請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99211完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林詩舜 | zh_TW |
| dc.contributor.advisor | Shih-Shun Lin | en |
| dc.contributor.author | 陳亮合 | zh_TW |
| dc.contributor.author | Liang-He Chen | en |
| dc.date.accessioned | 2025-08-21T16:49:37Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | Axtell, Michael J. 2013. 'Classification and Comparison of Small RNAs from Plants', Annual Review of Plant Biology, 64: 137-59.
Bajczyk, M., A. Jarmolowski, M. Jozwiak, A. Pacak, H. Pietrykowska, I. Sierocka, A. Swida-Barteczka, L. Szewc, and Z. Szweykowska-Kulinska. 2023. 'Recent Insights into Plant miRNA Biogenesis: Multiple Layers of miRNA Level Regulation', Plants (Basel), 12. Barre-Villeneuve, Clément, Michèle Laudié, Marie-Christine Carpentier, Lauriane Kuhn, Thierry Lagrange, and Jacinthe Azevedo-Favory. 2024. 'The unique dual targeting of AGO1 by two types of PRMT enzymes promotes phasiRNA loading in Arabidopsis thaliana', Nucleic Acids Research, 52: 2480-97. Baumberger, N., and D. C. Baulcombe. 2005. '<i>Arabidopsis</i> ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs', Proceedings of the National Academy of Sciences, 102: 11928-33. Baumberger, Nicolas, Ching-Hsui Tsai, Miranda Lie, Ericka Havecker, and David C Baulcombe. 2007. 'The Polerovirus Silencing Suppressor P0 Targets ARGONAUTE Proteins for Degradation', Current Biology, 17: 1609-14. Bohmert, Karen, Isabelle Camus, Catherine Bellini, David Bouchez, Michel Caboche, and Christoph Benning. 1998. '<i>AGO1</i> defines a novel locus of <i>Arabidopsis</i> controlling leaf development', The EMBO Journal, 17: 170- 80. Bologna, N. G., and O. Voinnet. 2014. 'The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis', Annu Rev Plant Biol, 65: 473-503. Branscheid, Anja, Antonin Marchais, Gregory Schott, Heike Lange, Dominique 30 Gagliardi, Stig Uggerhøj Andersen, Olivier Voinnet, and Peter Brodersen. 2015. 'SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis', Nucleic Acids Research, 43: 10975-88. Carbonell, Alberto, Noah Fahlgren, Hernan Garcia-Ruiz, Kerrigan B. Gilbert, Taiowa A. Montgomery, Tammy Nguyen, Josh T. Cuperus, and James C. Carrington. 2012. 'Functional Analysis of Three Arabidopsis ARGONAUTES Using Slicer- Defective Mutants ', The Plant Cell, 24: 3613-29. Chae, Jia, Seong Ju Han, Sivabalan Karthik, Hye Jeong Kim, Jee Hye Kim, Hee Rang Yun, Young-Soo Chung, Sibum Sung, and Jae Bok Heo. 2024. 'LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) partially inhibits the transcriptional activation of FT by MYB73 and regulates flowering in Arabidopsis', The Plant Journal, 120: 187-98. Chew, Abigail Zhi Ying. 2022. 'Investigation of post-transcriptional gene silencing pathway related genes in Arabidopsis thaliana'. dit Frey, Nicolas Frei, Philippe Muller, Fabien Jammes, Dimosthenis Kizis, Jeffrey Leung, Catherine Perrot-Rechenmann, and Michele Wolfe Bianchi. 2010. 'The RNA Binding Protein Tudor-SN Is Essential for Stress Tolerance and Stabilizes Levels of Stress-Responsive mRNAs Encoding Secreted Proteins in Arabidopsis ', The Plant Cell, 22: 1575-91. Dvořák Tomaštíková, Eva, Anders Hafrén, Minerva S Trejo-Arellano, Sheena Ricafranca Rasmussen, Hikaru Sato, Juan Santos-González, Claudia Köhler, Lars Hennig, and Daniel Hofius. 2021. 'Polycomb Repressive Complex 2 and KRYPTONITE regulate pathogen-induced programmed cell death in Arabidopsis', Plant Physiology, 185: 2003-21. Garcia-Ruiz, H., A. Carbonell, J. S. Hoyer, N. Fahlgren, K. B. Gilbert, A. Takeda, A. Giampetruzzi, M. T. Garcia Ruiz, M. G. McGinn, N. Lowery, M. T. Martinez Baladejo, and J. C. Carrington. 2015. 'Roles and programming of Arabidopsis ARGONAUTE proteins during Turnip mosaic virus infection', PLoS Pathog, 11: e1004755. Garcia-Ruiz, Hernan, Atsushi Takeda, Elisabeth J. Chapman, Christopher M. Sullivan, Noah Fahlgren, Katherine J. Brempelis, and James C. Carrington. 2010. 'Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic Virus Infection ', The Plant Cell, 22: 481-96. Gutierrez-Beltran, E., P. N. Moschou, A. P. Smertenko, and P. V. Bozhkov. 2015. 'Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis', Plant Cell, 27: 926-43. Hacquard, T., M. Clavel, P. Baldrich, E. Lechner, I. Pérez-Salamó, M. Schepetilnikov, B. Derrien, M. Dubois, P. Hammann, L. Kuhn, D. Brun, N. Bouteiller, N. Baumberger, H. Vaucheret, B. C. Meyers, and P. Genschik. 2022. 'The Arabidopsis F-box protein FBW2 targets AGO1 for degradation to prevent spurious loading of illegitimate small RNA', Cell Rep, 39: 110671. Hafren, A., S. Ustun, A. Hochmuth, S. Svenning, T. Johansen, and D. Hofius. 2018. 'Turnip Mosaic Virus Counteracts Selective Autophagy of the Viral Silencing Suppressor HCpro', Plant Physiol, 176: 649-62. Hong, Syuan-Fei, Ru-Ying Fang, Wei-Lun Wei, Supidcha Jirawitchalert, Zhao-Jun Pan, Yu-Ling Hung, Thanh Ha Pham, Yen-Hsin Chiu, Tang-Long Shen, Chien-Kang Huang, and Shih-Shun Lin. 2023. 'Development of an assay system for the analysis of host RISC activity in the presence of a potyvirus RNA silencing suppressor, HC-Pro', Virology Journal, 20: 10. Hong, Syuan-Fei, Wei-Lun Wei, Zhao-Jun Pan, Jia-Zhen Yu, Shiuan Cheng, Yu-Ling Hung, Veny Tjita, Hao-Ching Wang, Aino Komatsu, Ryuichi Nishihama, Takayuki Kohchi, Ho-Ming Chen, Wan-Chieh Chen, Jing-Chi Lo, Yen-Hsin Chiu, Ho-Chun Yang, Mei-Yeh Lu, Li-Yu Daisy Liu, and Shih-Shun Lin. 2024. 'Molecular Insights into MpAGO1 and Its Regulatory miRNA, miR11707, in the High-Temperature Acclimation of Marchantia polymorpha', Plant and Cell Physiology, 65: 1414-33. Hu, Po, Hongwei Zhao, Pei Zhu, Yongsheng Xiao, Weili Miao, Yinsheng Wang, and Hailing Jin. 2019. 'Dual regulation of Arabidopsis AGO2 by arginine methylation', Nature Communications, 10: 844. Hu, S. F., W. L. Wei, S. F. Hong, R. Y. Fang, H. Y. Wu, P. C. Lin, N. Sanobar, H. P. Wang, M. Sulistio, C. T. Wu, H. F. Lo, and S. S. Lin. 2020. 'Investigation of the effects of P1 on HC-pro-mediated gene silencing suppression through genetics and omics approaches', Bot Stud, 61: 22. Ilardi, V., and E. D. Nicola-Negri. 2011. 'Genetically engineered resistance to Plum pox virus infection in herbaceous and stone fruit hosts', GM Crops, 2: 24-33. Jiang, Danhua, Yuqi Wang, Yizhong Wang, and Yuehui He. 2008. 'Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb Repressive Complex 2 Components', PLOS ONE, 3: e3404. Kidner, Catherine A., and Robert A. Martienssen. 2005. 'The role of ARGONAUTE1 (AGO1) in meristem formation and identity', Developmental Biology, 280: 504- 17. Kirino, Y., N. Kim, M. de Planell-Saguer, E. Khandros, S. Chiorean, P. S. Klein, I. Rigoutsos, T. A. Jongens, and Z. Mourelatos. 2009. 'Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability', Nat Cell Biol, 11: 652-8. Kung, Y. J., P. C. Lin, S. D. Yeh, S. F. Hong, N. H. Chua, L. Y. Liu, C. P. Lin, Y. H. Huang, H. W. Wu, C. C. Chen, and S. S. Lin. 2014. 'Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection', Mol Plant Microbe Interact, 27: 944- 55. Li, Q., Y. Wang, Z. Sun, H. Li, and H. Liu. 2024. 'The Biosynthesis Process of Small RNA and Its Pivotal Roles in Plant Development', Int J Mol Sci, 25. Lin, P. C., C. W. Lu, B. N. Shen, G. Z. Lee, J. L. Bowman, M. A. Arteaga-Vazquez, L. Y. Liu, S. F. Hong, C. F. Lo, G. M. Su, T. Kohchi, K. Ishizaki, S. Zachgo, F. Althoff, M. Takenaka, K. T. Yamato, and S. S. Lin. 2016. 'Identification of miRNAs and Their Targets in the Liverwort Marchantia polymorpha by Integrating RNA-Seq and Degradome Analyses', Plant Cell Physiol, 57: 339-58. Manacorda, Carlos Augusto, Sabrina Tasselli, María Rosa Marano, and Sebastian Asurmendi. 2024. 'TuMV Infection Alters the Regulation of miR168/AGO1 and miR403/AGO2 Systems in Arabidopsis', Plant Molecular Biology Reporter. McLaughlin-Drubin, Margaret E., and Karl Munger. 2013. 'Biochemical and Functional Interactions of Human Papillomavirus Proteins with Polycomb Group Proteins', Viruses, 5: 1231-49. Meister, Gunter. 2013. 'Argonaute proteins: functional insights and emerging roles', Nature Reviews Genetics, 14: 447-59. Mozgova, I., and L. Hennig. 2015. 'The polycomb group protein regulatory network', Annu Rev Plant Biol, 66: 269-96. Mozgova, Iva, Claudia Köhler, and Lars Hennig. 2015. 'Keeping the gate closed: functions of the polycomb repressive complex PRC2 in development', The Plant Journal, 83: 121-32. Mylne, Joshua S., Lynne Barrett, Federico Tessadori, Stéphane Mesnage, Lianna Johnson, Yana V. Bernatavichute, Steven E. Jacobsen, Paul Fransz, and Caroline Dean. 2006. 'LHP1, the <i>Arabidopsis</i> homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of <i>FLC</i>', Proceedings of the National Academy of Sciences, 103: 5012-17. Nishida, K. M., T. N. Okada, T. Kawamura, T. Mituyama, Y. Kawamura, S. Inagaki, H. Huang, D. Chen, T. Kodama, H. Siomi, and M. C. Siomi. 2009. 'Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines', Embo j, 28: 3820-31. Pan, Z.J., W.L. Wei, P.A. Tran, R.Y. Fang, T.H. Pham, J.L. Bowman, C.T. Chung, B.N. Shen, J.T. Yang, H.H. Chang, W.N. Jane, C.H. Cheng, C.C. Wang, H.Y. Wu, S.F. Hong, Q.W. Shang, S.F. Hu, P.C. Lin, F.H. Wu, C.S. Lin, Y.L. Hung, T.L. Shen, and S.S. Lin. 2025. "HC-Pro inhibits HEN1 methyltransferase activity, leading to autophagic degradation of AGO1. Nature Communications " In Nature Communications. Pertermann, Robert, Selvaraj Tamilarasan, Torsten Gursinsky, Giorgio Gambino, Jana Schuck, Claus Weinholdt, Hauke Lilie, Ivo Grosse, Peter Golbik Ralph, Vitantonio Pantaleo, and Sven-Erik Behrens. 2018. 'A Viral Suppressor Modulates the Plant Immune Response Early in Infection by Regulating MicroRNA Activity', mBio, 9: 10.1128/mbio.00419-18. Ramirez-Prado, Juan Sebastian, David Latrasse, Natalia Yaneth Rodriguez-Granados, Ying Huang, Deborah Manza-Mianza, Rim Brik-Chaouche, Maelle Jaouannet, Sylvie Citerne, Abdelhafid Bendahmane, Heribert Hirt, Cecile Raynaud, and Moussa Benhamed. 2019. 'The Polycomb protein LHP1 regulates Arabidopsis thaliana stress responses through the repression of the MYC2-dependent branch of immunity', The Plant Journal, 100: 1118-31. Ré, D. A., D. A. Cambiagno, A. L. Arce, A. H. Tomassi, M. Giustozzi, P. Casati, F. D. Ariel, and P. A. Manavella. 2020. 'CURLY LEAF Regulates MicroRNA Activity by Controlling ARGONAUTE 1 Degradation in Plants', Mol Plant, 13: 72-87. Sanan-Mishra, Neeti, A. Abdul Kader Jailani, Bikash Mandal, and Sunil K. Mukherjee. 2021. 'Secondary siRNAs in Plants: Biosynthesis, Various Functions, and Applications in Virology', Frontiers in Plant Science, 12. Sanobar, N., P. C. Lin, Z. J. Pan, R. Y. Fang, V. Tjita, F. F. Chen, H. C. Wang, H. L. Tsai, S. H. Wu, T. L. Shen, Y. H. Chen, and S. S. Lin. 2021. 'Investigating the Viral Suppressor HC-Pro Inhibiting Small RNA Methylation through Functional Comparison of HEN1 in Angiosperm and Bryophyte', Viruses, 13. Séré, David, Océane Cassan, Fanny Bellegarde, Cécile Fizames, Jossia Boucherez, Geoffrey Schivre, Jacinthe Azevedo, Thierry Lagrange, Alain Gojon, and Antoine Martin. 2022. 'Loss of Polycomb proteins CLF and LHP1 leads to excessive RNA degradation in Arabidopsis', Journal of Experimental Botany, 73: 5400-13. Shu, J., C. Chen, S. E. Kohalmi, and Y. Cui. 2020. 'Evidence that AGL17 is a significant downstream target of CLF in floral transition control', Plant Signal Behav, 15: 1766851. Singkaravanit-Ogawa, Suthitar, Ayumi Kosaka, Saeko Kitakura, Kotaro Uchida, Takumi Nishiuchi, Erika Ono, Satoshi Fukunaga, and Yoshitaka Takano. 2021. 'Arabidopsis CURLY LEAF functions in leaf immunity against fungal pathogens by concomitantly repressing SEPALLATA3 and activating ORA59', The Plant Journal, 108: 1005-19. Vaucheret, H., A. C. Mallory, and D. P. Bartel. 2006. 'AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1', Mol Cell, 22: 129-36. Vaucheret, H., F. Vazquez, P. Crété, and D. P. Bartel. 2004. 'The action of<i>ARGONAUTE1</i> in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development', Genes & Development, 18: 1187-97. Vaucheret, Hervé. 2008. 'Plant ARGONAUTES', Trends in Plant Science, 13: 350-58. Veluchamy, Alaguraj, Teddy Jégu, Federico Ariel, David Latrasse, Kiruthiga Gayathri Mariappan, Soon-Kap Kim, Martin Crespi, Heribert Hirt, Catherine Bergounioux, Cécile Raynaud, and Moussa Benhamed. 2016. 'LHP1 Regulates H3K27me3 Spreading and Shapes the Three-Dimensional Conformation of the Arabidopsis Genome', PLOS ONE, 11: e0158936. Wang, Q., and W. H. Shen. 2018. 'Chromatin modulation and gene regulation in plants: insight about PRC1 function', Biochem Soc Trans, 46: 957-66. Wang, Xian-Bing, Juan Jovel, Petchthai Udomporn, Ying Wang, Qingfa Wu, Wan- Xiang Li, Virginie Gasciolli, Herve Vaucheret, and Shou-Wei Ding. 2011. 'The 21-Nucleotide, but Not 22-Nucleotide, Viral Secondary Small Interfering RNAs Direct Potent Antiviral Defense by Two Cooperative Argonautes in Arabidopsis thaliana ', The Plant Cell, 23: 1625-38. Yong, Qian Yuan. 2023. 'The investigation for miRNA machinery in bryophyte and angiosperm through CRISPR gene editing and in vitro RISC assay'. Zhang, C., Z. Wu, Y. Li, and J. Wu. 2015. 'Biogenesis, Function, and Applications of Virus-Derived Small RNAs in Plants', Front Microbiol, 6: 1237. Zhang, H., C. Ransom, P. Ludwig, and S. van Nocker. 2003. 'Genetic analysis of early flowering mutants in Arabidopsis defines a class of pleiotropic developmental regulator required for expression of the flowering-time switch flowering locus C', Genetics, 164: 347-58. Zhang, Zhonghui, Xiuying Liu, Xinwei Guo, Xiu-Jie Wang, and Xiuren Zhang. 2016. 'Arabidopsis AGO3 predominantly recruits 24-nt small RNAs to regulate epigenetic silencing', Nature Plants, 2: 16049. Zhou, Yue, Francisco J. Romero-Campero, Ángeles Gómez-Zambrano, Franziska Turck, and Myriam Calonje. 2017. 'H2A monoubiquitination in Arabidopsis thaliana is generally independent of LHP1 and PRC2 activity', Genome Biology, 18: 69. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99211 | - |
| dc.description.abstract | RNA 靜默 (RNA silencing) 在調控植物基因表達中扮演關鍵角色,並作為對抗病毒感染的重要防禦機制。然而,許多病毒已演化出病毒 RNA靜默抑制子 (viral suppressor of RNA silencing) 來對抗 RNA 靜默。值得注意的是,蕪菁嵌紋病毒之編碼P1蛋白不僅能增強病毒抑制子 HC-Pro 的 RNA silencing 抑制能力,還能與植物的內源性蛋白質(如VIP3和TSN1/2)相互作用。然而,P1蛋白為何需要與這些內源性蛋白質相互作用的機制仍不清楚。此外,AGO2及多梳群蛋白(PcG proteins,如CLF和LHP1)也被認為可能參與RNA沉默途徑。這些發現引發了關於這些蛋白質如何影響RNA沉默並在抗病毒防禦機制中發揮作用的問題。本研究通過分析AGO1蛋白水平、miRNA靶向基因表達及降解組定序,探討了 VIP3、TSN1/2、AGO2、CLF和LHP1 在阿拉伯芥 (Arabidopsis thaliana) 中的抗病毒防禦及 RNA silencing 中的角色。我們發現 VIP3、TSN1/2 和 AGO2 是 AGO1 介導的切割活性的新型負調控因子,並將其定義為 RNA 靜默相關元件。相比之下,CLF 和 LHP1 可能不直接參與RNA沉默,但可能調控 PcG 靶向基因的 mRNA 降解。值得注意的是,tsn1/tsn2 和 vip3 突變株對 TuMV 感染表現出更高的抗性,其中 vip3 突變體對病毒累積的抑制效果最為顯著。因此,我們的結果表明,VIP3 和 TSN 作為 AGO1 活性的抑制子,而 P1 蛋白可能通過穩定 VIP3 或 TSN 來抑制病毒 RNA 的切割,從而促進 TuMV 感染。這些發現增進了我們對病毒如何利用宿主細胞機制來促進自身感染的理解。 | zh_TW |
| dc.description.abstract | RNA silencing plays crucial role in regulating plant gene expression and serves as an important defense mechanism against viral infections. However, many viruses have developed viral suppressors of RNA silencing (VSRs) to counteract RNA silencing. Notably, the potyvirus-encoded suppressor P1 enhances RNA silencing suppression of HC-Pro and interacts with plant endogenous proteins such as Vernalization Independence 3 (VIP3) and TUDOR-SN ribonucleases 1 and 2 (TSN1/2). However, the reason why the P1 protein needs to interact with those endogenous proteins remains unknown. AGO2 and Polycomb group (PcG) proteins, including Curly Leaf (CLF) and Like Heterochromatin Protein 1 (LHP1), have also been implicated in the RNA silencing pathway. These findings raise intriguing questions about how those proteins influence RNA silencing and play a role in viral defense mechanisms. Here, we investigate the roles of VIP3, TSN1/2, AGO2, CLF, and LHP1 in antiviral defense and RNA silencing in Arabidopsis thaliana by analyzing AGO1 protein levels, miRNA-ㄒ targeted gene expression, and degradome sequencing. We identified VIP3, TSN1/2, and AGO2 as novel negative regulators of AGO1-mediated cleavage activity and identified them as RNA silencing-related components. In contrast, CLF and LHP1 may not directly participate in RNA silencing but could regulate mRNA degradation of PcG- targeted genes. Strikingly, tsn1/tsn2ge and vip3ge mutants exhibited enhanced resistance to TuMV infection, with vip3ge mutants showing the strongest suppression of viral accumulation. Thus, our results demonstrate that VIP3 and TSN suppress AGO1 activity, suggesting that the P1 protein may stabilize VIP3 or TSN to inhibit the cleavage of viral RNA, thereby promoting TuMV infection. These insights enhance our understanding of how viruses exploit host cellular mechanisms to promote their own infection. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:49:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:49:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 II
Acknowledgement III 中文摘要 IV Abstract V Abbreviation Table VII Table of Contents VIII List of tables IX List of figures X Introduction 1 Materials and Methods 4 Plant materials and growth conditions 4 Genotyping 5 Western blot analysis 5 Quantitative real-time PCR 6 Virus inoculation and enzyme-linked immunosorbent assay (ELISA) 6 Degradome library construction and sequencing 7 sRNA library construction and sequencing 8 Results 9 Genotyping and phenotype observation for clfge mutants 9 Genotyping and phenotype observation for lhp1ge mutants 10 Genotyping and phenotype observation for ago2ge mutants 11 Genotyping and phenotype observation on tsn1/tsn2ge mutants 11 Genotyping and phenotype observation for vip3ge mutants 12 Expression levels of AGO1 and AGO2 proteins in different mutant lines 13 Analyzing the expression of miRNA-targeted genes in the PcG proteins and ago2ge mutants by qRT-PCR 14 Analyzing the expression of miRNA-targeted genes in the tsn1/tsn2ge and vip3ge mutants by qRT-PCR 16 Analysis of RISC 3'-cleavage fragments in miRNA-targeted mRNAs by degradome sequencing 16 Loss of polycomb group proteins CLF and LHP1 leads to the accumulation of small RNA and a smaller isoform of AGO1 and AGO2 18 Different mutants display varying resistance to TuMV infection 20 The P1 protein may stabilize the VIP3 protein 21 Discussion 22 RNA silencing-related component mutants exhibit various phenotypes 22 Relationship between PcG proteins, RNA silencing, and virus defense 24 Novel findings on AGO1 and AGO2 interaction and AGO2 specific role on anti-virus infection 25 The roles of P1-interacting proteins TSN and VIP3 in modulating RNA silencing pathways and their requirement for TuMV infection 26 Abnormal accumulation of AGO isoforms in clfge/lhp1ge mutants 27 Conclusion 28 Reference 30 Tables and figures 39 Supplementary data 70 | - |
| dc.language.iso | en | - |
| dc.subject | RNA 靜默 (RNA silencing) | zh_TW |
| dc.subject | RNA 靜默抑制子 (VSRs) | zh_TW |
| dc.subject | AGO1 介導的切割 | zh_TW |
| dc.subject | TuMV 感染 | zh_TW |
| dc.subject | 阿拉伯芥 (Arabidopsis thaliana) | zh_TW |
| dc.subject | 宿主-病原體相互作用 | zh_TW |
| dc.subject | Host-pathogen interaction | en |
| dc.subject | TuMV infection | en |
| dc.subject | Arabidopsis thaliana | en |
| dc.subject | RNA silencing | en |
| dc.subject | Viral suppressors of RNA silencing (VSRs) | en |
| dc.subject | AGO1- mediated cleavage | en |
| dc.title | VIP3、TSN1/2、AGO2、CLF 和 LHP1 在阿拉伯芥 中病毒防禦與 RNA 靜默的潛在角色之研究 | zh_TW |
| dc.title | Investigating potential roles of VIP3, TSN1/2, AGO2, CLF, and LHP1 for viral defense and RNA silencing in Arabidopsis thaliana | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳素幸;陳荷明;邱子珍;桑提亞哥・法蘭西斯科・埃萊納 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Hsing Wu;Ho-Ming Chen;Tzyy-Jen Chiou ;Santiago Francisco Elena | en |
| dc.subject.keyword | RNA 靜默 (RNA silencing),RNA 靜默抑制子 (VSRs),AGO1 介導的切割,TuMV 感染,阿拉伯芥 (Arabidopsis thaliana),宿主-病原體相互作用, | zh_TW |
| dc.subject.keyword | RNA silencing,Viral suppressors of RNA silencing (VSRs),AGO1- mediated cleavage,TuMV infection,Arabidopsis thaliana,Host-pathogen interaction, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202502888 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物科技研究所 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 13.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
