 西森裕夫、田中寿弥、東卓弥. 2010. イチゴ新品種‘まりひめ’の育成経過と特性. 和歌山県農林水産総合技術センター研究報告 11:1-8. 金指信夫、佐田稔、池谷保緒、神谷園一、岩崎正男. 1980. イチゴ(宝交早生)のハウス促成栽培における異常花発生に関する研究. 静岡県農業試験場研究報告 25:11-18. 宮本雅章、小泉丈晴、手塚俊行、田中栄嗣. 2013. 促成イチゴ栽培における花粉媒介昆虫の訪花活動数の適正範囲. 群馬県農業技術センター研究報告 10:25-30. 森下昌三、望月龍也、野口裕司. 1997. 促成栽培用イチゴ新品種'さちのか'の育成経過と特性. 野菜・茶業試験場研究報告12:91-115. 植松菜月、村井恒治、栗原桜子、吉田裕一、安場健一郎. 2021. イチゴにおける送風機を用いた振動受粉が受精不良果の発生に及ぼす影響. 徳島県立農林水産総合技術支援センター研究報告 8:17-23. 稲葉幸雄. 2001. イチゴ「とちおとめ」の花粉と雌ずいの受精能力. 栃木県農業試験場研究報告 50:51-61. 瀬角美穂、吉田裕一、金城朱理、日高啓、後藤丹十郎、安場健一郎、田中義行. 2019. B (ホウ素) 欠乏処理がイチゴのチップバーンおよび受精不良果発生に及ぼす影響. 岡山大学農学部学術報告 108:5-13. Adhikari, R.D., and R. Miyanaga. 2015. Utilization of hairy footed flower bee Anthophora plumipes (Hymenoptera: Apidae) for pollination of greenhouse strawberry. Adv. Entomol. 4:25-31. Agehara, S., S.-Y. Lin, and L. Kang. 2020. Strawberry production and markets in Taiwan: Challenges, trends, and outlook. Int. J. Fruit Sci. 20:S2018-S2029. Ahmad, H.M., X. Wang, R. Mahmood Ur, S. Fiaz, F. Azeem, and T. Shaheen. 2022. Morphological and physiological response of Helianthus annuus L. to drought stress and correlation of wax contents for drought tolerance traits. Arab. J. Sci. Eng. 47:6747-6761. Bhat, R., J. Geppert, E. Funken, and R. Stamminger. 2015. Consumers perceptions and preference for strawberries—A case study from Germany. Intl. J. Fruit Sci. 15:405-424. Bringhurst, R.S. and V. Voth. 1978. Origin and evolutionary potentiality of the day-neutral trait in octoploid Fragaria. Genetics 90:510. Brooks, R.M. and H.P. Olmo. 1997. Register of fruit and nut varieties. 3rd ed. ASHS Press, Alexandria, V.A. Chen, Y., J.M. Smagula, W. Litten, and S. Dunham. 1998. Effect of boron and calcium foliar sprays on pollen germination and development, fruit set, seed development, and berry yield and quality in lowbush blueberry (Vaccinium angustifolium Ait.). J. Amer. Soc. Hort. Sci. 123:524-531. Choi, H.G. 2021. Correlation among phenotypic parameters related to the growth and photosynthesis of strawberry (Fragaria × ananassa Duch.) grown under various light intensity conditions. Front. Plant Sci. 12:647585. Claire, D., N. Watters, L. Gendron, C. Boily, S. Pépin, and J. Caron. 2018. High productivity of soilless strawberry cultivation under rain shelters. Sci. Hortic. 232:127-138. Darrow, G.M. 1936. Interrelation of temperature and photoperiodism in the production of fruit-buds and runners in the strawberry. Proc. Amer. Soc. Hort. Sci. 34:360-363. Darrow, G.M. and G.F. Waldo.1934. Responses of strawberry varieties and species to duration of the daily light period. U.S. Dept. Agr. Tech. Bul. 453. Darrow, G.M. 1929. Inflorescence types of strawberry varieties. Am. J. Bot. 16:571-585. Darrow, G.M. 1966. The strawberry. History, breeding and physiology. Holt, Rinehart and Winston, N.Y. Darrow, G.M. and H.A. Borthwick. 1954. Fasciation in the strawberry: Inheritance and the relationship of photoperiodism. J. Hered. 45:299-304. Diamanti, J., M. Battino, and B. Mezzetti. 2011. Breeding for fruit nutritional and nutraceutical quality, p. 61-79. In: M.A. Jenks and P.J. Bebeli (eds). Breeding for Fruit Quality. Wiley, Oxford, UK. Durner, E., J. Barden, D. Himelrick, and E. Poling. 1984. Photoperiod and temperature effects on flower and runner development in day-neutral, junebearing, and everbearing strawberries. J. Amer. Soc. Hort. Sci. 109:396–400. Esringü, A., M. Turan, A. Gunes, A. Esitken, and P. Sambo. 2011. Boron application improves on yield and chemical composition of strawberry. Acta Agric. Scand. - B Soil Plant Sci. 61:245-252. Feldmann, M.J., D.D.A. Pincot, G.S. Cole, and S.J. Knapp. 2024. Genetic gains underpinning a little-known strawberry Green Revolution. Nat. Commun. 15:2468. Fletcher, S.W. 1917. The strawberry in North America: History, origin, botany and breeding. The Macmillan Company, N.Y. Foster, J.C. and J. Janick. 1969. Variable branching patterns in the strawberry inflorescence1. J. Am. Soc. Hortic. Sci. 94:440-443. Food and Agriculture Organization of the United Nations. 2022. FAOSTAT statistical database. FAO, Rome. 28 July 2022. <https://www.fao.org/faostat/en/>. Gil-Ariza, D.J., I. Amaya, J.M. López-Aranda, J.F. Sánchez-Sevilla, M. Ángel Botella, and V. Valpuesta. 2009. Impact of plant breeding on the genetic diversity of cultivated strawberry as revealed by expressed sequence tag-derived simple sequence repeat markers. J. Am. Soc. Hortic. Sci. 134:337-347. González-Ramírez, M.G., V.H. Santoyo-Cortés, J.J. Arana-Coronado, and M. Muñoz-Rodríguez. 2020. The insertion of Mexico into the global value chain of berries. World Dev. Perspect. 20:100240. Hancock, J.F. 2000. Strawberries, p. 445-455. In: Amnon Erez (ed.). Temperate fruit crops in warm climates. Springer, Dordrecht, Neth. Hancock, J.F. 2020. History of strawberry domestication, p. 32-58. In: Strawberries. 2nd ed. CABI, Wallingford, UK. Hedrick, U.P. 1925. The small fruits of New York. J.B. Lyon, Albany, N.Y. Heide, O.M. 1977. Photoperiod and temperature interactions in growth and flowering of strawberry. Physiol. Plant. 40:21-26. Hidaka, K., A. Okamoto, T. Araki, Y. Miyoshi, K. Dan, H. Imamura, M. Kitano, K. Sameshima, and M. Okimura. 2014. Effect of photoperiod of supplemental lighting with light-emitting diodes on growth and yield of strawberry. Environ. Control Biol. 52:63-71. Holmes, M.G. and D.R. Keiller. 2002. Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ. 25:85-93. Hortyński, J.A., J. Żebrowska, J. Gawroński, and T. Hulewicz. 1991. Factors influencing fruit size in the strawberry (Fragaria × ananassa Duch.). Euphytica 56:67-74. Horvath, A., J.F. Sánchez‐Sevilla, F. Punelli, L. Richard, R. Sesmero‐Carrasco, A. Leone, M. Höefer, P. Chartier, E. Balsemin, T. Barreneche, B. Denoyes. 2011. Structured diversity in octoploid strawberry cultivars: importance of theold European germplasm. Ann. Appl. Biol. 159:358-371. Jamieson, A.R., C.F. Forney, J. Richards, and K.U.K.G. Nicholas. 2000. Strawberry fruit characteristics that contribute to postharvest quality. Acta Hortic. 567:723-726. Jiang, Y., Y. Peng, G. Hou, M. Yang, C. He, M. She, X. Li, M. Li, Q. Chen, Y. Zhang, Y. Lin, Y. Zhang, Y. Wang, W. He, X. Wang, H. Tang, and Y. Luo. 2024. A high epicuticular wax strawberry mutant reveals enhanced resistance to Tetranychus urticae Koch and Botrytis cinerea. Sci. Hortic. 324:112636. Johnson, R.M., M.D. Ellis, C.A. Mullin, and M. Frazier. 2010. Pesticides and honey bee toxicity–USA. Apidologie 41:312-331. Kader, A.A. 2001. Quality assurance of harvested horticultural perishables. Acta Hortic. 553:51-56. Kawanobu, S., T. Wajima, K. Zushi, T. Mori, and N. Matsuzoe. 2010. Seasonal variations in the maturation period, anthocyanin content, and ascorbic acid content in strawberry fruits. Environ. Control Biol. 48:175-184. Lieten, P. 2002. Boron deficiency of strawberries grown in substrate culture. Acta Hortic. 567:451-454. Manakasem, Y. and P.B. Goodwin. 2001. Responses of dayneutral and Junebearing strawberries to temperature and daylength. J. Hortic. Sci. Biotechnol. 76:629-635. Mason, G.F. and C.G. Guttridge. 1974. The role of calcium, boron and some divalent ions in leaf tipburn of strawberry. Sci. Hortic. 2:299-308. Menzel, C. 2021. Higher temperatures decrease fruit size in strawberry growing in the subtropics. Horticulturae 7(2):34. Mezzetti, B., F. Giampieri, Y.-T. Zhang, and C.-F. Zhong. 2018. Status of strawberry breeding programs and cultivation systems in Europe and the rest of the world. J. Berry Res. 8:205-221. Minegishi, M. 1989. Strawberry production in Japan-cultivar, cultivating method, main disease and breeding. Acta Hortic. 265:665-670. Mochizuki, T., M. Okimura, H. Takahashi, Y. Yoshida, N. Nobuo Sugiyama, and A. Atsushi Yamasaki. 2007. Recent trends on strawberry cultivars and production technology in Japan. Acta Hortic. 761:107-113. Nakayama, M. and Y. Nakazawa. 2023. Effects of environmental control and LED supplemental lighting on strawberry growth and yield in a subtropical climate. Sci. Hortic. 321:112349. Neri, D., G. Baruzzi, F. Massetani, and W. Faedi. 2012. Strawberry production in forced and protected culture in Europe as a response to climate change. Can. J. Plant Sci. 92:1021-1036. Oda, Y. 1989. Japanese strawberry industry-trend of acreage, production, import and growing systems. Acta Hortic. 265:671-678. Oo, L.M. and N.Z. Aung. 2018. A simple and efficient method for automatic strawberry shape and size estimation and classification. Biosyst. Eng. 170:96-107. Ragaert, P., W. Verbeke, F. Devlieghere, and J. Debevere. 2004. Consumer perception and choice of minimally processed vegetables and packaged fruits. Food Qual. Prefer. 15:259-270. Sønsteby, A. and O.M. Heide. 2006. Dormancy relations and flowering of the strawberry cultivars Korona and Elsanta as influenced by photoperiod and temperature. Sci. Hortic. 110:57-67. Salman, M., S. Ullah, K. Razzaq, I.A. Rajwana, G. Akhtar, H.N. Faried, A. Hussain, M. Amin, and S. Khalid. 2022. Combined foliar application of calcium, zinc, boron and time influence leaf nutrient status, vegetative growth, fruit yield, fruit biochemical and anti-oxidative attributes of “Chandler” strawberry. J. Plant Nutr. 45:1837-1848. Sances, F.V., J.A.Wyman, and I.P. Ting. 1979. Morphological responses of strawberry leaves to infestations of twospotted spider mite. J. Econ. Entomol. 72:710-713. Sances, F.V., J.A.Wyman, I.P. Ting, R.A. Van Steenwyk, and E.R. Oatman. 1981. Spider mite interactions with photosynthesis, transpiration and productivity of strawberry. Environ. Entomol. 10:442-448. Santos, B.M. and C.K. Chandler. 2009. Influence of nitrogen fertilization rates on the performance of strawberry cultivars. Int. J. Fruit Sci. 9:126-135. Sauer, J.D. 1993. Historical geography of crop plants. CRC Press, Boca Raton, FL. Savini, G. 2003. Architectural model and factors implicated in the flower differentiation of strawberry plant (Fragaria × ananassa Duch.). PhD thesis. Marche Politechnic Univ., Ancona, Italy. Simonne, E.H., J.R. Duval, and E. Golden. 2001. Interactions between nitrogen rates and cultivar on the yield of strawberry. Proc. Fla. State Hort. Soc. 114:315–317. Simpson, D. 2018. The Economic Importance of Strawberry Crops, p. 1-7. In: T. Hytönen, J. Graham, and R. Harrison (eds.). The Genomes of Rosaceous Berries and Their Wild Relatives. Springer International Publishing, Cham. Smeets, L. 1980. Effect of temperature and daylength on flower initiation and runner formation in two everbearing strawberry cultivars. Sci. Hortic. 12:19-26. Stewart, P.J. and K.M. Folta. 2010. A review of photoperiodic flowering research in strawberry (Fragaria spp.). Crit. Rev. Plant Sci. 29:1-13. Swann, K., P. Hadley, M.A. Else, S. Pearson, A. Badiee, and C. Twitchen. 2021. The effect of light intensity and duration on yield and quality of everbearer and June-bearer strawberry cultivars in a LED lit multi-tiered vertical growing system. Acta Hortic. 1309:359-366. Thi Cam, N., N. Sunagawa, M. Sesumi, Y. Kitamura, Y. Tanaka, T. Goto, K.-I. Yasuba, and Y. Yoshida. 2022. Fasciation in strawberry floral organs and possible implications for floral transition. Hort. J. 91:58-67. Wang, S.Y. and M.J. Camp. 2000. Temperatures after bloom affect plant growth and fruit quality of strawberry. Sci. Hortic. 85:183-199. Wietzke, A., C. Westphal, P. Gras, M. Kraft, K. Pfohl, P. Karlovsky, E. Pawelzik, T. Tscharntke, and I. Smit. 2018. Insect pollination as a key factor for strawberry physiology and marketable fruit quality. Agr. Ecosyst. Environ. 258:197-204. Wilhelm, S. and J.A. Sagen. 1974. A history of the strawberry. Univ. of California, Berkeley, CA. Wu, H.-Y., C.-Y. Tsai, Y.-M. Wu, H.-A. Ariyawansa, C.-L. Chung, and P.-C. Chung. 2021. First report of Neopestalotiopsis rosae causing leaf blight and crown rot on strawberry in Taiwan. Plant Dis. 105:487-487. Yoshida, Y. 2013. Strawberry production in Japan: History and progress in production technology and cultivar development. Int. J. Fruit Sci. 13:103-113. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99224 | - |
| dc.description.abstract | 栽培種草莓(Fragaria × ananassa Duchesne)為薔薇科草莓屬之八倍體物種,是全球栽培最廣泛的小果類作物之一。草莓育種始於歐洲,偏好高品質、注重環保,美國則是高產量、果重和硬度,並引入原生種日中性基因達到全年供應。日本草莓育種始於19世紀,以豐產、大果及高品質爲目標,在臺灣高價出售。臺灣自1960年商業栽培草莓,至2011年主要品種為‘桃園1號’,之後改栽培‘香水’,儘管其風味較淡,但臺灣產銷模式偏好高產量的品種。臺灣缺乏高品質、高產且適應臺灣之草莓品種,而栽培困境有氣候變遷致使產期延後、病蟲害嚴重。此外,設施及高架栽培面積在臺灣逐漸擴張,可減少氣候及病蟲害影響,高經濟價值的草莓爲此栽培類型的理想選擇之一,但需要有適合的品種。以解決困境與改善品種為目標,需要適應性佳、產量高、果實著色佳、甜度高等性狀。臺大果樹生理研究室於2015年以‘章姬’與‘幸香’雜交選拔出‘臺大朱蜜’及‘臺大朱露’,於2024年取得品種權。
目前對‘臺大朱蜜’及‘臺大朱露’之性狀及生育特性仍未有完整研究,因此本研究以‘幸香’為對照,觀察‘臺大朱蜜’與‘臺大朱露’在臺北平地設施、高架、無土及無農藥栽培環境下之性狀及生育表現,以為未來栽培推廣、栽培方式及育種方向提供參考。試驗結果顯示,‘臺大朱蜜’與‘幸香’有17個性狀差異,‘臺大朱露’與‘幸香’有14個,而新品種之間則有17個,其中以果實性狀差異較明顯,較能辨別品種。新品種生長勢强、植株半直立、果梗長、果實著色佳。‘臺大朱蜜’果實香氣濃,‘臺大朱露’繁殖倍率高。生育特性上,‘臺大朱蜜’與‘臺大朱露’營養生長大部分時間優於‘幸香’,可銷售產量及生產穩定性也高於‘幸香’。其他個別特性為,‘臺大朱蜜’花期早,果實需較長生長時間;‘臺大朱露’單果重較高,各級果實重量差異大。果實品質方面,‘臺大朱蜜’與‘臺大朱露’風味比‘幸香’甜,前者具有與‘幸香’相近的硬度,後者果實較大。品種缺點有,‘臺大朱蜜’果實生育日數長;少量‘臺大朱露’植株‘停心’,果實軟。試驗期間亦觀察到部分栽培限制:如授粉率低、缺鈣缺硼與蟲害影響光合作用與產量等問題。此外,本研究未與市售主力品種進行直接比較,病蟲害抗性亦有待評估。整體而言,‘臺大朱蜜’與‘臺大朱露’在北部設施高架無土栽培環境中表現良好,具強勢生長、產量穩定、果實品質佳等優勢,具推廣與後續育種發展之潛力。 | zh_TW |
| dc.description.abstract | The cultivated strawberry (Fragaria × ananassa Duchesne) is an octoploid species belonging to the genus Fragaria in the Rosaceae family. It is one of the most widely cultivated small fruit crop in the world. Strawberry breeding began in Europe, focusing on high quality and environmental protection. In contrast, the United States emphasizes high yield, fruit weight, firmness, and introduces day-neutral genes from wild species to achieve year-round production. Japanese strawberries are sold at high prices in Taiwan, with breeding beginning in the 19th century, targeting high yields, large fruits, and high quality. Commercial strawberry cultivation in Taiwan began in the 1960s, with ‘Taoyuan No. 1’ as the main variety until 2011, after which it was largely replaced by ‘Aroma’. Despite its milder flavor, ‘Aroma’ became favored due to Taiwan’s production and marketing system, which prioritizes high-yielding cultivars. However, Taiwan still lacks strawberry varieties that combine high quality, high yield, and local adaptability. Current cultivation challenges include climate change leading to delayed harvests, and severe pest and disease pressures. Protected and elevated cultivation systems are expanding in Taiwan, helping reduce climate and pest impacts. These systems are well-suited for high-value crops like strawberries, but require adapted cultivars. To solve these challenges and improve cultivars, breeding should focus on traits such as good adaptability, high yield, good fruit coloration, and high sweetness. In 2015, new strawberry varieties, ‘NTU Jumi’ and ‘NTU Jiro’ were selected from a cross between ‘Akihime’ and ‘Sachinoka’ in the breeding program at the NTU Fruit Physiology Laboratory, which obtained plant variety rights in 2024.
However, comprehensive studies on the traits and growth characteristics of these new varieties remain limited. This study used ‘Sachinoka’ as a control to investigates the traits and growth of ‘NTU Jumi’ and ‘NTU Jiro’ under a protected, pesticide-free, soilless and elevated cultivation system in lowland Taipei. The goal is to provide a reference for future cultivation promotion and breeding directions. The results showed 17 different traits between ‘NTU Jumi’ and ‘Sachinoka’, 14 between ‘NTU Jiro’ and ‘Sachinoka’, and 17 between the two new cultivars. Fruit traits showed the most obvious differences and were useful for distinguishing the cultivars. The new cultivars had vigorous growth, semi-upright plant type, long fruit stalks, and good fruit color. ‘NTU Jumi’ had a strong aroma, while ‘NTU Jiro’ had a high propagation rate. In terms of growth, both cultivars had better vegetative growth than ‘Sachinoka’during most of the growing period and also had higher marketable yields and more stable production. Other individual traits included early flowering and longer fruit development time for ‘NTU Jumi’, and larger average fruit weight with more size variation for ‘NTU Jiro’. In fruit quality, both new cultivars were sweeter than ‘Sachinoka’. ‘NTU Jumi’ had similar firmness, while ‘NTU Jiro’ produced larger fruits. However, some weaknesses were found. ‘NTU Jumi’ needed a longer time for fruit development, and some ‘NTU Jiro’ plants showed “self-topping” and produced soft fruits. Other cultivation issues observed included low pollination rate, calcium and boron deficiency, and pest damage affecting photosynthesis and yield. This study did not compare the new cultivars with other major commercial varieties, and their resistance to pests and diseases still needs to be studied. In conclusion, ‘NTU Jumi’ and ‘NTU Jiro’ performed well under protected, soilless, elevated cultivation in northern Taiwan. They showed strong growth, stable yield, and good fruit quality, and have potential for future production and breeding use. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:52:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:52:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iv 目次 vi 圖次 ix 表次 xi 附錄 xii 一、緒論-前人研究及試驗目的 1 1.1. 前言 1 1.2. 草莓栽培及育種歷史 2 1.2.1. 草莓屬的栽培歷史 2 1.2.2. 栽培種草莓之分類 2 1.2.3. 各地區栽培種草莓之發展概況 3 1.3. 臺灣草莓的生長習性及栽培模式 7 1.3.1. 草莓在臺灣的生長習性 7 1.3.2. 臺灣草莓的栽培模式 7 1.4. 臺灣草莓產銷模式 8 1.5. 臺灣草莓品種 9 1.5.1. ‘桃園1號’ 9 1.5.2. ‘桃園2號’ 9 1.5.3. ‘桃園3號’ 9 1.5.4. ‘桃園4號’ 9 1.5.5. ‘苗栗1號’ 10 1.5.6. ‘台農1號’ 10 1.5.7. 其他 10 1.6. 臺灣栽培草莓之難題 10 1.7. 臺灣草莓的育種目標 11 1.8. 草莓新品種‘臺大朱蜜’與‘臺大朱露’之育成 11 1.9. 試驗動機與目的 12 二、材料與方法 13 2.1. 試驗地點及時間 13 2.2. 植物材料及介質使用 13 2.3. 栽培管理 13 2.4. 環境氣溫記錄 14 2.5. 性狀記錄 14 2.5.1. 株型性狀 14 2.5.2. 匍匐蔓性狀 14 2.5.3. 葉性狀 14 2.5.4. 花朵性狀 15 2.5.5. 果實性狀 15 2.5.6. 其他性狀 15 2.6. 生育表現 15 2.6.1. 營養生長 15 2.6.2. 生殖生長 16 2.6.3. 果實品質 17 2.7. 統計分析 17 三、結果 18 3.1. 品種性狀 18 3.1.1. ‘臺大朱蜜’性狀 18 3.1.2. ‘臺大朱露’性狀 18 3.2. 生育表現 19 3.2.1. 營養生長 19 3.2.2. 生殖生長 21 3.2.3. 果實品質 26 四、討論 28 4.1. 性狀表現 28 4.2. 生育表現 30 4.3. 果實的品質 32 4.4. 栽培環境 33 4.5. 綜合討論 34 五、結論 36 參考文獻 77 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 栽培種草莓 | zh_TW |
| dc.subject | 品種 | zh_TW |
| dc.subject | 設施栽培 | zh_TW |
| dc.subject | 生長勢 | zh_TW |
| dc.subject | 缺鈣 | zh_TW |
| dc.subject | 缺硼 | zh_TW |
| dc.subject | protected cultivation | en |
| dc.subject | cultivated strawberry | en |
| dc.subject | boron deficiency | en |
| dc.subject | calcium deficiency | en |
| dc.subject | growth vigor | en |
| dc.subject | variety | en |
| dc.title | 草莓品種‘臺大朱蜜’及‘臺大朱露’的性狀及生育表現 | zh_TW |
| dc.title | Traits and Growth Performances of Strawberry Cultivars ‘NTU Jumi’ and ‘NTU Jiro’ (Fragaria × ananassa Duch.) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林宣佑;張嵐雁;李金龍 | zh_TW |
| dc.contributor.oralexamcommittee | Syuan-You Lin;Lan-Yen Chang;Ching-Lung Lee | en |
| dc.subject.keyword | 栽培種草莓,品種,設施栽培,生長勢,缺鈣,缺硼, | zh_TW |
| dc.subject.keyword | cultivated strawberry,variety,protected cultivation,growth vigor,calcium deficiency,boron deficiency, | en |
| dc.relation.page | 94 | - |
| dc.identifier.doi | 10.6342/NTU202503125 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 2.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
