Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99145
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林逸彬zh_TW
dc.contributor.advisorYi-Pin Linen
dc.contributor.author林逸豪zh_TW
dc.contributor.authorYi-Hao Linen
dc.date.accessioned2025-08-21T16:34:00Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citationAdediran, G. A., Cox, R., Jürgens, M. D., Morel, E., Cross, R., Carter, H., Pereira, M. G., Read, D. S., & Johnson, A. C. (2024). Fate and behaviour of microplastics (> 25µm) within the water distribution network, from water treatment works to service reservoirs and customer taps. Water Research, 255, 121508.
Almond, J., Sugumaar, P., Wenzel, M. N., Hill, G., & Wallis, C. (2020). Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. 20(1), 369-381. (e-Polymers).
American Water Works Association. (1990). Water quality and treatment:A handbook of community water supplies. McGraw-Hill Companies.
American Water Works Association, American Public Health Association, & Federation, W. E. (1998). Standard methods for the examination of water and wastewater (20th ed.). American Public Health Association.
Amobonye, A., Bhagwat, P., Singh, S., & Pillai, S. (2021). Plastic biodegradation: Frontline microbes and their enzymes. Science of The Total Environment, 759, 143536.
Andrady, A. (2010). Measurement and Occurrence of Microplastics in the Environment. In Presentation at the 2nd research workshop on microplastic debris. Tacoma, WA.
Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977-1984.
Auguet, T., Bertran, L., Barrientos-Riosalido, A., Fabregat, B., Villar, B., Aguilar, C., & Sabench, F. (2022). Are ingested or inhaled microplastics involved in nonalcoholic fatty liver disease? International Journal of Environmental Research and Public Health, 19(20), 13495.
Baek, E.-R., Kim, M., Kang, D.-J., & Kang, J.-H. (2024). Distribution characteristics of microplastics in the surface mixed layer of the western Indian Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 218, 105424.
Bäuerlein, P. S., Hofman-Caris, R. C. H. M., Pieke, E. N., & ter Laak, T. L. (2022). Fate of microplastics in the drinking water production. Water Research, 221, 118790.
Bredács, M., Frank, A., Bastero, A., Stolarz, A., & Pinter, G. (2018a). Accelerated aging of polyethylene pipe grades in aqueous chlorine dioxide at constant concentration. Polymer Degradation and Stability, 157, 80-89.
Bredács, M., Frank, A., Bastero, A., Stolarz, A., & Pinter, G. (2018b). Aging mechanism of polyethylene pipe material in chlorine dioxide and hypochlorite solution. In Plastic Pipes XIX Conference.
Bruge, A., Dhamelincourt, M., Lanceleur, L., Monperrus, M., Gasperi, J., & Tassin, B. (2020). A first estimation of uncertainties related to microplastic sampling in rivers. Science of The Total Environment, 718, 137319.
Bullard, J. E., Zhou, Z., Davis, S., & Fowler, S. (2023). Breakdown and modification of microplastic beads by aeolian abrasion. Environmental Science & Technology, 57(1), 76-84.
Burn, S., Davis, P., & Schiller, T. L. (2006). Long-term performance prediction for PVC pipes. AWWA Research Foundation.
Chanda, M., & Roy, S. K. (2006). Plastics technology handbook. CRC press.
Chen, X., Zhuang, J., Chen, Q., Xu, L., Yue, X., & Qiao, D. (2022). Polyvinyl chloride microplastics induced gut barrier dysfunction, microbiota dysbiosis and metabolism disorder in adult mice. Ecotoxicology and Environmental Safety, 241, 113809.
Chung, S.-s. (2008). Using plastic bag waste to assess the reliability of self-reported waste disposal data. Waste Management, 28(12), 2574-2584.
Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588-2597.
Dear, J. P., & Mason, N. S. (2001). The effects of chlorine depletion of antioxidants in polyethylene. Polymers and Polymer Composites, 9(1), 1-13.
Erni-Cassola, G., Gibson, M. I., Thompson, R. C., & Christie-Oleza, J. A. (2017). Lost, but found with Nile red: a novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environmental Science & Technology, 51(23), 13641-13648.
Fowler, S. D., & Greenspan, P. (1985). Application of Nile red, a fluorescent hydrophobic probe, for the detection of neutral lipid deposits in tissue sections: comparison with oil red O. Journal of Histochemistry & Cytochemistry, 33(8), 833-836.
Freese, S., & Nozaic, D. (2007). Chlorine based disinfectants: how do they compare. Water Science and Technology, 55(10), 403-411.
Gao, Z., Wontor, K., & Cizdziel, J. V. (2022). Labeling microplastics with fluorescent dyes for detection, recovery, and degradation experiments. Molecules, 27(21).
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.
Ghosh, G., Kumar, M., Sidpara, A. M., & Bandyopadhyay, P. P. (2022). 9 - Tribological aspects of different machining processes. In Machining and tribology (pp. 213-238). Elsevier.
González-Acedo, A., García-Recio, E., Illescas-Montes, R., Ramos-Torrecillas, J., Melguizo-Rodríguez, L., & Costela-Ruiz, V. J. (2021). Evidence from in vitro and in vivo studies on the potential health repercussions of micro- and nanoplastics. Chemosphere, 280, 130826.
Hernandez, L. M., Yousefi, N., & Tufenkji, N. (2017). Are there nanoplastics in your personal care products? Environmental Science & Technology Letters, 4(7), 280-285.
Ho, D., Liu, S., Wei, H., & Karthikeyan, K. G. (2024). The glowing potential of Nile red for microplastics Identification: Science and mechanism of fluorescence staining. Microchemical Journal, 197, 109708.
Horrocks, A. R., Price, D., & Price, D. (2001). Fire retardant materials. woodhead Publishing.
Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504-526.
Kershaw, P., Turra, A., & Galgani, F. (2019). Guidelines for the monitoring and assessment of plastic litter and microplastics in the ocean.
Kershaw, P. J. (2015). Sources, fate and effects of microplastics in the marine environment: a global assessment. Reports and studies-IMO/FAO/Unesco-IOC/WMO/IAEA/UN/UNEP joint group of experts on the scientific aspects of marine environmental protection (GESAMP) Eng No. 93.
Khan, I. A., Lee, K. H., Lee, Y.-S., & Kim, J.-O. (2022). Degradation analysis of polymeric pipe materials used for water supply systems under various disinfectant conditions. Chemosphere, 291, 132669.
Koelmans, B., Pahl, S., Backhaus, T., Bessa, F., van Calster, G., Contzen, N., Cronin, R., Galloway, T., Hart, A., & Henderson, L. (2019). A scientific perspective on microplastics in nature and society. SAPEA.
Konde, S., Ornik, J., Prume, J. A., Taiber, J., & Koch, M. (2020). Exploring the potential of photoluminescence spectroscopy in combination with Nile Red staining for microplastic detection. Marine Pollution Bulletin, 159, 111475.
Käppler, A., Fischer, D., Oberbeckmann, S., Schernewski, G., Labrenz, M., Eichhorn, K.-J., & Voit, B. (2016). Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Analytical and Bioanalytical Chemistry, 408(29), 8377-8391.
Kowalska, B., Klepka, T., & Kowalski, D. (2016). Influence of chlorinated water on mechanical properties of polyethylene and polyvinyl chloride pipes. WIT Transactions on The Built Environment, 165, 63-74.
Lasfar, S., Mouallif, I., Latrach, A., Chergui, H., Choukir, A., & Diab, A. (2014). Resistance of different materials used in sewers systems: Polyvinyl chloride (PVC), polypropylene (PP) and high density polyethylene (HDPE), to sulfuric acid and sodium sulfate attack. Int. J. Eng. Res. Appl, 4, 670-678.
LeChevallier, M. W., & Au, K.-K. (2004). Water treatment and pathogen control. Iwa Publishing.
Lee, K. H., Khan, I. A., Lee, Y. S., & Kim, J. O. (2022). Gravimetric analysis of stability of polymeric materials during exposure to chemical disinfectants at different temperatures. Chemosphere, 302, 134813.
Lettieri, P., & Al-Salem, S. M. (2011). Thermochemical treatment of plastic solid waste. In Waste (pp. 233-242). Academic Press
Liu, H., Zhao, M., & Jiang, F. (2025). Aging of PVC pipes induces release of microplastics: Insight into the role of the hydrophilicity of pipe inner surface. Process Safety and Environmental Protection, 200, 107409.
Liu, Y., Lüttjohann, S., Vianello, A., Lorenz, C., Liu, F., & Vollertsen, J. (2024). Detecting small microplastics down to 1.3 μm using large area ATR-FTIR. Marine Pollution Bulletin, 198, 115795.
Mani, T., Hauk, A., Walter, U., & Burkhardt-Holm, P. (2015). Microplastics profile along the Rhine River. Scientific Reports, 5(1), 17988.
Mintenig, S. M., Löder, M. G. J., Primpke, S., & Gerdts, G. (2019). Low numbers of microplastics detected in drinking water from ground water sources. Science of The Total Environment, 648, 631-635.
Mitroka, S. M., Smiley, T. D., Tanko, J. M., & Dietrich, A. M. (2013). Reaction mechanism for oxidation and degradation of high density polyethylene in chlorinated water. Polymer Degradation and Stability, 98(7), 1369-1377.
Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environmental Science & Technology, 50(11), 5800-5808.
Nalbone, L., Panebianco, A., Giarratana, F., & Russell, M. (2021). Nile Red staining for detecting microplastics in biota: Preliminary evidence. Marine Pollution Bulletin, 172, 112888.
Nel, H. A., Chetwynd, A. J., Kelleher, L., Lynch, I., Mansfield, I., Margenat, H., Onoja, S., Goldberg Oppenheimer, P., Sambrook Smith, G. H., & Krause, S. (2021). Detection limits are central to improve reporting standards when using Nile red for microplastic quantification. Chemosphere, 263, 127953.
Oßmann, B. E., Sarau, G., Holtmannspötter, H., Pischetsrieder, M., Christiansen, S. H., & Dicke, W. (2018). Small-sized microplastics and pigmented particles in bottled mineral water. Water Research, 141, 307-316.
Ourgaud, M., Phuong, N. N., Papillon, L., Panagiotopoulos, C., Galgani, F., Schmidt, N., Fauvelle, V., Brach-Papa, C., & Sempéré, R. (2022). Identification and Quantification of Microplastics in the Marine Environment Using the Laser Direct Infrared (LDIR) Technique. Environmental Science & Technology, 56(14), 9999-10009.
Pinho, I., Amezcua, F., Rivera, J. M., Green-Ruiz, C., Piñón-Colin, T. d. J., & Wakida, F. (2022). First report of plastic contamination in batoids: Plastic ingestion by Haller's Round Ray (Urobatis halleri) in the Gulf of California. Environmental Research, 211, 113077.
Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water. Science of The Total Environment, 643, 1644-1651.
Prüst, M., Meijer, J., & Westerink, R. H. S. (2020). The plastic brain: neurotoxicity of micro- and nanoplastics. Particle and Fibre Toxicology, 17(1), 24.
Rafa, N., Ahmed, B., Zohora, F., Bakya, J., Ahmed, S., Ahmed, S. F., Mofijur, M., Chowdhury, A. A., & Almomani, F. (2024). Microplastics as carriers of toxic pollutants: Source, transport, and toxicological effects. Environmental Pollution, 343, 123190.
Saeki, Y., & Emura, T. (2002). Technical progresses for PVC production. Progress in Polymer Science, 27(10), 2055-2131.
Sekar, V., & Sundaram, B. (2023). Preliminary evidence of microplastics in landfill leachate, Hyderabad, India. Process Safety and Environmental Protection, 175, 369-376.
Shen, K. K. (2014). Review of recent advances on the use of boron-based flame retardants.
Shruti, V. C., Pérez-Guevara, F., Roy, P. D., & Kutralam-Muniasamy, G. (2022). Analyzing microplastics with Nile Red: emerging trends, challenges, and prospects. Journal of Hazardous Materials, 423, 127171.
Simoes, L. C., & Simões, M. (2013). Biofilms in drinking water: problems and solutions. Rsc Advances, 3(8), 2520-2533.
Singh, B., & Sharma, N. (2008). Mechanistic implications of plastic degradation. Polymer Degradation and Stability, 93(3), 561-584.
Socrates, G. (2004). Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons.
Sturm, M. T., Horn, H., & Schuhen, K. (2021). The potential of fluorescent dyes-comparative study of Nile red and three derivatives for the detection of microplastics. Anal Bioanal Chem, 413(4), 1059-1071.
Świetlik, J., & Magnucka, M. (2024). Chemical and microbiological safety of drinking water in distribution networks made of plastic pipes. Wiley Interdisciplinary Reviews: Water, 11(2), e1704.
Świetlik, J., & Magnucka, M. (2025). Aging of drinking water transmission pipes during long-term operation as a potential source of nano- and microplastics. International Journal of Hygiene and Environmental Health, 263, 114467.
Symons, J. (1978). Ozone, chlorine dioxide and chloramines as alternatives to chlorine for disinfection of drinking water. Water chlorination: environmental impact and health effects, 2.
Taiwan Water Corporation. (2023). Annual Statistical Report 2023. Taiwan Water Corporation.
Tamminga, M. (2017). Nile red staining as a subsidiary method for microplastic quantifica-tion: a comparison of three solvents and factors influencing application reliability. SDRP Journal of Earth Sciences & Environmental Studies, 2(2).
Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., McGonigle, D., & Russell, A. E. (2004). Lost at sea: where is all the plastic? Science, 304(5672), 838-838.
U.S. Environmental Protection Agency. (2007). Method 3015A microwave assisted acid digestion of aqueous samples and extracts. Washington, DC: Environmental Protection Agency.
Vertova, A., Miani, A., Lesma, G., Rondinini, S., Minguzzi, A., Falciola, L., & Ortenzi, M. A. (2019). Chlorine dioxide degradation issues on metal and plastic water pipes tested in parallel in a semi-closed system. International Journal of Environmental Research and Public Health, 16(22), 4582.
Wei, X. (2021). Research on the selection of pipe materials for water supply and drainage. E3S Web of Conferences.
Williams, M. D., & Pirbazari, M. (2007). Membrane bioreactor process for removing biodegradable organic matter from water. Water Research, 41(17), 3880-3893.
Winiarska, E., Jutel, M., & Zemelka-Wiacek, M. (2024). The potential impact of nano- and microplastics on human health: Understanding human health risks. Environmental Research, 251, 118535.
Xu, J.-L., Thomas, K. V., Luo, Z., & Gowen, A. A. (2019). FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. TrAC Trends in Analytical Chemistry, 119, 115629.
Yu, W., Reitberger, T., Hjertberg, T., Oderkerk, J., Costa, F. R., Englund, V., & Gedde, U. W. (2015). Chlorine dioxide resistance of different phenolic antioxidants in polyethylene. Polymer Degradation and Stability, 111, 1-6.
Zhang, T., Hu, J.-L., Duan, Y., Chen, S., Li, D., Dong, B., Mo, M.-Z., Wang, J., Zheng, J.-G., Zhong, H.-N., & Lin, Q.-B. (2023). Identification and characterisation of microplastics released from plastic-coated paper cups using micro-Raman spectroscopy. Food Control, 153, 109901.
Zhao, X., Qiang, M., Yuan, Y., Zhang, M., Wu, W., Zhang, J., Gao, Z., Gu, X., Ma, S., Liu, Z., Cai, L., & Han, J. (2023). Distribution of microplastic contamination in the major tributaries of the Yellow River on the Loess Plateau. Science of The Total Environment, 905, 167431.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99145-
dc.description.abstract飲用水配水系統中的塑膠管材已被確認為飲用水中塑膠微粒的重要潛在來源。消毒劑如餘氯可氧化塑膠聚合物,造成表面裂紋與孔洞生成,進而加速塑膠微粒的釋放。然而,塑膠管材表面變形與塑膠微粒釋放之間的定量關係至今仍缺乏明確的實證資料。
本研究以聚氯乙烯(PVC)水管為對象,探討在自由餘氯暴露下塑膠微粒的釋放行為,並分析其與表面形貌及化學結構變化之間的關聯性。實驗模擬氯化老化條件,以 0、0.5、5、50 與 100 mg Cl₂/L 五種氯濃度進行為期 60 天的老化模擬實驗。表面形貌變化透過數位顯微鏡、雷射掃描共軛焦顯微鏡與掃描式電子顯微鏡觀察,評估表面變形區域擴張、表面粗糙度變化與孔洞形成等指標;化學與元素變化則分別採用衰減全反射傅立葉轉換紅外光光譜儀與能量散射 X 射線光譜儀進行分析。塑膠微粒的定量採用尼羅紅染劑結合螢光顯微鏡與 ImageJ 軟體進行辨識與統計。
研究結果顯示,PVC 表面變形區域以及塑膠微粒的釋放皆隨氯濃度升高而增加,且兩者之間在增加量與速率上皆呈現高度線性相關性。釋放出的塑膠微粒中,絕大多數粒徑小於 10 μm。表面化學分析結果指出,在經過60天老化後,老化氯濃度越高,碳氧官能基(C=O)的吸收強度越明顯上升,而甲烷基(-CH₂)吸收訊號則呈下降趨勢;元素組成分析則顯示表面碳與氯的原子比例幾乎不變,顯示氧化作用主要發生於 C–H 鍵,而非 C–Cl 鍵,並可能進一步導致塑膠微粒的釋放。
zh_TW
dc.description.abstractPlastic pipes in drinking water distribution systems have been identified as an important source for microplastics (MPs) in drinking water. Disinfectants such as free chlorine can oxidize the plastic polymer, leading to cracking and pore formation that accelerate MPs release. However, quantitative evidences on the relationship between the deformation of plastic pipe surfaces and MPs release remains limited.
This study investigates the release of MPs from PVC pipes in the presence of free chlorine and explores the correlation between surface morphological/chemical changes and MPs release. A 60-day aging experiment was conducted using chlorine concentrations of 0, 0.5, 5, 50, and 100 mg Cl₂/L to simulate chlorination aging of PVC pipes. Surface morphological changes were monitored using the digital microscopy, laser scanning confocal microscopy and scanning electron microscopy to assess the expansion of deformation area, changes in surface roughness and formation of pore structures. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and energy-dispersive X-ray spectroscopy (EDS) were employed to analyze chemical and elemental changes. MPs were quantified using Nile Red stain method coupled fluorescence microscopy and ImageJ.
The results showed a strong linear correlation between the deformed area expansion and MPs release. Most of the released MPs were smaller than 10 μm. ATR- FTIR analysis revealed increasing carbonyl peak intensity with higher chlorine exposure, while EDS results showed stable surface C/Cl atomic ratios, suggesting that oxidation primarily occurred at C–H bonds rather than C–Cl bonds, which may have contributed to MPs release.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:34:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:34:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
ABSTRACT ii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research objectives 2
Chapter 2 Literature Review 4
2.1 Microplastics 4
2.2 Microplastics detection 6
2.3 Impacts of chlorination on PVC 8
Chapter 3 Material and Methods 12
3.1 Research framework 12
3.2 Material and chemicals 13
3.3 PVC aging experiment 14
3.4 Quantification of microplastics 16
3.5 Analytical methods 18
Chapter 4 Results and Discussion 21
4.1 Characteristics of PVC Pipe Material 21
4.2 Surface Morphological Changes Induced by Chlorination Aging 27
4.2.1 SEM Imaging After Aging 27
4.2.2 Quantitative Analysis of Surface Morphological Change 29
4.2.3 Change in Surface Roughness 34
4.3 MPs Release and Its Correlation with Surface Degradation 36
4.3.1 Number and Size Distribution of Released MPs 36
4.3.2 Relationship Between MPs Release and Surface Morphological Changes 40
4.4 Changes in the Chemical Structure of PVC Specimens after Chlorination Aging 44
Chapter 5 Conclusions and Recommendations 49
5.1 Conclusions 49
5.2 Recommendations 50
REFERENCE 52
APPENDIX 59
-
dc.language.isozh_TW-
dc.subject氯老化zh_TW
dc.subject塑膠微粒zh_TW
dc.subject表面破壞zh_TW
dc.subject聚氯乙烯管zh_TW
dc.subjectmicroplasticsen
dc.subjectPVC pipesen
dc.subjectchlorination agingen
dc.subjectsurface degradationen
dc.title聚氯乙烯管在氯老化下塑膠微粒釋出與表面變化之關聯性研究zh_TW
dc.titleInvestigation of Microplastics Release and Surface Changes on Polyvinyl Chloride Pipes after Chlorination Aging.en
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉雅瑄;黃鼎荃zh_TW
dc.contributor.oralexamcommitteeYa-Hsuan Liou;Ding-Quan Ngen
dc.subject.keyword塑膠微粒,聚氯乙烯管,氯老化,表面破壞,zh_TW
dc.subject.keywordmicroplastics,PVC pipes,chlorination aging,surface degradation,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202503203-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf3.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved