Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99214
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁健芳zh_TW
dc.contributor.advisorChien-Fang Dingen
dc.contributor.author楊翼zh_TW
dc.contributor.authorYi Yangen
dc.date.accessioned2025-08-21T16:50:16Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation[1] Chiu Poshun and Dogmus Ezgi. Power sic 2022: Market and technology report product brochure, 2022.
[2] Gear Luke. Power electronics for electric vehicles 2023–2033: 800v evs charge into the mainstream using sic power electronics. Technical report, Power Systems Design, 2023.
[3] Chengwu Wang, Syuhei Kurokawa, Julong Yuan, Li Fan, Huizong Lu, Zhe Wu, Weifeng Yao, Kehua Zhang, Yu Zhang, and Toshiro Doi. Study of femtosecond laser ablation effect on micro-processing for 4h-sic substrate. International Journal of Automation Technology, 12(2):187–198, 2018.
[4] Jiangyou Long, Zhijian He, Caixia Zhou, Xiaozhu Xie, Zuo Cao, Peiyang Zhou, Yiliang Zhu, Wenjie Hong, and Zhisheng Zhou. Hierarchical micro-and nanostructures induced by nanosecond laser on copper for superhydrophobicity, ultralow water adhesion and frost resistance. Materials & Design, 155:185–193, 2018.
[5] Chen-Yu Lee. Discussion of the synthesis mechanism and model of graphite encapsulated silicon nanoparticle by annealing experiments. Master's thesis, National Taiwan University, 2023. National digital library of theses and dissertations in Tai-wan.
[6] Gary Lynn Harris. Properties of silicon carbide. Number 13. Iet, 1995.
[7] Tsunenobu Kimoto and James A Cooper. Fundamentals of silicon carbide technology: growth, characterization, devices and applications. John Wiley & Sons, 2014.
[8] Jingxin Jian and Jianwu Sun. A review of recent progress on silicon carbide for photoelectrochemical water splitting. Solar RRL, 4(7):2000111, 2020.
[9] Gerhard Elssner, Helmut Hoven, Gonde Kiessler, and Peter Wellner. Ceramics and ceramic composites: materialographic preparation. Elsevier, 1999.
[10] Hyunseop Lee, Hyoungjae Kim, and Haedo Jeong. Approaches to sustainability in chemical mechanical polishing (cmp): a review. International Journal of Precision Engineering and Manufacturing-Green Technology, pages 1–19, 2022.
[11] Wantang Wang, Xuesong Lu, Xinke Wu, Yiqiang Zhang, Rong Wang, Deren Yang, and Xiaodong Pi. Chemical–mechanical polishing of 4h silicon carbide wafers. Advanced Materials Interfaces, 10(13):2202369, 2023.
[12] Hideo Aida, Toshiro Doi, Hidetoshi Takeda, Haruji Katakura, Seong-Woo Kim, Koji Koyama, Tsutomu Yamazaki, and Michio Uneda. Ultraprecision cmp for sapphire, gan, and sic for advanced optoelectronics materials. Current Applied Physics, 12:S41–S46, 2012.
[13] CL Neslen, WC Mitchel, and RL Hengehold. Effects of process parameter variations on the removal rate in chemical mechanical polishing of 4h-sic. Journal of electronic materials, 30:1271–1275, 2001.
[14] HS Lee and HD Jeong. Chemical and mechanical balance in polishing of electronic materials for defect-free surfaces. CIRP annals, 58(1):485–490, 2009.
[15] Hideyuki Hara, Yasuhisa Sano, Hidekazu Mimura, Kenta Arima, Akihisa Kubota, Keita Yagi, Junji Murata, and Kazuto Yamauch. Novel abrasive-free planarization of 4h-sic (0001) using catalyst. Journal of electronic materials, 35:L11–L14, 2006.
[16] J Watanabe. Effect of tio_2 and ceo_2 particles on sic semiconductor surfaces polished under ultraviolet-ray irradiation. Proc. Advances in Abrasive Technology (ASAAT 2007), Michigan, USA, 91, 2007.
[17] Yoshie Ishikawa, Yasumichi Matsumoto, Yoko Nishida, Shinichi Taniguchi, and Junji Watanabe. Surface treatment of silicon carbide using tio2 (iv) photocatalyst. Journal of the American Chemical Society, 125(21):6558–6562, 2003.
[18] K Yamamura, T Takiguchi, M Ueda, H Deng, AN Hattori, and N Zettsu. Plasma as-sisted polishing of single crystal sic for obtaining atomically flat strain-free surface. CIRP annals, 60(1):571–574, 2011.
[19] Yamamura Laboratory. Yamamura laboratory, department of precision engineering, osaka university, 2025. Accessed: 2025-04-19.
[20] Benedikt Adelmann and Ralf Hellmann. Sic absorption of near-infrared laser radiation at high temperatures. Applied Physics A, 122(7):642, 2016.
[21] Doan Hong Duc, Iwatani Naoki, and Fushinobu Kazuyoshi. A study of near-infrared nanosecond laser ablation of silicon carbide. International Journal of Heat and Mass Transfer, 65:713–718, 2013.
[22] R Weingärtner, PJ Wellmann, M Bickermann, D Hofmann, TL Straubinger, and A Winnacker. Determination of charge carrier concentration in n-and p-doped sic based on optical absorption measurements. Applied physics letters, 80(1):70–72, 2002.
[23] FW Preston. The theory and design of plate glass polishing machines. J. Society of glass Tech., 11:214, 1927.
[24] Mincheol Kim, Sangmin Bang, Dong-Hyeon Kim, Hyun-Taek Lee, Geon-Hee Kim, and Sung-Hoon Ahn. Hybrid co 2 laser-polishing process for improving material removal of silicon carbide. The International Journal of Advanced Manufacturing Technology, 106:3139–3151, 2020.
[25] Gaopan Chen, Jianguo Li, Jiangyou Long, Haimei Luo, Yan Zhou, Xiaozhu Xie,and Guoshun Pan. Surface modulation to enhance chemical mechanical polishing performance of sliced silicon carbide si-face. Applied Surface Science, 536:147963, 2021.
[26] Shaochuan Feng, Ru Zhang, Chuanzhen Huang, Jun Wang, Zhixin Jia, and Jin Wang. An investigation of recast behavior in laser ablation of 4h-silicon carbide wafer. Materials Science in Semiconductor Processing, 105:104701, 2020.
[27] Jing Lu, Yaguang Wang, Qiufa Luo, and Xipeng Xu. Photocatalysis assisting the mechanical polishing of a single-crystal sic wafer utilizing an anatase tio2-coated diamond abrasive. Precision Engineering, 49:235–242, 2017.
[28] Guanglu Jia, Bing Li, and Jufan Zhang. Influence of sic surface defects on mate-rials removal in atmospheric pressure plasma polishing. Computational Materials Science, 146:26–35, 2018.
[29] Gaoling Ma, Shujuan Li, Xu Liu, Xincheng Yin, Zhen Jia, and Feilong Liu. Combi-nation of plasma electrolytic processing and mechanical polishing for single-crystal 4h-sic. Micromachines, 12(6):606, 2021.
[30] Zhaoyang Zhai, Chen Wei, Yanchao Zhang, Yahui Cui, and Quanren Zeng. Inves-tigations on the oxidation phenomenon of sic/sic fabricated by high repetition frequency femtosecond laser. Applied Surface Science, 502:144131, 2020.
[31] Qixian Zhang, Kangsen Li, Xiong Zhang, Rui Gao, Chi Fai Cheung, and Chunjin Wang. Effects of picosecond laser ablation and surface modification on the surface/1interface characteristics and removal performance of 4h-sic. Journal of Materials Science & Technology, 234:199–216, 2025.
[32] D Hu and R Kovacevic. Modelling and measuring the thermal behaviour of the molten pool in closed-loop controlled laser-based additive manufacturing. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(4):441–452, 2003.
[33] H Wessels, T Bode, Christian Weißenfels, P Wriggers, and TI3936183 Zohdi. Investigation of heat source modeling for selective laser melting. Computational Mechanics, 63:949–970, 2019.
[34] Tomasz Kik. Heat source models in numerical simulations of laser welding. Mate-rials, 13(11):2653, 2020.
[35] Amir Torabi and Farhad Kolahan. Optimizing pulsed nd: Yag laser beam welding process parameters to attain maximum ultimate tensile strength for thin aisi316l sheet using response surface methodology and simulated annealing algorithm. Optics & Laser Technology, 103:300–310, 2018.
[36] Sachinkumar, D Chakradhar, and S Narendranath. Analysis of the effect of friction stir welding parameters on characteristics of aa6061 composites using response surface methodology. Transactions of the Indian Institute of Metals, 74:1303–1319, 2021.
[37] Yanjun Guo, Xiaojing Yang, Jie Kang, Maozhong Li, Qiming Xie, Jianguo Xiao, and Wanqing Zhang. Experimental investigations on the laser-assisted machining of single crystal si for optimal machining. Optics & Laser Technology, 141:107113, 2021.
[38] Wen Zhao, Qianqian Cao, and Jun Hu. Response surface and corrosion behavior analysis of nanosecond laser patterned zk60a magnesium alloy. Optics & Laser Technology, 145:107501, 2022.
[39] S Agatonovic-Kustrin and Rosemary Beresford. Basic concepts of artificial neural network (ann) modeling and its application in pharmaceutical research. Journal of pharmaceutical and biomedical analysis, 22(5):717–727, 2000.
[40] Mohammad Hosein Rahimi, Mahdi Shayganmanesh, Rassoul Noorossana, and Farhad Pazhuheian. Modelling and optimization of laser engraving qualitative characteristics of al-sic composite using response surface methodology and artificial neural networks. Optics & Laser Technology, 112:65–76, 2019.
[41] Xinxin Li, Haipeng Wang, Bing Wang, and Yingchun Guan. Machine learning methods for prediction analyses of 4h–sic microfabrication via femtosecond laser processing. Journal of Materials Research and Technology, 18:2152–2165, 2022.
[42] Ahmet Durap. A comparative analysis of machine learning algorithms for predicting wave runup. Anthropocene Coasts, 6(1):17, 2023.
[43] Yifan Lu, Tianle Ye, and Jiali Zheng. Decision tree algorithm in machine learning. In 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), pages 1014–1017. IEEE, 2022.
[44] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.
[45] Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996.
[46] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pages 1189–1232, 2001.
[47] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794, 2016.
[48] KEYENCE. Solving the questions about profile and surface roughness measurements:introduction to roughness, March 28 2021.
[49] Ronaksinh Parmar. Characterization of fracture toughness in amorphous diamond like carbon thin films and coatings. The University of Texas at Arlington, 2015.
[50] Warren Carl Oliver and George Mathews Pharr. An improved technique for deter-mining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research, 7(6):1564–1583, 1992.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99214-
dc.description.abstract隨著電動車與5G通訊需求增加,傳統矽材料在高頻高壓環境下已顯不足。碳化矽(Silicon carbide, SiC)具備寬能隙、高導熱與優異的熱穩定性,是第三代半導體的關鍵材料之一。然而,因其具備高硬度特性而難以加工,進而導致製程成本上升。為改善此問題,本研究採用奈秒級紅外光光纖雷射進行表面預處理,透過熱誘導氧化反應於表面形成軟化層,以降低材料表面硬度並提升後續加工性。相較於飛秒或皮秒雷射,所採用之光纖雷射成本低廉、維護簡便,其設備成本約低100至1000倍,大幅提升產業應用之可行性。研究中以有限元素分析模擬雷射移動熱源之熱場變化,並建構機器學習模型預測不同參數對移除深度與粗糙度之影響。結果顯示當雷射速度為1000 mm/s、重疊率為44%時,表面硬度由40.17 GPa 降至0.77 GPa,提升52.25%研磨效率,有效提升加工效率並降低耗材消耗。zh_TW
dc.description.abstractWith the growing demand for electric vehicles and 5G communications, conventional silicon materials are increasingly inadequate under high-frequency and high-voltage conditions. Silicon carbide (SiC), with its wide bandgap, high thermal conductivity, and excellent thermal stability, is a pivotal third-generation semiconductor material. Nevertheless, its high hardness imposes substantial challenges on wafer-level fabrication.
The present study applies a nanosecond infrared fiber laser for surface pretreatment.Thermal oxidation is induced to form a softened surface layer, reducing hardness and improving subsequent machinability. Compared to femtosecond or picosecond lasers, fiber lasers offer significantly lower equipment and maintenance costs, approximately 100 to 1000 times cheaper, enhancing industrial feasibility. Finite element analysis was performed to simulate the transient thermal fields of the laser moving heat source, while machine learning models were developed to predict the influence of processing parameters on material removal depth and surface roughness.
When processed under optimized conditions, specifically at a scanning speed of 1000 mm/s and a 44% overlap, the surface hardness was reduced from 40.17 GPa to 0.77 GPa, improving grinding efficiency by 52.25%. The proposed method effectively enhances processing performance and reduces consumable wear, offering a promising solution for precision machining of hard materials.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:50:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:50:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目次 iv
圖次 vii
表次 x
第一章 緒論 1
1.1 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
第二章 文獻回顧 5
2.1 碳化矽物理特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 晶體結構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 半導體研磨製程技術 . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 傳統研磨拋光 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1.1 研磨、研光、拋光 . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 化學機械拋光 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2.1 單晶碳化矽在 CMP 中的去除機制 . . . . . . . . . . . . . . . 8
2.2.3 無磨料化學拋光技術 . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 電漿輔助拋光製程 . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 雷射輔助加工(Laser-assisted machining) . . . . . . . . . . . . . . 11
2.3.1 吸收率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 雷射輔助拋光與材料移除機制 . . . . . . . . . . . . . . . . . . . 12
2.3.3 雷射與材料交互作用機制 . . . . . . . . . . . . . . . . . . . . . . 14
2.4 各類製程於碳化矽拋光應用之效能比較 . . . . . . . . . . . . . . . . 16
2.5 有限元素法於雷射溫度場分析之應用 . . . . . . . . . . . . . . . . . 17
2.5.1 雷射熱源建置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 實驗設計方法 (Design of experiment, DOE) . . . . . . . . . . . . . . 17
2.6.1 類神經網路 (Artificial neural network, ANN) . . . . . . . . . . . . 18
2.6.1.1 RSM vs. ANN . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.2 機器學習演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.3 決策樹 (Decision tree) . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.3.1 隨機森林模型(Random forest) . . . . . . . . . . . . . . . . 21
2.6.3.2 梯度提升(Gradient boosting) . . . . . . . . . . . . . . . . . 21
2.6.3.3 極限梯度提升 (Extreme gradient boosting, XGBoost) . . . . . 22
2.6.4 機器學習性能評估指標 . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
第三章 研究方法 24
3.1 實驗流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 材料製備 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 實驗設備 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 實驗分析儀器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 雷射掃描共軛焦顯微鏡 . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 機械表面測試平台 . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.3 掃描電子顯微鏡 . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.4 能量散射 X 射線光譜 . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.5 晶圓減薄研磨系統 . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.6 X 射線光電子能譜儀 . . . . . . . . . . . . . . . . . . . . . . . . . 34
第四章 結果與討論 35
4.1 雷射參數調控 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.1 脈衝能量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 雷射掃描速度與掃描間距 . . . . . . . . . . . . . . . . . . . . . . 36
4.1.3 雷射加工次數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 溫度場分佈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 各機器學習模型之效能比較 . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 準確度分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 特徵重要性分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 材料表面特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 儀器驗證分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.1 X 射線光電子能譜分析 . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.2 奈米壓痕硬度分析 . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.3 磨輪損耗分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
第五章 結論與未來展望 55
5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
參考文獻 57
-
dc.language.isozh_TW-
dc.subject表面改質zh_TW
dc.subject光纖雷射zh_TW
dc.subject雷射輔助半導體製程zh_TW
dc.subject機器學習zh_TW
dc.subject碳化矽zh_TW
dc.subjectMachine learningen
dc.subjectSurface modificationen
dc.subjectLaser-assisted semiconductor processingen
dc.subjectFiber laseren
dc.subjectSilicon carbideen
dc.title光纖雷射輔助碳化矽晶圓加速研磨製程之表面改質研究zh_TW
dc.titleFiber Laser-assisted Accelerated Grinding Process for Silicon Carbide Wafers Surface Modificationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃振康;蔡劭璞;張天立;蔡曜陽zh_TW
dc.contributor.oralexamcommitteeChen-Kang Huang;Shao-Pu Tsai;Tien-Li Chang;Yao-Yang Tsaien
dc.subject.keyword碳化矽,光纖雷射,雷射輔助半導體製程,表面改質,機器學習,zh_TW
dc.subject.keywordSilicon carbide,Fiber laser,Laser-assisted semiconductor processing,Surface modification,Machine learning,en
dc.relation.page62-
dc.identifier.doi10.6342/NTU202501288-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-01-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2030-06-23-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
90.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved