Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 文學院
  3. 圖書資訊學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99189
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor唐牧群zh_TW
dc.contributor.advisorMun-Chyun Tangen
dc.contributor.author蔡湯慧zh_TW
dc.contributor.authorTang-Hui Tsaien
dc.date.accessioned2025-08-21T16:44:16Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation朱思齊. (2016). Goldberg's大五因素特質量表國際人格題庫50題範本之繁體中文版發展 (碩士論文, 國立東華大學). 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/sgrc52
Adamopoulos, P., & Tuzhilin, A. (2014). On unexpectedness in recommender systems: Or how to better expect the unexpected. ACM Transactions on Intelligent Systems and Technology (TIST), 5(4), 1-32.
Anderson, A., Maystre, L., Anderson, I., Mehrotra, R., & Lalmas, M. (2020). Algorithmic effects on the diversity of consumption on Spotify. In Proceedings of the web conference (pp. 2155-2165).
Ariely, D., & Zauberman, G. (2000). On the making of an experience: The effects of breaking and combining experiences on their overall evaluation. Journal of Behavioral Decision Making, 13(2), 219-232.
Alves, G., Jannach, D., de Souza, R. F., Damian, D., & Manzato, M. G. (2024). Digitally nudging users to explore off-profile recommendations: here be dragons. User Modeling and User-Adapted Interaction, 34(2), 441-481.
Bainbridge, D., Cunningham, S. J., & Downie, J. S. (2003). How people describe their music information needs: A grounded theory analysis of music queries.
Barkan, O., Shaked, T., Fuchs, Y., & Koenigstein, N. (2024). Modeling users’ heterogeneous taste with diversified attentive user profiles. User Modeling and User-Adapted Interaction, 34(2), 375-405.
Bevec, M., Tkalčič, M., & Pesek, M. (2024). Hybrid music recommendation with graph neural networks. User Modeling and User-Adapted Interaction, 1-38.
Bolduc, H., & Kinnally, W. (2018). Examining the impact of social identification with music on music streaming behavior. Journal of Radio & Audio Media, 25(1), 42-61.
Bouraga, S., Jureta, I., Faulkner, S., & Herssens, C. (2014). Knowledge-based recommendation systems: A survey. International Journal of Intelligent Information Technologies (IJIIT), 10(2), 1-19.
Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of Library and Information Systems, 69(Supplement 32), 175-186.
Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-adapted Interaction, 12, 331-370.
Chen, Y. S., Cheng, C. H., Chen, D. R., & Lai, C. H. (2016). A mood‐and situation‐based model for developing intuitive pop music recommendation systems. Expert Systems, 33(1), 77-91.
Ciocca, S. (2017). Spotify’s Discover Weekly: How machine learning finds your new music. Hackernoon. URL: https://hackernoon. com/spotifys-discover-weekly-how-machine-learning-finds-yournew-music-19a41ab76efe.
Costa, P. T., & McCrae, R. R. (1999). A five-factor theory of personality. Handbook of personality: Theory and research, 2(01), 1999.
DeNora, T. (2000). Music in everyday life. Cambridge University Press.
Di Noia, T., Ostuni, V. C., Rosati, J., Tomeo, P., & Di Sciascio, E. (2014, October). An analysis of users' propensity toward diversity in recommendations. In Proceedings of the 8th ACM Conference on Recommender Systems (pp. 285-288).
Djupvik, A., Kollstrøm, E. O., Saur, E. E., Skaugvoll, S., Conrad, O. T., & Dahling, C. (2018). Exploring change in music discovery habits through music recommendation algorithms.
Dollinger, S. J. (1993). Research note: Personality and music preference: Extraversion and excitement seeking or openness to experience?. Psychology of music, 21(1), 73-77.
Ferwerda, B., Graus, M. P., Vall, A., Tkalcic, M., & Schedl, M. (2016). The influence of users’ personality traits on satisfaction and attractiveness of diversified recommendation lists. In 4th Workshop on Emotions and Personality in Personalized Systems (EMPIRE 2016), Boston, MA, USA, September 16th, 2016 (pp. 43-47).
Ferwerda, B., Graus, M. P., Vall, A., Tkalcic, M., & Schedl, M. (2017, April). How item discovery enabled by diversity leads to increased recommendation list attractiveness. In Proceedings of the Symposium on Applied Computing (pp. 1693-1696).
Ferwerda, B., Yang, E., Schedl, M., & Tkalcic, M. (2019). Personality and taxonomy preferences, and the influence of category choice on the user experience for music streaming services. Multimedia tools and Applications, 78, 20157-20190.
Fredrickson, B. L., & Kahneman, D. (1993). Duration neglect in retrospective evaluations of affective episodes. Journal of Personality and Social Psychology, 65(1), 45.
Frith, S. (1996). Music and identity. Questions of cultural identity, 1(1), 108-128.
Ekstrand, M. D., & Willemsen, M. C. (2016, September). Behaviorism is not enough: better recommendations through listening to users. In Proceedings of the 10th ACM conference on recommender systems (pp. 221-224).
Eskandanian, F., Mobasher, B., & Burke, R. (2017, July). A clustering approach for personalizing diversity in collaborative recommender systems. In Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization (pp. 280-284).
Garbinsky, E. N., Morewedge, C. K., & Shiv, B. (2014). Interference of the end: Why recency bias in memory determines when a food is consumed again. Psychological Science, 25(7), 1466-1474.
Garcia-Gathright, J., St. Thomas, B., Hosey, C., Nazari, Z., & Diaz, F. (2018, June). Understanding and evaluating user satisfaction with music discovery. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (pp. 55-64).
Ge, M., Delgado-Battenfeld, C., & Jannach, D. (2010, September). Beyond accuracy: evaluating recommender systems by coverage and serendipity. In Proceedings of the Fourth ACM Conference on Recommender Systems (pp. 257-260).
Goldberg, L. R. (1999). A broad-bandwidth, public domain, personality inventory measuring the lower-level facets of several five-factor models. Personality psychology in Europe, 7(1), 7-28.
Gow, A. J., Whiteman, M. C., Pattie, A., & Deary, I. J. (2005). Goldberg’s ‘IPIP’Big-Five factor markers: Internal consistency and concurrent validation in Scotland. Personality and Individual Differences, 39(2), 317-329.
Greenberg, D. M., Rentfrow, P. J., & Baron-Cohen, S. (2015). Can music increase empathy?Interpreting musical experience through the empathizing-systemizing (ES) theory:Implications for Autism. Empirical Musicology Review, 10(1-2),80-95.
Hadash, S., Liang, Y., & Willemsen, M. C. (2019). How playlist evaluation compares to track evaluations in music recommender systems. In Proceedings of the 6th JointWorkshop on Interfaces and Human Decision Making for Recommender Systems(pp. 1-9).
Havitz, M. E., & Dimanche, F. (1997). Leisure involvement revisited: Conceptual conundrums and measurement advances. Journal of leisure research, 29(3), 245-278.
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5-53.
Hu, R., & Pu, P. (2009, February). A comparative user study on rating vs. personality quiz based preference elicitation methods. In Proceedings of the 14th International Conference on Intelligent User Interfaces (pp. 367-372).
Hu, R., & Pu, P. (2011, October). Enhancing collaborative filtering systems with personality information. In Proceedings of the Fifth ACM Conference on Recommender Systems (pp. 197-204).
Isufi, E., Pocchiari, M., & Hanjalic, A. (2021). Accuracy-diversity trade-off in recommender systems via graph convolutions. Information Processing & Management, 58(2), 102459.
Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems: an introduction. Cambridge University Press.
Jannach, D., Lerche, L., & Kamehkhosh, I. (2015, September). Beyond" hitting the hits" Generating coherent music playlist continuations with the right tracks. In Proceedings of the 9th ACM Conference on Recommender Systems (pp. 187-194).
John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative big five trait taxonomy. Handbook of personality: Theory and research, 3(2), 114-158.
Kaminskas, M., & Bridge, D. (2016). Diversity, serendipity, novelty, and coverage: a survey and empirical analysis of beyond-accuracy objectives in recommender systems. ACM Transactions on Interactive Intelligent Systems (TiiS), 7(1), 1-42.
Kang, E. B. (2023). On streaming-dating convergence: Music-mediated self-presentations on Tinder. New Media & Society, 25(8), 2057-2072.
Karumur, R. P., Nguyen, T. T., & Konstan, J. A. (2018). Personality, user preferences and behavior in recommender systems. Information Systems Frontiers, 20, 1241-1265.
Knees, P., Schedl, M., Ferwerda, B., & Laplante, A. (2019). User awareness in music recommender systems. Personalized human-computer interaction, 223-252.
Konstan, J. A., & Riedl, J. (2012). Recommender systems: from algorithms to user experience. User Modeling and User-adapted Interaction, 22, 101-123.
Kotkov, D., Wang, S., & Veijalainen, J. (2016). A survey of serendipity in recommender systems. Knowledge-Based Systems, 111, 180-192.
Kapoor, K., Subbian, K., Srivastava, J., & Schrater, P. (2015, February). Just in time recommendations: Modeling the dynamics of boredom in activity streams. In Proceedings of the eighth ACM international conference on web search and data mining (pp. 233-242).
Kyle, G., Absher, J., Norman, W., Hammitt, W., & Jodice, L. (2007). A modified involvement scale. Leisure studies, 26(4), 399-427.
Lam, X. N., Vu, T., Le, T. D., & Duong, A. D. (2008, January). Addressing cold-start problem in recommendation systems. In Proceedings of the 2nd international conference on Ubiquitous information management and communication (pp. 208-211).
Lamont, A., & Eerola, T. (2011). Music and emotion: Themes and development. Musicae Scientiae, 15(2), 139-145.
Laplante, A. (2014). Improving music recommender systems: What can we learn from research on music tastes?. In ISMIR (pp. 451-456).
Li, P., & Tuzhilin, A. (2024). When variety seeking meets unexpectedness: Incorporating variety-seeking behaviors into design of unexpected recommender systems. Information Systems Research, 35(3), 1257-1273.
Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender systems. Expert Systems with Applications, 41(4), 2065-2073.
Lonsdale, A. J., & North, A. C. (2011). Why do we listen to music? A uses and gratifications analysis. British journal of psychology, 102(1), 108-134.
Lops, P., De Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. Recommender Systems Handbook, 73-105.
Manolovitz, B., & Ogihara, M. (2020). Practical Evaluation of Repeated Recommendations in Personalized Music Discovery. In ISMIR (pp. 633-639).
Martijn, M., Conati, C., & Verbert, K. (2022). “Knowing me, knowing you”: personalized explanations for a music recommender system. User Modeling and User-Adapted Interaction, 32(1), 215-252.
Matt, C., Benlian, A., Hess, T., & Weiß, C. (2014). Escaping from the filter bubble? The effects of novelty and serendipity on users’ evaluations of online recommendations.
McCrae, R. R., & John, O. P. (1992). An introduction to the five‐factor model and its applications. Journal of personality, 60(2), 175-215.
Nave, G., Minxha, J., Greenberg, D. M., Kosinski, M., Stillwell, D., & Rentfrow, J. (2018). Musical preferences predict personality: evidence from active listening and facebook likes. Psychological science, 29(7), 1145-1158.
Nguyen, T. T., Hui, P. M., Harper, F. M., Terveen, L., & Konstan, J. A. (2014, April). Exploring the filter bubble: the effect of using recommender systems on content diversity. In Proceedings of the 23rd international conference on World wide web (pp. 677-686).
Nguyen, T. T., Maxwell Harper, F., Terveen, L., & Konstan, J. A. (2018). User personality and user satisfaction with recommender systems. Information systems frontiers, 20, 1173-1189.
North, A. C., & Hargreaves, D. J. (1999). Music and adolescent identity. Music education research, 1(1), 75-92.
North, A. C., & Hargreaves, D. J. (2008). The social and applied psychology of music: Oxford University Press.
Oh, J., Park, S., Yu, H., Song, M., & Park, S. T. (2011, December). Novel recommendation based on personal popularity tendency. In 2011 IEEE 11th international conference on data mining (pp. 507-516). IEEE.
Pereira, C. S., Teixeira, J., Figueiredo, P., Xavier, J., Castro, S. L., & Brattico, E. (2011). Music and emotions in the brain: familiarity matters. PloS one, 6(11), e27241.
Raff, A., Mladenow, A., & Strauss, C. (2020, November). Music Discovery as Differentiation Strategy for Streaming Providers. In Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services (pp. 476-480).
Rawlings, D., & Ciancarelli, V. (1997). Music preference and the five-factor model of the NEO Personality Inventory. Psychology of Music, 25(2), 120-132.
Razghandi, M., & Golpaygani, S. A. H. (2017, November). A context-aware and user behavior-based recommender system with regarding social network analysis. In 2017 IEEE 14th International Conference on e-Busin Bolduc ess Engineering (ICEBE) (pp. 208-213). IEEE.
Rentfrow, P. J., & Gosling, S. D. (2003). The do re mi's of everyday life: the structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 84(6), 1236.
Rentfrow, P. J., & Gosling, S. D. (2006). Message in a ballad: The role of music preferences in interpersonal perception. Psychological science, 17(3), 236-242.
Rentfrow, P. J., Goldberg, L. R., Stillwell, D. J., Kosinski, M., Gosling, S. D., & Levitin, D. J. (2012). The song remains the same: A replication and extension of the MUSIC model. Music perception, 30(2), 161-185.
Roberts, B. W., Kuncel, N. R., Shiner, R., Caspi, A., & Goldberg, L. R. (2007). The power of personality: The comparative validity of personality traits, socioeconomic status, and cognitive ability for predicting important life outcomes. Perspectives on Psychological science, 2(4), 313-345.
Rooij, P. D. (2015). Understanding cultural activity involvement of loyalty segments in the performing arts. International Journal of Culture, Tourism and Hospitality Research, 9(2), 103-116.
Rozhevskii, D., Zhu, J., & Zhao, B. (2022). Psychologically-Inspired Music Recommendation System. arXiv preprint arXiv:2205.03459.
Schäfer, T., & Sedlmeier, P. (2010). What makes us like music? Determinants of music preference. Psychology of Aesthetics, Creativity, and the Arts, 4(4), 223.
Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. Recommender Systems Handbook, 257-297.
Schedl, M., Hauger, D., Farrahi, K., & Tkalčič, M. (2015). On the influence of user characteristics on music recommendation algorithms. In Advances in Information Retrieval: 37th European Conference on IR Research, ECIR 2015, Vienna, Austria, March 29-April 2, 2015. Proceedings 37 (pp. 339-345). Springer International Publishing.
Schedl, M., Zamani, H., Chen, C. W., Deldjoo, Y., & Elahi, M. (2018). Current challenges and visions in music recommender systems research. International Journal of Multimedia Information Retrieval, 7, 95-116.
Silber, J. (2019). Music Recommendation Algorithms: Discovering Weekly or Discovering Weakly?.
Simonson, I. (2005). Determinants of customers’ responses to customized offers: Conceptual framework and research propositions. Journal of marketing, 69(1), 32-45.
Tang, M. C., & Jhang, P. S. (2020). Music discovery and revisiting behaviors of individuals with different preference characteristics: An experience sampling approach. Journal of the Association for Information Science and Technology, 71(5), 540-552.
Tang, M. C., & Liao, I. H. (2022). Preference diversity and openness to novelty: Scales construction from the perspective of movie recommendation. Journal of the Association for Information Science and Technology, 73(9), 1222-1235.
Tang, M. C., Sie, Y. J., & Ting, P. H. (2014). Evaluating books finding tools on social media: A case study of aNobii. Information Processing & Management, 50(1), 54-68.
Taramigkou, M., Bothos, E., Christidis, K., Apostolou, D., & Mentzas, G. (2013, October). Escape the bubble: Guided exploration of music preferences for serendipity and novelty. In Proceedings of the 7th ACM conference on Recommender systems (pp. 335-338).
Tkalčič, M., & Chen, L. (2015). Personality and recommender systems. Recommender Systems Handbook, 54, 715-739.
Two Story Melody. (2022, October 2). WHAT IS THE SPOTIFY POPULARITY INDEX?. Retrieved from https://twostorymelody.com/spotify-popularity-index/.
Vargas, S., & Castells, P. (2011, October). Rank and relevance in novelty and diversity metrics for recommender systems. In Proceedings of the Fifth ACM Conference on Recommender Systems (pp. 109-116).
Vargas, S., & Castells, P. (2013, May). Exploiting the diversity of user preferences for recommendation. In Proceedings of the 10th conference on open research areas in information retrieval (pp. 129-136).
Ward, M. K., Goodman, J. K., & Irwin, J. R. (2014). The same old song: The power of familiarity in music choice. Marketing Letters, 25, 1-11.
Willemsen, M.C., Graus, M. P., & Knijnenburg, B.P. (2016). Understanding the role of latent feature diversification on choice difficulty and satisfaction. User Modelling and User-Adapted Interaction, 26(4), 347–389. https://doi.org/10.1007/s11257-016-9178-6
Wu, W., Chen, L., & He, L. (2013, May). Using personality to adjust diversity in recommender systems. In Proceedings of the 24th ACM Conference on Hypertext and Social Media (pp. 225-229).
Yang, Y. H., & Chen, H. H. (2012). Machine recognition of music emotion: A review. ACM Transactions on Intelligent Systems and Technology (TIST), 3(3), 1-30.
Zaichkowsky, J. L. (1994). The personal involvement inventory: Reduction, revision, and application to advertising. Journal of Advertising, 23(4), 59-70.
Zhang, M., & Hurley, N. (2009). Statistical modeling of diversity in top-n recommender systems. In 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (pp. 490-497).
Zhang, Y. C., Séaghdha, D. Ó., Quercia, D., & Jambor, T. (2012, February). Auralist: introducing serendipity into music recommendation. In Proceedings of the fifth ACM international conference on Web search and data mining (pp. 13-22).
Zhou, T., Kuscsik, Z., Liu, J. G., Medo, M., Wakeling, J. R., & Zhang, Y. C. (2010). Solving the apparent diversity-accuracy dilemma of recommender systems. Proceedings of the National Academy of Sciences, 107(10), 4511-4515.
Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005, May). Improving recommendation lists through topic diversification. In Proceedings of the 14th International Conference on World Wide Web (pp. 22-32).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99189-
dc.description.abstract本研究旨在探討Spotify用戶在面對兩種音樂發掘工具(「標籤搜尋」與「每週新發現」)時,其心理偏好屬性對推薦系統效能的影響。研究以音樂涉入程度、音樂自我認同、偏好多樣性與偏好開放性四個心理構面為核心變項,輔以五大人格特質作為補充分析,採用實驗法搭配Spotify API真實聆聽資料與問卷調查,針對144位Spotify用戶進行配對樣本設計。使用者在兩種推薦情境下分別聆聽播放清單並進行評分,研究結合信度分析、因素分析、t檢定、逐步迴歸、線性混合模型與結構方程模型進行統計分析。
結果顯示:「每週新發現」在新穎性、多樣性與驚喜性上明顯優於「標籤搜尋」,但熟悉性與平均歌曲喜好評分則相對較低,兩者在整體滿意度上無顯著差異。熟悉性與播放清單多樣性為滿意度的重要預測因子,而非新穎性。此外,「音樂自我認同」與「每週新發現」具顯著交互作用,顯示音樂在自我建構中扮演關鍵角色之使用者,更能從探索性推薦中獲得正向體驗。而五大人格特質雖具心理解釋力,但在推薦評價上預測力相對較弱。
本研究強調心理屬性在音樂推薦中的調節角色,支持「探索與準確的權衡」理論,並提出「邊界探索」(boundary exploration)概念,作為推薦系統個人化設計的潛在方向。研究亦指出目前推薦演算法之黑箱特性與實驗場域侷限,建議未來可擴大樣本範圍,並進行自然使用情境下之追蹤研究,以提升推薦系統的精準性與使用者接受度。
zh_TW
dc.description.abstractThis study investigates how Spotify users’ psychological preference traits influence their evaluation of two music discovery tools: a seed-based search (representing accuracy-driven recommendations) and Discover Weekly (representing exploration-oriented recommendations). Four music-related psychological constructs—music involvement, music self-identity, preference for diversity, and openness to novelty—were examined, with the Big Five personality traits included as supplementary variables. A within-subject experimental design was conducted with 144 Spotify users, combining survey data with Spotify API listening histories. Participants experienced both discovery tools and evaluated the generated playlists, and results were analyzed using reliability testing, factor analysis, paired t-tests, stepwise regression, linear mixed models, and structural equation modeling (SEM).
Results showed that Discover Weekly outperformed seed-based search on perceived novelty, diversity, and serendipity, but scored lower on familiarity and average track ratings. No significant difference was found in overall satisfaction between the two tools. Familiarity and perceived diversity emerged as significant predictors of satisfaction, while novelty was not. Importantly, music self-identity had a positive moderating effect on the impact of Discover Weekly, suggesting that users who view music as central to their identity derive more value from exploratory recommendations. In contrast, the Big Five traits had weaker associations with recommendation outcomes.
The study highlights the moderating role of psychological traits in music recommendation, supporting the theory of balancing familiarity and exploration. The notion of "boundary exploration" is introduced to describe recommendations that expand users’ preferences while maintaining stylistic coherence. Limitations include reliance on college-aged samples, and the experimental setting’s deviation from naturalistic use. The opaque nature of Spotify’s algorithms might introduce confounding variable to our assertation that music self-identity is conducive to openness to personalization. Future research should address these gaps through broader samples and in-situ usage studies to enhance the personalization and acceptance of recommendation systems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:44:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:44:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要……………………………………………………………………. iii
Abstract………………………………………………………………. iv
目次…………………………………………………………………….. vi
圖次…………………………………………………………………. viii
表次…………………………………………………………………. ix
第一章 緒論……………………………………………………… 1
第一節 研究背景與動機…………………………………………... 1
第二節 研究目的與問題…………………………………………... 5
第三節 名詞解釋………………………………………………... 7
第二章 文獻回顧……………………………………………………... 9
第一節 音樂發掘方式……………………………………………... 9
第二節 推薦系統…………………………………………………... 11
第三節 個人心理屬性與推薦系統………………………………... 19
第三章 研究設計與實施……………………………………………... 25
第一節 研究架構………………………………………………... 27
第二節 研究工具…………………………………………………... 29
第三節 研究流程…………………………………………………... 39
第四節 研究對象與研究方法……………………………………... 41
第五節 資料蒐集與分析…………………………………………... 48
第四章 研究結果………………………………………….……... 55
第一節 研究參與者敘述統計…………………………………... 55
第二節 音樂偏好屬性量表分析…………………………………... 56
第三節 推薦方式、播放清單與使用者滿意度之關聯………... 61
第四節 音樂偏好屬性對推薦效能的調節作用……………... 64
第五節 五大人格特質之補充分析……………………………... 67
第五章 結論、研究限制與建議……………………………………... 69
第一節 結論………………………....…………………..……... 69
第二節 研究限制…………………………………………………... 73
第三節 實務與未來研究建議…………………………………... 75
參考文獻………………………………………………………….…… 77
附錄…………………………………………………………………... 87
-
dc.language.isozh_TW-
dc.subject音樂推薦系統zh_TW
dc.subject心理偏好屬性zh_TW
dc.subjectSpotifyzh_TW
dc.subject自我認同zh_TW
dc.subject探索性推薦zh_TW
dc.subject推薦滿意度zh_TW
dc.subject個人化推薦zh_TW
dc.subjectpsychological preferencesen
dc.subjectpersonalizationen
dc.subjectuser satisfactionen
dc.subjectexploratory recommendationen
dc.subjectself-identityen
dc.subjectSpotifyen
dc.subjectmusic recommender systemsen
dc.titleSpotify用戶心理屬性對於不同音樂發掘工具效能的影響zh_TW
dc.titleThe Influence of Spotify Users’ Psychological Attributes on the Effectiveness of Different Music Discovery Toolsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳怡瑾;林頌堅zh_TW
dc.contributor.oralexamcommitteeI-Chin Wu;Sung-Chien Linen
dc.subject.keyword音樂推薦系統,心理偏好屬性,Spotify,自我認同,探索性推薦,推薦滿意度,個人化推薦,zh_TW
dc.subject.keywordmusic recommender systems,psychological preferences,Spotify,self-identity,exploratory recommendation,user satisfaction,personalization,en
dc.relation.page92-
dc.identifier.doi10.6342/NTU202503884-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college文學院-
dc.contributor.author-dept圖書資訊學系-
dc.date.embargo-lift2030-08-05-
Appears in Collections:圖書資訊學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
2.77 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved