請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99127完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕居振 | zh_TW |
| dc.contributor.advisor | Chu-Chen Chueh | en |
| dc.contributor.author | 陳炯翰 | zh_TW |
| dc.contributor.author | Chiung-Han Chen | en |
| dc.date.accessioned | 2025-08-21T16:29:33Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | REFERENCE
[1] M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, Science 2016, 354, 206. [2] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, Energ. Environ. Sci. 2016, 9, 1989. [3] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643. [4] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, Energ. Environ. Sci. 2014, 7, 3061. [5] A. K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 2019, 119, 3036. [6] D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, Science 2016, 351, 151. [7] V. M. Goldschmidt, Naturwissenschaften 1926, 14, 477. [8] M. Johnsson, P. Lemmens, J. Phys.: Condens. Matter 2008, 20, 264001. [9] Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, K. Zhu, Chem. Mater. 2016, 28, 284. [10] F. Ünlü, E. Jung, J. Haddad, A. Kulkarni, S. Öz, H. Choi, T. Fischer, S. Chakraborty, T. Kirchartz, S. Mathur, APL Mater. 2020, 8. [11] G. Kieslich, S. Sun, A. K. Cheetham, Chem. Sci. 2015, 6, 3430. [12] R. E. Brandt, V. Stevanović, D. S. Ginley, T. Buonassisi, MRS Commun. 2015, 5, 265. [13] T. Umebayashi, K. Asai, T. Kondo, A. Nakao, Phys. Rev. B 2003, 67, 155405. [14] A. Dey, J. Ye, A. De, E. Debroye, S. K. Ha, E. Bladt, A. S. Kshirsagar, Z. Wang, J. Yin, Y. Wang, ACS Nano 2021, 15, 10775. [15] J.-W. Lee, S. Tan, S. I. Seok, Y. Yang, N.-G. Park, Science 2022, 375, eabj1186. [16] S. Ahmad, S. Kazim, M. Grätzel, Perovskite Solar Cells: Materials, Processes, and Devices, John Wiley & Sons, Wiley-VCH GmbH 2022. [17] J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, A. Hagfeldt, Science 2017, 358, 739. [18] M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506. [19] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542. [20] X. Wu, B. Li, Z. Zhu, C.-C. Chueh, A. K.-Y. Jen, Chem. Soc. Rev. 2021. [21] H. Liu, M. H. Yu, C. C. Lee, X. Yu, Y. Li, Z. Zhu, C. C. Chueh, Z. a. Li, A. K. Y. Jen, Adv. Mater. Technol. 2021, 6, 2000960. [22] Y. C. Kim, H. J. An, D. H. Kim, J. M. Myoung, Y. J. Heo, J. H. Cho, Adv. Funct. Mater. 2021, 31, 2005553. [23] Z. Ren, J. Yu, Z. Qin, J. Wang, J. Sun, C. C. Chan, S. Ding, K. Wang, R. Chen, K. S. Wong, Adv. Mater. 2021, 33, 2005570. [24] Y. Yang, S. Xu, Z. Ni, C. H. Van Brackle, L. Zhao, X. Xiao, X. Dai, J. Huang, Adv. Mater. 2021, 33, 2100783. [25] Z. Chen, Z. Li, Z. Chen, R. Xia, G. Zou, L. Chu, S.-J. Su, J. Peng, H.-L. Yip, Y. Cao, Joule 2021, 5, 456. [26] Z. Ren, K. Wang, X. W. Sun, W. C. Choy, Adv. Funct. Mater. 2021, 31, 2100516. [27] Z. Liu, W. Qiu, X. Peng, G. Sun, X. Liu, D. Liu, Z. Li, F. He, C. Shen, Q. Gu, Adv. Mater. 2021, 33, 2103268. [28] K.-L. Chu, C.-H. Chen, S.-W. Shen, C.-Y. Huang, Y.-X. Chou, M.-Y. Liao, M.-L. Tsai, C.-I. Wu, C.-C. Chueh, Chemical Engineering Journal 2021, 130112. [29] C. H. Liao, C. H. Chen, J. Bing, C. Bailey, Y. T. Lin, T. M. Pandit, L. Granados, J. Zheng, S. Tang, B. H. Lin, Adv. Mater. 2021, 2104782. [30] W. Tian, H. Zhou, L. Li, Small 2017, 13, 1702107. [31] L. Dou, Y. M. Yang, J. You, Z. Hong, W.-H. Chang, G. Li, Y. Yang, Nat. Commun. 2014, 5, 1. [32] S. González‐Carrero, R. E. Galian, J. Pérez‐Prieto, Part. Part. Syst. Char 2015, 32, 709. [33] G. Grancini, M. K. Nazeeruddin, Nat. Rev. Mater. 2019, 4, 4. [34] K. Han, J. Jin, B. Su, Z. Xia, Trends in Chemistry 2022, 4, 1034. [35] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, Nat. Nanotechnol 2014, 9, 687. [36] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, Adv. Mater. 2013, 26, 1584. [37] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316. [38] A. Filippetti, A. Mattoni, Phys. Rev. B 2014, 89, 125203. [39] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344. [40] A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P. M. Pearce, F. Deschler, R. L. Hoye, K. C. Gödel, T. Bein, P. Docampo, Nano Lett. 2015, 15, 6095. [41] M. M. Byranvand, C. Otero‐Martínez, J. Ye, W. Zuo, L. Manna, M. Saliba, R. L. Hoye, L. Polavarapu, Adv. Opt. Mater. 2022, 10, 2200423. [42] F. Zhang, R. Guo, H. Zeng, L. Wang, Adv. Funct. Mater. 2025, 2500348. [43] M. D. Smith, B. A. Connor, H. I. Karunadasa, Chem. Rev. 2019, 119, 3104. [44] M. D. Smith, H. I. Karunadasa, Accounts Chem. Res. 2018, 51, 619. [45] C. Katan, N. Mercier, J. Even, Chem. Rev. 2019, 119, 3140. [46] L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, M. G. Kanatzidis, JACS 2018, 140, 3775. [47] J.-C. Blancon, H. Tsai, W. Nie, C. C. Stoumpos, L. Pedesseau, C. Katan, M. Kepenekian, C. M. M. Soe, K. Appavoo, M. Y. Sfeir, Science 2017, 355, 1288. [48] H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, Nature 2016, 536, 312. [49] J.-C. Blancon, A. V. Stier, H. Tsai, W. Nie, C. C. Stoumpos, B. Traore, L. Pedesseau, M. Kepenekian, F. Katsutani, G. Noe, Nat. Commun. 2018, 9, 2254. [50] L. N. Quan, Y. Zhao, F. P. García de Arquer, R. Sabatini, G. Walters, O. Voznyy, R. Comin, Y. Li, J. Z. Fan, H. Tan, Nano Lett. 2017, 17, 3701. [51] M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Nat. Nanotechno 2016, 11, 872. [52] Y. Cao, N. Wang, H. Tian, J. Guo, Y. Wei, H. Chen, Y. Miao, W. Zou, K. Pan, Y. He, Nature 2018, 562, 249. [53] J.-K. Chen, B.-B. Zhang, Q. Liu, N. Shirahata, O. F. Mohammed, O. M. Bakr, H.-T. Sun, ACS Mater. Lett. 2021, 3, 1541. [54] M. Era, S. Morimoto, T. Tsutsui, S. Saito, Appl. Phys. Lett. 1994, 65, 676. [55] S. Q. Sun, J. W. Tai, W. He, Y. J. Yu, Z. Q. Feng, Q. Sun, K. N. Tong, K. Shi, B. C. Liu, M. Zhu, Adv. Mater. 2024, 36, 2400421. [56] S. C. Feng, Y. Shen, X. M. Hu, Z. H. Su, K. Zhang, B. F. Wang, L. X. Cao, F. M. Xie, H. Z. Li, X. Gao, Adv. Mater. 2024, 36, 2410255. [57] Y. Gao, Q. Cai, Y. He, D. Zhang, Q. Cao, M. Zhu, Z. Ma, B. Zhao, H. He, D. Di, Sci. Adv. 2024, 10, eado5645. [58] Z. Wei, J. Xing, J. Phys. Chem. Lett. 2019, 10, 3035. [59] A. Fakharuddin, M. K. Gangishetty, M. Abdi-Jalebi, S.-H. Chin, A. R. bin Mohd Yusoff, D. N. Congreve, W. Tress, F. Deschler, M. Vasilopoulou, H. J. Bolink, Nat. Electronics 2022, 5, 203. [60] Y. Xia, Y. H. Li, Z. K. Wang, L. S. Liao, Adv. Funct. Mater. 2023, 2303423. [61] K. Yang, F. Li, H. Hu, T. Guo, T. W. Kim, Nano Energy 2019, 65, 104029. [62] T.-H. Han, K. Y. Jang, Y. Dong, R. H. Friend, E. H. Sargent, T.-W. Lee, Nat. Rev. Mater. 2022, 7, 757. [63] B. Zhao, B. Guo, S. Xing, Z. Liu, Y. Yuan, Z. Ren, W. Tang, Y. Lian, G. Zhang, C. Zou, Matter 2024, 7, 772. [64] J. Li, S. G. R. Bade, X. Shan, Z. Yu, Adv. Mater. 2015, 27, 5196. [65] M.-Y. Huang, L. Veeramuthu, C.-C. Kuo, Y.-C. Liao, D.-H. Jiang, F.-C. Liang, Z.-L. Yan, R. Borsali, C.-C. Chueh, Org. Electron. 2019, 67, 294. [66] G. Li, Z.-K. Tan, D. Di, M. L. Lai, L. Jiang, J. H.-W. Lim, R. H. Friend, N. C. Greenham, Nano Lett. 2015, 15, 2640. [67] P. Chen, Z. Xiong, X. Wu, M. Shao, Y. Meng, Z.-h. Xiong, C. Gao, J. Phys. Chem. Lett. 2017, 8, 3961. [68] P. Chen, Z. Xiong, X. Wu, M. Shao, X. Ma, Z.-h. Xiong, C. Gao, J. Phys. Chem. Lett. 2017, 8, 1810. [69] X. Sun, C. Han, K. Wang, H. Yu, J. Li, K. Lu, J. Qin, H. Yang, L. Deng, F. Zhao, ACS Appl. Energy Mater. 2018, 1, 6992. [70] J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Adv. Mater. 2015, 27, 2311. [71] C.-L. Tsai, Y.-C. Lu, S.-E. Chiang, C.-M. Yu, H.-M. Cheng, C.-L. Hsu, K. Y. Chiu, S. H. Chang, Nanoscale 2020, 12, 4061. [72] Y. Zhou, S. Mei, J. Feng, D. Sun, F. Mei, J. Xu, X. Cao, RSC Adv. 2020, 10, 26381. [73] B. R. Lee, J. C. Yu, J. H. Park, S. Lee, C.-K. Mai, B. Zhao, M. S. Wong, E. D. Jung, Y. S. Nam, S. Y. Park, ACS Nano 2018, 12, 5826. [74] H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, Science 2015, 350, 1222. [75] Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. Myoung, C. L. Lee, S. H. Im, T. W. Lee, Adv. Mater. 2015, 27, 1248. [76] C.-H. Chen, C.-H. Hsu, I.-C. Ni, B.-H. Lin, C.-I. Wu, C.-C. Kuo, C.-C. Chueh, Nanoscale 2022. [77] C.-H. Chen, Y.-H. Kuo, Y.-K. Lin, I.-C. Ni, B.-H. Lin, C.-I. Wu, H.-L. Yip, C.-C. Kuo, C.-C. Chueh, ACS Appl. Mater. Inter. 2022, 14, 9587. [78] M. Ban, Y. Zou, J. P. Rivett, Y. Yang, T. H. Thomas, Y. Tan, T. Song, X. Gao, D. Credgington, F. Deschler, Nat. Commun. 2018, 9, 1. [79] Y. H. Zhou, Y. H. Lou, X. Q. Wang, K. L. Wang, J. Chen, C. H. Chen, Z. K. Wang, Adv. Opt. Mater. 2022, 10, 2101655. [80] Y. K. Lin, C. H. Chen, Y. Y. Wang, M. H. Yu, J. W. Yang, I. C. Ni, B. H. Lin, I. S. Zhidkov, E. Z. Kurmaev, Y. J. Lu, Adv. Sci. 2023, 10, 2302232. [81] X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, J. You, Nat. Commun. 2018, 9, 1. [82] T. H. Chowdhury, Y. Reo, A. R. B. M. Yusoff, Y. Y. Noh, Adv. Sci. 2022, 2203749. [83] L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei, Y. Huang, M. Yuan, Light-Sci. Appl. 2021, 10, 1. [84] S. A. Veldhuis, P. P. Boix, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar, Adv. Mater. 2016, 28, 6804. [85] C.-H. Chen, Y.-C. Lin, Y.-F. Yang, Y.-C. Chiang, Z. Li, H.-L. Yip, W.-C. Chen, C.-C. Chueh, Mater. Chem. Front. 2021. [86] C. H. Chen, M. H. Yu, Y. Y. Wang, Y. C. Tseng, I. H. Chao, I. C. Ni, B. H. Lin, Y. J. Lu, C. C. Chueh, Small 2024, 2307774. [87] J. C. Yu, D. B. Kim, G. Baek, B. R. Lee, E. D. Jung, S. Lee, J. H. Chu, D. K. Lee, K. J. Choi, S. Cho, Adv. Mater. 2015, 27, 3492. [88] R. L. Hoye, M. R. Chua, K. P. Musselman, G. Li, M. L. Lai, Z. K. Tan, N. C. Greenham, J. L. MacManus‐Driscoll, R. H. Friend, D. Credgington, Adv. Mater. 2015, 27, 1414. [89] N. K. Kumawat, A. Dey, K. Narasimhan, D. Kabra, ACS Photonics 2015, 2, 349. [90] L. Xu, J. Li, B. Cai, J. Song, F. Zhang, T. Fang, H. Zeng, Nat. Commun. 2020, 11, 1. [91] C. Zhang, S. Wang, X. Li, M. Yuan, L. Turyanska, X. Yang, Adv. Funct. Mater. 2020, 30, 1910582. [92] J. H. Park, A.-y. Lee, J. C. Yu, Y. S. Nam, Y. Choi, J. Park, M. H. Song, ACS Appl. Mater. Inter. 2019, 11, 8428. [93] X. Wan, Z. Yu, W. Tian, F. Huang, S. Jin, X. Yang, Y.-B. Cheng, A. Hagfeldt, L. Sun, J. Energy Chem. 2020, 46, 8. [94] N. F. Jamaludin, N. Yantara, Y. F. Ng, A. Bruno, B. K. Chandran, X. Y. Chin, K. Thirumal, N. Mathews, C. Soci, S. Mhaisalkar, J. Mater. Chem. C 2018, 6, 2295. [95] X. Liu, X. Guo, Y. Lv, Y. Hu, Y. Fan, J. Lin, X. Liu, X. Liu, Adv. Opt. Mater. 2018, 6, 1801245. [96] H. Wang, X. Zhang, Q. Wu, F. Cao, D. Yang, Y. Shang, Z. Ning, W. Zhang, W. Zheng, Y. Yan, Nat. Commun. 2019, 10, 1. [97] Y. S. Lau, Z. Lan, N. Li, F. Zhu, ACS Appl. Electron. Mater. 2020, 2, 1113. [98] F. Jin, B. Zhao, B. Chu, H. Zhao, Z. Su, W. Li, F. Zhu, J. Mater. Chem. C 2018, 6, 1573. [99] B. Liu, L. Wang, H. Gu, H. Sun, H. V. Demir, Adv. Opt. Mater. 2018, 6, 1800220. [100] D.-H. Kang, S.-G. Kim, Y. C. Kim, I. T. Han, H. J. Jang, J. Y. Lee, N.-G. Park, ACS Energy Lett. 2020, 5, 2191. [101] A. G. Ricciardulli, S. Yang, N. B. Kotadiya, G. J. A. Wetzelaer, X. Feng, P. W. Blom, Adv. Electron. Mater. 2019, 5, 1800687. [102] J. Dong, D. Song, J. Meng, Y. Lu, Y. Li, B. Qiao, S. Zhao, Z. Xu, J. Mater. Chem. C 2020, 8, 6743. [103] Y. Meng, M. Ahmadi, X. Wu, T. Xu, L. Xu, Z. Xiong, P. Chen, Org. Electron. 2019, 64, 47. [104] X.-F. Peng, X.-Y. Wu, X.-X. Ji, J. Ren, Q. Wang, G.-Q. Li, X.-H. Yang, J. Phys. Chem. Lett. 2017, 8, 4691. [105] Q. Wang, C.-C. Chueh, M. Eslamian, A. K.-Y. Jen, ACS Appl. Mater. Inter. 2016, 8, 32068. [106] M. Wang, M. Zhou, L. Zhu, Q. Li, C. Jiang, Sol. Energy 2016, 129, 175. [107] C. Song, Z. Zhong, Z. Hu, J. Wang, L. Wang, L. Ying, J. Wang, Y. Cao, Org. Electron. 2016, 28, 252. [108] Z. Li, Z. Chen, Y. Yang, Q. Xue, H.-L. Yip, Y. J. N. c. Cao, 2019, 10, 1. [109] C.-H. Gao, X.-J. Ma, Y. Zhang, F.-X. Yu, Z.-Y. Xiong, Z.-Q. Wang, R. Wang, Y.-L. Jia, D.-Y. Zhou, Z.-H. Xiong, RSC Adv. 2018, 8, 15698. [110] C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 2015, 6, 7747. [111] L.-C. Chen, Z.-L. Tseng, D.-W. Lin, Y.-S. Lin, S.-H. Chen, Nanomaterials 2018, 8, 459. [112] Z. Wang, Z. Luo, C. Zhao, Q. Guo, Y. Wang, F. Wang, X. Bian, A. Alsaedi, T. Hayat, Z. a. J. T. J. o. P. C. C. Tan, 2017, 121, 28132. [113] M. Zhao, Y. Shi, J. Dai, J. Lian, J. Mater. Chem. C 2018, 6, 10450. [114] T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes, D. Cahen, Nat. Rev. Mater. 2016, 1, 1. [115] B. Saparov, D. B. Mitzi, Chem. Rev. 2016, 116, 4558. [116] Y.-H. Kim, H. Cho, T.-W. Lee, P. Natl. Acad. Sci 2016, 113, 11694. [117] Y. Zhao, K. J. C. S. R. Zhu, Chem. Soc. Rev. 2016, 45, 655. [118] C. C. Stoumpos, M. G. Kanatzidis, Accounts Chem. Res. 2015, 48, 2791. [119] W. Li, Z. Wang, F. Deschler, S. Gao, R. H. Friend, A. K. Cheetham, Nat. Rev. Mater. 2017, 2, 1. [120] M. I. Saidaminov, O. F. Mohammed, O. M. J. A. E. L. Bakr, 2017, 2, 889. [121] S. Chen, G. Shi, Adv. Mater. 2017, 29, 1605448. [122] Y. Chen, Y. Sun, J. Peng, J. Tang, K. Zheng, Z. J. A. M. Liang, 2018, 30, 1703487. [123] J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. J. Jacobsson, M. Grätzel, A. Hagfeldt, Energ. Environ. Sci. 2017, 10, 710. [124] T. M. Koh, K. Thirumal, H. S. Soo, N. Mathews, Chem. Sus. Chem. 2016, 9, 2541. [125] Z. Cheng, J. Lin, Cryst. Eng. Comm. 2010, 12, 2646. [126] M. E. Kamminga, H.-H. Fang, M. R. Filip, F. Giustino, J. Baas, G. R. Blake, M. A. Loi, T. T. Palstra, Chem. Mater. 2016, 28, 4554. [127] Z. Chen, C. Zhang, X. F. Jiang, M. Liu, R. Xia, T. Shi, D. Chen, Q. Xue, Y. J. Zhao, S. J. A. M. Su, 2017, 29, 1603157. [128] J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala, R. H. Friend, H. Yang, T. W. Lee, Adv. Mater. 2016, 28, 7515. [129] C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, M. G. Kanatzidis, Chem. Mater. 2016, 28, 2852. [130] I. C. Smith, E. T. Hoke, D. Solis‐Ibarra, M. D. McGehee, H. I. Karunadasa, Angew. Chem. 2014, 53, 11232. [131] D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, JACS 2015, 137, 7843. [132] Y. Tian, C. Zhou, M. Worku, X. Wang, Y. Ling, H. Gao, Y. Zhou, Y. Miao, J. Guan, B. Ma, Adv. Mater. 2018, 30, 1707093. [133] M. Dion, M. Ganne, M. Tournoux, Mater. Res. Bull. 1981, 16, 1429. [134] M. Hojamberdiev, M. F. Bekheet, E. Zahedi, H. Wagata, Y. Kamei, K. Yubuta, A. Gurlo, N. Matsushita, K. Domen, K. Teshima, Cryt. Growth Des. 2016, 16, 2302. [135] E. R. Dohner, A. Jaffe, L. R. Bradshaw, H. I. J. J. o. t. A. C. S. Karunadasa, 2014, 136, 13154. [136] S. Ahmad, P. Fu, S. Yu, Q. Yang, X. Liu, X. Wang, X. Wang, X. Guo, C. J. J. Li, 2019, 3, 794. [137] B. E. Cohen, M. Wierzbowska, L. J. A. F. M. Etgar, 2017, 27, 1604733. [138] N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Nat. Photonics 2016, 10, 699. [139] J. Xing, F. Yan, Y. Zhao, S. Chen, H. Yu, Q. Zhang, R. Zeng, H. V. Demir, X. Sun, A. Huan, ACS Nano 2016, 10, 6623. [140] H. Huang, F. Zhao, L. Liu, F. Zhang, X.-g. Wu, L. Shi, B. Zou, Q. Pei, H. Zhong, ACS Appl. Mater. Inter. 2015, 7, 28128. [141] J. Wang, C. Song, Z. He, C. Mai, G. Xie, L. Mu, Y. Cun, J. Li, J. Wang, J. J. A. M. Peng, 2018, 30, 1804137. [142] W. L. Hong, Y. C. Huang, C. Y. Chang, Z. C. Zhang, H. R. Tsai, N. Y. Chang, Y. C. J. A. m. Chao, 2016, 28, 8029. [143] Y. Ling, Y. Tian, X. Wang, J. C. Wang, J. M. Knox, F. Perez‐Orive, Y. Du, L. Tan, K. Hanson, B. Ma, Adv. Mater. 2016, 28, 8983. [144] J. C. Yu, D. W. Kim, D. B. Kim, E. D. Jung, J. H. Park, A.-Y. Lee, B. R. Lee, D. Di Nuzzo, R. H. Friend, M. H. Song, 2016. [145] K. Albrecht, K. Matsuoka, D. Yokoyama, Y. Sakai, A. Nakayama, K. Fujita, K. Yamamoto, Chem. Commun. 2017, 53, 2439. [146] X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 2014, 515, 96. [147] L. Duan, L. Hou, T.-W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, Y. Qiu, j. Mater. Chem. 2010, 20, 6392. [148] J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162. [149] S. Y. Lee, T. Yasuda, Y. S. Yang, Q. Zhang, C. Adachi, Angew. Chem. Int. Edit. 2014, 53, 6402. [150] K. Justin Thomas, J. T. Lin, M. Velusamy, Y. T. Tao, C. H. Chuen, Adv. Funct. Mater. 2004, 14, 83. [151] S. Gong, Y. Chen, C. Yang, C. Zhong, J. Qin, D. Ma, Adv. Mater. 2010, 22, 5370. [152] L. N. Quan, F. P. García de Arquer, R. P. Sabatini, E. H. Sargent, Adv. Mater. 2018, 30, 1801996. [153] D. Yang, B. Zhao, T. Yang, R. Lai, D. Lan, R. H. Friend, D. Di, Adv. Funct. Mater. 2022, 32, 2109495. [154] S. Adjokatse, H.-H. Fang, M. A. Loi, Mater. Today 2017, 20, 413. [155] E. Unger, L. Kegelmann, K. Suchan, D. Sörell, L. Korte, S. Albrecht, J. Mater. Chem. A 2017, 5, 11401. [156] M. R. Filip, G. E. Eperon, H. J. Snaith, F. Giustino, Nat. Commun. 2014, 5, 5757. [157] S. D. Stranks, H. J. Snaith, Nat. Nanotechnol. 2015, 10, 391. [158] A. Liu, C. Bi, R. Guo, M. Zhang, X. Qu, J. Tian, Adv. Opt. Mater. 2021, 9, 2002167. [159] K. Wang, Z. Jin, L. Liang, H. Bian, D. Bai, H. Wang, J. Zhang, Q. Wang, S. Liu, Nat. Commun. 2018, 9, 4544. [160] K. Tanaka, T. Takahashi, T. Kondo, T. Umebayashi, K. Asai, K. Ema, Phys. Rev. B 2005, 71, 045312. [161] S. Zhang, C. Yi, N. Wang, Y. Sun, W. Zou, Y. Wei, Y. Cao, Y. Miao, R. Li, Y. Yin, Adv. Mater. 2017, 29, 1606600. [162] B. Traore, L. Pedesseau, L. Assam, X. Che, J.-C. Blancon, H. Tsai, W. Nie, C. C. Stoumpos, M. G. Kanatzidis, S. Tretiak, ACS Nano 2018, 12, 3321. [163] J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala, R. H. Friend, H. Yang, T.-W. Lee, 2016, 28, 7515. [164] Y. Jin, Z. K. Wang, S. Yuan, Q. Wang, C. Qin, K. L. Wang, C. Dong, M. Li, Y. Liu, L. S. J. A. F. M. Liao, 2020, 30, 1908339. [165] F. Wang, Z. Wang, W. Sun, Z. Wang, Y. Bai, T. Hayat, A. Alsaedi, Z. a. Tan, Small 2020, 16, 2002940. [166] Z. Chu, Q. Ye, Y. Zhao, F. Ma, Z. Yin, X. Zhang, J. You, Adv. Mater. 2021, 33, 2007169. [167] B. Han, S. Yuan, T. Fang, F. Zhang, Z. Shi, J. Song, ACS Appl. Mater. Interfaces. 2020, 12, 14224. [168] W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao, Z. Yuan, T. Borzda, A. J. Barker, E. Tyukalova, Z. Hu, Nat. Photonics 2019, 13, 418. [169] J. Xing, Y. Zhao, M. Askerka, L. N. Quan, X. Gong, W. Zhao, J. Zhao, H. Tan, G. Long, L. J. N. c. Gao, 2018, 9, 1. [170] L. Na Quan, D. Ma, Y. Zhao, O. Voznyy, H. Yuan, E. Bladt, J. Pan, F. P. García de Arquer, R. Sabatini, Z. Piontkowski, Nat. Commun. 2020, 11, 170. [171] C. Zhao, W. Wu, H. Zhan, W. Yuan, H. Li, D. Zhang, D. Wang, Y. Cheng, S. Shao, C. Qin, Angew. Chem., Int. Ed. 2022, 134, e202117374. [172] N. F. Jamaludin, N. Yantara, B. Febriansyah, Y. B. Tay, B. T. Muhammad, S. Laxmi, S. S. Lim, T. C. Sum, S. Mhaisalkar, N. Mathews, ACS Energy Lett. 2021, 6, 4265. [173] M. Li, Y. Zhao, X. Qin, Q. Ma, J. Lu, K. Lin, P. Xu, Y. Li, W. Feng, W.-H. Zhang, Nano Lett. 2022, 22, 2490. [174] C. Zhu, F. Yuan, X. Liu, J. Li, H. Dong, C. Zhao, L. Yan, Y. Xu, J. Dai, J. Si, J. Phys. Chem. Lett. 2021, 12, 11723. [175] Y. Miao, X. Liu, Y. Chen, T. Zhang, T. Wang, Y. Zhao, Adv. Mater. 2021, 33, 2105699. [176] C. Zou, Y. Liu, D. S. Ginger, L. Y. Lin, ACS Nano 2020, 14, 6076. [177] Y. Jia, H. Yu, Y. Zhou, N. Li, Y. Guo, F. Xie, Z. Qin, X. Lu, N. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 28546. [178] M. Yang, N. Wang, S. Zhang, W. Zou, Y. He, Y. Wei, M. Xu, J. Wang, W. Huang, J. Phys. Chem. Lett. 2018, 9, 2038. [179] M. U. Ali, J. Miao, J. Cai, D. F. Perepichka, H. Yang, H. Meng, ACS Appl. Mater. Inter. 2020, 12, 18761. [180] R. Kabe, C. Adachi, Nature 2017, 550, 384. [181] J. U. Kim, I. S. Park, C.-Y. Chan, M. Tanaka, Y. Tsuchiya, H. Nakanotani, C. Adachi, Nat. Commun. 2020, 11, 1765. [182] T. Miwa, S. Kubo, K. Shizu, T. Komino, C. Adachi, H. Kaji, Sci. Rep. 2017, 7, 284. [183] Y.-S. Tsai, L.-A. Hong, F.-S. Juang, C.-Y. Chen, J. lumin. 2014, 153, 312. [184] Z. Yu, W. H. Jeong, K. Kang, H. Song, X. Shen, H. Ahn, S. W. Lee, X. Fan, J. W. Jang, S. R. Ha, J. Mater. Chem. A 2022, 10, 13928. [185] J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. Xiong, H. Lei, H. Yu, Appl. Phys. Lett. 2015, 106. [186] D. Ma, K. Lin, Y. Dong, H. Choubisa, A. H. Proppe, D. Wu, Y.-K. Wang, B. Chen, P. Li, J. Z. J. N. Fan, 2021, 599, 594. [187] X. Chen, J. Huang, F. Gao, B. Xu, Chem 2023, 9, 562. [188] G. Pan, X. Bai, X. Shen, L. Wang, Y. Mao, X. Chen, W. Xu, H. Shao, D. Zhou, B. Dong, Nano Energy 2021, 81, 105615. [189] Y. Xia, Y. H. Lou, Y. H. Zhou, Y. R. Shi, K. L. Wang, L. Cai, C. H. Chen, F. Hu, Z. K. Wang, L. S. Liao, Adv. Funct. Mater. 2022, 32, 2208538. [190] D. Jiang, T. Jiang, Y. Tian, K. Wen, C. Duan, N. Wang, Q. Li, J. Wang, H. Xu, J. Mater. Chem. C 2021, 9, 6399. [191] R. Wang, Y. Zhang, F.-X. Yu, Y. Dong, Y.-L. Jia, X.-J. Ma, Q. Xu, Y. Deng, Z.-H. Xiong, C.-H. Gao, J. Lumin. 2020, 219, 116915. [192] R. H. Bube, J. Appl. Phys. 1962, 33, 1733. [193] A. Fakharuddin, W. Qiu, G. Croes, A. Devižis, R. Gegevičius, A. Vakhnin, C. Rolin, J. Genoe, R. Gehlhaar, A. Kadashchuk, Adv. Funct. Mater. 2019, 29, 1904101. [194] H. Kim, L. Zhao, J. S. Price, A. J. Grede, K. Roh, A. N. Brigeman, M. Lopez, B. P. Rand, N. C. Giebink, Nat. Commun. 2018, 9, 4893. [195] Y. Zou, P. Teng, W. Xu, G. Zheng, W. Lin, J. Yin, L. Kobera, S. Abbrent, X. Li, J. A. Steele, Nat. Commun. 2021, 12, 4831. [196] Y. Tian, X.-Y. Qian, C.-C. Qin, M.-H. Cui, Y.-Q. Li, Y.-C. Ye, J.-K. Wang, W.-J. Wang, J.-X. Tang, Chem. Eng. J. 2021, 415, 129088. [197] D. Zhang, L. Chao, G. Jin, Z. Xing, W. Hong, Y. Chen, L. Wang, J. Chen, D. Ma, Adv. Funct. Mater. 2022, 32, 2205707. [198] Z. Chen, Z. Li, C. Zhang, X. F. Jiang, D. Chen, Q. Xue, M. Liu, S. Su, H. L. Yip, Y. Cao, Adv. Mater. 2018, 30, 1801370. [199] Y. Shen, K. C. Shen, Y. Q. Li, M. Guo, J. Wang, Y. Ye, F. M. Xie, H. Ren, X. Gao, F. Song, Adv. Funct. Mater. 2020, 2006736. [200] M.-L. Guo, Y. Lu, X.-Y. Cai, Y. Shen, X.-Y. Qian, H. Ren, Y.-Q. Li, W.-J. Wang, J.-X. Tang, J. Mater. Chem. C 2022, 10, 2998. [201] Y. Shen, J. K. Wang, Y. Q. Li, K. C. Shen, Z. H. Su, L. Chen, M. L. Guo, X. Y. Cai, F. M. Xie, X. Y. Qian, Adv. Sci. 2021, 8, 2102213. [202] H. Zhang, H. Lin, C. Liang, H. Liu, J. Liang, Y. Zhao, W. Zhang, M. Sun, W. Xiao, H. Li, Adv. Funct. Mater. 2015, 25, 7226. [203] X. Xiao, T. Ye, J. Sun, X. Qu, Z. Ren, D. Wu, S. Ding, X. W. Sun, W. C. Choy, K. Wang, Appl. Phys. Lett. 2022, 120. [204] R. Trattnig, T. M. Figueira-Duarte, D. Lorbach, W. Wiedemair, S. Sax, S. Winkler, A. Vollmer, N. Koch, M. Manca, M. A. Loi, Opt. Express 2011, 19, A1281. [205] S. Pisoni, F. Fu, R. Widmer, R. Carron, T. Moser, O. Groening, A. N. Tiwari, S. Buecheler, Nano Energy 2018, 49, 300. [206] J. Byeon, J. Kim, J.-Y. Kim, G. Lee, K. Bang, N. Ahn, M. Choi, ACS Energy Lett. 2020, 5, 2580. [207] L. Cheng, T. Jiang, Y. Cao, C. Yi, N. Wang, W. Huang, J. Wang, Adv. Mater. 2020, 32, 1904163. [208] T. H. Han, S. Tan, J. Xue, L. Meng, J. W. Lee, Y. Yang, Adv. Mater. 2019, 31, 1803515. [209] K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, Nature 2018, 562, 245. [210] W. Bai, T. Xuan, H. Zhao, H. Dong, X. Cheng, L. Wang, R. J. Xie, Adv. Mater. 2023, 2302283. [211] J. S. Kim, J.-M. Heo, G.-S. Park, S.-J. Woo, C. Cho, H. J. Yun, D.-H. Kim, J. Park, S.-C. Lee, S.-H. Park, Nature 2022, 611, 688. [212] J. Jiang, Z. Chu, Z. Yin, J. Li, Y. Yang, J. Chen, J. Wu, J. You, X. Zhang, Adv. Mater. 2022, 34, 2204460. [213] L. Zhu, H. Cao, C. Xue, H. Zhang, M. Qin, J. Wang, K. Wen, Z. Fu, T. Jiang, L. Xu, Nat. Commun. 2021, 12, 1. [214] Y. Sun, L. Ge, L. Dai, C. Cho, J. Ferrer Orri, K. Ji, S. J. Zelewski, Y. Liu, A. J. Mirabelli, Y. Zhang, Nature 2023, 615, 830. [215] B. Guo, R. Lai, S. Jiang, L. Zhou, Z. Ren, Y. Lian, P. Li, X. Cao, S. Xing, Y. Wang, Nat. Photonics 2022, 16, 637. [216] Z. Chu, W. Zhang, J. Jiang, Z. Qu, F. Ma, Y. Zhao, X. Chu, Y. Shen, Y. Li, Z. Yin, Nat. Electronics 2023, 6, 360. [217] J. Dong, F. Lu, D. Han, J. Wang, Z. Zang, L. Kong, Y. Zhang, X. Ma, J. Zhou, H. Ji, Angew. Chem. 2022, e202210322. [218] C. Wang, S. Cui, Y. Ju, Y. Chen, S. Chang, H. Zhong, Adv. Funct. Mater. 2023, 2301304. [219] Z.-G. Ma, Y. Shen, K. Zhang, L.-X. Cao, H. Ren, W.-S. Chen, H. Wei, Y. Li, S. Kera, J. Tang, J. Mater. Chem. C 2023, 11, 9916. [220] T. Li, H. Zhang, C. Yu, P. Wang, H. Wang, X. Zhang, Y. Sun, D. Liu, T. Wang, J. Mater. Chem. C 2021, 9, 15488. [221] J.-M. Heo, H. Cho, S.-C. Lee, M.-H. Park, J. S. Kim, H. Kim, J. Park, Y.-H. Kim, H. J. Yun, E. Yoon, ACS Energy Lett. 2022, 7, 2807. [222] Y.-H. Cheng, R. Moriyama, H. Ebe, K. Mizuguchi, R. Yamakado, S. Nishitsuji, T. Chiba, J. Kido, ACS Appl. Mater. Inter. 2022, 14, 22941. [223] K. Wang, L. Jin, Y. Gao, A. Liang, B. P. Finkenauer, W. Zhao, Z. Wei, C. Zhu, T.-F. Guo, L. Huang, ACS Nano 2021, 15, 6316. [224] J. Lu, X. Guan, Y. Li, K. Lin, W. Feng, Y. Zhao, C. Yan, M. Li, Y. Shen, X. Qin, Adv. Mater. 2021, 33, 2104414. [225] Z. Ma, Z. Shi, C. Qin, M. Cui, D. Yang, X. Wang, L. Wang, X. Ji, X. Chen, J. Sun, ACS Nano 2020, 14, 4475. [226] Z. Ma, Z. Shi, D. Yang, Y. Li, F. Zhang, L. Wang, X. Chen, D. Wu, Y. Tian, Y. Zhang, Adv. Mater. 2021, 33, 2001367. [227] P. Cheng, T. Wu, J. Liu, W.-Q. Deng, K. Han, The Journal of Physical Chemistry Letters 2018, 9, 2518. [228] M. Leng, Y. Yang, K. Zeng, Z. Chen, Z. Tan, S. Li, J. Li, B. Xu, D. Li, M. P. Hautzinger, Adv. Funct. Mater. 2018, 28, 1704446. [229] X. Li, B. Traore, M. Kepenekian, L. Li, C. C. Stoumpos, P. Guo, J. Even, C. Katan, M. G. Kanatzidis, Chem. Mater. 2021, 33, 6206. [230] J. Luo, L. Yang, Z. Tan, W. Xie, Q. Sun, J. Li, P. Du, Q. Xiao, L. Wang, X. Zhao, Adv. Mater. 2021, 33, 2101903. [231] J. Huang, T. Lei, M. Siron, Y. Zhang, S. Yu, F. Seeler, A. Dehestani, L. N. Quan, K. Schierle-Arndt, P. Yang, Nano Lett. 2020, 20, 3734. [232] T. Nakamura, S. Yakumaru, M. A. Truong, K. Kim, J. Liu, S. Hu, K. Otsuka, R. Hashimoto, R. Murdey, T. Sasamori, Nat. Commun. 2020, 11, 1. [233] I. H. Chao, Y. T. Yang, M. H. Yu, C. H. Chen, C. H. Liao, B. H. Lin, I. C. Ni, W. C. Chen, A. W. Ho‐Baillie, C. C. J. S. Chueh, 2023, 2207734. [234] X. Guan, J. Lu, Q. Wei, Y. Li, Y. Meng, K. Lin, Y. Zhao, W. Feng, K. Liu, G. Xing, ACS Energy Lett. 2023, 8, 1597. [235] F. Zhang, H. Min, Y. Zhang, Z. Kuang, J. Wang, Z. Feng, K. Wen, L. Xu, C. Yang, H. Shi, Adv. Mater. 2022, 34, 2203180. [236] H. Jia, H. Shi, R. Yu, H. Ma, Z. Wang, C. Zou, Z. a. Tan, Small 2022, 2200036. [237] T. Matsushima, S. Hwang, A. S. Sandanayaka, C. Qin, S. Terakawa, T. Fujihara, M. Yahiro, C. Adachi, Adv. Mater. 2016, 28, 10275. [238] I. Zimmermann, S. Aghazada, M. K. J. A. C. Nazeeruddin, 2019, 131, 1084. [239] C. Gao, Y. Jiang, C. Sun, J. Han, T. He, Y. Huang, K. Yao, M. Han, X. Wang, Y. Wang, ACS Photonics 2020, 7, 1915. [240] Y. Su, J. Yang, G. Liu, W. Sheng, J. Zhang, Y. Zhong, L. Tan, Y. Chen, Adv. Funct. Mater. 2022, 32, 2109631. [241] R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M. I. Saidaminov, Y. Gao, J. Xu, M. Xiao, Nat. Energy 2019, 4, 864. [242] T.-B. Song, T. Yokoyama, C. C. Stoumpos, J. Logsdon, D. H. Cao, M. R. Wasielewski, S. Aramaki, M. G. Kanatzidis, JACS 2017, 139, 836. [243] W. Li, J. Li, J. Li, J. Fan, Y. Mai, L. Wang, J. Mater. Chem. A 2016, 4, 17104. [244] F. Yuan, X. Zheng, A. Johnston, Y.-K. Wang, C. Zhou, Y. Dong, B. Chen, H. Chen, J. Z. Fan, G. Sharma, Sci. Adv. 2020, 6, eabb0253. [245] M. A. Kamarudin, D. Hirotani, Z. Wang, K. Hamada, K. Nishimura, Q. Shen, T. Toyoda, S. Iikubo, T. Minemoto, K. Yoshino, J. Phys. Chem. Lett. 2019, 10, 5277. [246] B. Li, H. Di, B. Chang, R. Yin, L. Fu, Y. N. Zhang, L. Yin, Adv. Funct. Mater. 2021, 31, 2007447. [247] F. Wang, X. Jiang, H. Chen, Y. Shang, H. Liu, J. Wei, W. Zhou, H. He, W. Liu, Z. Ning, Joule 2018, 2, 2732. [248] C. Liang, H. Gu, Y. Xia, Z. Wang, X. Liu, J. Xia, S. Zuo, Y. Hu, X. Gao, W. Hui, Nat. Energy 2021, 6, 38. [249] T. Li, Y. Wang, W. Zhu, Q. Dang, Y. Zhang, Y. Li, X. Deng, J. Mater. Chem. A 2022, 10, 14441. [250] Z. Wang, Q. Wei, X. Liu, L. Liu, X. Tang, J. Guo, S. Ren, G. Xing, D. Zhao, Y. Zheng, Adv. Funct. Mater. 2021, 31, 2008404. [251] S. Narra, C.-Y. Lin, A. Seetharaman, E. Jokar, E. W.-G. Diau, J. phys. Chem. Lett. 2021, 12, 12292. [252] X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang, W. Zhou, C. Wang, P. Cheng, Q. Chen, L. Chen, Nat. Commun. 2020, 11, 1245. [253] L. Lanzetta, J. M. Marin-Beloqui, I. Sanchez-Molina, D. Ding, S. A. Haque, ACS Energy Lett. 2017, 2, 1662. [254] H. Y. Liang, F. L. Yuan, A. Johnston, C. C. Gao, H. Choubisa, Y. Gao, Y. K. Wang, L. K. Sagar, B. Sun, P. C. Li, G. Bappi, B. Chen, J. Li, Y. K. Wang, Y. T. Dong, D. X. Ma, Y. N. Gao, Y. C. Liu, M. J. Yuan, M. I. Saidaminov, S. Hoogland, Z. H. Lu, E. H. Sargent, Adv Sci 2020, 7. [255] X. Wang, L. Liu, Z. Qian, C. Gao, H. Liang, J. Mater. Chem. C 2021, 9, 12079. [256] Z. Wang, F. Wang, B. Zhao, S. Qu, T. Hayat, A. Alsaedi, L. Sui, K. Yuan, J. Zhang, Z. Wei, J. Phys. Chem. Lett. 2020, 11, 1120. [257] F. Zhang, B. Cai, J. Song, B. Han, B. Zhang, H. Zeng, Adv. Funct. Mater. 2020, 2001732. [258] Y. Zhang, K. Sun, L. Song, H. Xu, X. Guo, S. Xu, Y. Xia, Y. Hu, F. Ma, J. lumin. 2022, 252, 119317. [259] T. Zhang, C. Zhou, X. Feng, N. Dong, H. Chen, X. Chen, L. Zhang, J. Lin, J. Wang, Nat. Commun. 2022, 13, 60. [260] H. Cheng, Y. Feng, Y. Fu, Y. Zheng, Y. Shao, Y. Bai, J. Mater. Chem. C 2022. [261] A. Liang, K. Wang, Y. Gao, B. P. Finkenauer, C. Zhu, L. Jin, L. Huang, L. J. A. C. I. E. Dou, Angew. Chem. 2021, 60, 8337. [262] S. Kahmann, H. Duim, H. H. Fang, M. Dyksik, S. Adjokatse, M. Rivera Medina, M. Pitaro, P. Plochocka, M. A. Loi, Adv. Funct. Mater. 2021, 31, 2103778. [263] T. L. Leung, I. Ahmad, A. A. Syed, A. M. C. Ng, J. Popović, A. B. Djurišić, Commun. Mater. 2022, 3, 63. [264] X. Huang, W. Liu, W. Wang, Y. Lu, J. Dong, Y. Li, D. Wei, B. Qiao, S. Zhao, Z. Xu, RSC Adv. 2022, 12, 3081. [265] X. Qu, N. Zhang, R. Cai, B. Kang, S. Chen, B. Xu, K. Wang, X. W. Sun, Appl. Phys. Lett. 2019, 114. [266] M. Xu, Q. Peng, W. Zou, L. Gu, L. Xu, L. Cheng, Y. He, M. Yang, N. Wang, W. Huang, Appl. Phys. Lett. 2019, 115. [267] Y.-H. Kim, J. Park, S. Kim, J. S. Kim, H. Xu, S.-H. Jeong, B. Hu, T.-W. Lee, Nat. Nanotechno. 2022, 17, 590. [268] X. Qian, Y. Shen, L.-J. Zhang, M. Guo, X.-Y. Cai, Y. Lu, H. Liu, Y.-F. Zhang, Y. Tang, L. Chen, ACS Nano 2022, 16, 17973. [269] T. Ye, X. Wang, K. Wang, S. Ma, D. Yang, Y. Hou, J. Yoon, K. Wang, S. Priya, ACS Energy Lett. 2021, 6, 1480. [270] S. Tan, I. Yavuz, N. De Marco, T. Huang, S. J. Lee, C. S. Choi, M. Wang, S. Nuryyeva, R. Wang, Y. Zhao, Adv Mater 2020, 32, 1906995. [271] S. Zou, Y. Liu, J. Li, C. Liu, R. Feng, F. Jiang, Y. Li, J. Song, H. Zeng, M. Hong, J Am Chem Soc 2017, 139, 11443. [272] J.-S. Yao, J. Ge, K.-H. Wang, G. Zhang, B.-S. Zhu, C. Chen, Q. Zhang, Y. Luo, S.-H. Yu, H.-B. Yao, J Am Chem Soc 2019, 141, 2069. [273] J.-S. Yao, J. Ge, B.-N. Han, K.-H. Wang, H.-B. Yao, H.-L. Yu, J.-H. Li, B.-S. Zhu, J.-Z. Song, C. Chen, J Am Chem Soc 2018, 140, 3626. [274] J. Cao, S. X. Tao, P. A. Bobbert, C. P. Wong, N. Zhao, Adv Mater 2018, 30, 1707350. [275] M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J. M. Richter, M. Alsari, E. P. Booker, E. M. Hutter, A. J. Pearson, Nature 2018, 555, 497. [276] J.-N. Yang, Y. Song, J.-S. Yao, K.-H. Wang, J.-J. Wang, B.-S. Zhu, M.-M. Yao, S. U. Rahman, Y.-F. Lan, F.-J. Fan, J Am Chem Soc 2020, 142, 2956. [277] M. Abdi-Jalebi, Z. Andaji-Garmaroudi, A. J. Pearson, G. Divitini, S. Cacovich, B. Philippe, H. Rensmo, C. Ducati, R. H. Friend, S. D. Stranks, Acs Energy Lett 2018, 3, 2671. [278] S. Zhuang, X. Ma, D. Hu, X. Dong, B. Zhang, Ceramics International 2018, 44, 4685. [279] Z. Wang, Z. Luo, C. Zhao, Q. Guo, Y. Wang, F. Wang, X. Bian, A. Alsaedi, T. Hayat, Z. a. Tan, J. Phys. Chem. C 2017, 121, 28132. [280] Z. Shi, S. Li, Y. Li, H. Ji, X. Li, D. Wu, T. Xu, Y. Chen, Y. Tian, Y. Zhang, ACS nano 2018, 12, 1462. [281] J. Dong, F. Lu, D. Han, J. Wang, Z. Zang, L. Kong, Y. Zhang, X. Ma, J. Zhou, H. Ji, Angew. Chem. 2022, 134, e202210322. [282] Y. Jin, Z. K. Wang, S. Yuan, Q. Wang, C. Qin, K. L. Wang, C. Dong, M. Li, Y. Liu, L. S. Liao, Adv. Funct. Mater. 2020, 30, 1908339. [283] P. Pang, G. Jin, C. Liang, B. Wang, W. Xiang, D. Zhang, J. Xu, W. Hong, Z. Xiao, L. Wang, ACS Nano 2020, 14, 11420. [284] Y. Yan, Q. Zhang, Z. Wang, Q. Du, R. Tang, X. Wang, Crystals 2022, 12, 1286. [285] Z. Li, S. Chu, Y. Zhang, W. Chen, J. Chen, Y. Yuan, S. Yang, H. Zhou, T. Chen, Z. Xiao, Adv. Mater. 2022, 2203529. [286] J. Chen, J. Wang, X. Xu, J. Li, J. Song, S. Lan, S. Liu, B. Cai, B. Han, J. T. Precht, Nat. Photonics 2020, 1. [287] F. C. Liang, F. C. Jhuang, Y. H. Fang, J. S. Benas, W. C. Chen, Z. L. Yan, W. C. Lin, C. J. Su, Y. Sato, T. Chiba, Adv. Mater. 2022, 2207617. [288] A. Mohapatra, M. R. Kar, S. Bhaumik, Frontiers in Electronic Materials 2022, 2, 891983. [289] Y. Liu, Y. P. Gong, S. Geng, M. L. Feng, D. Manidaki, Z. Deng, C. C. Stoumpos, P. Canepa, Z. Xiao, W. X. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202208875. [290] R. Nie, R. R. Sumukam, S. H. Reddy, M. Banavoth, S. I. Seok, Energ. Environ. Sci. 2020, 13, 2363. [291] N. Ito, M. A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen, Y. Ogomi, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, J. Phys. Chem. Lett. 2018, 9, 1682. [292] X. Li, X. Gao, X. Zhang, X. Shen, M. Lu, J. Wu, Z. Shi, V. L. Colvin, J. Hu, X. Bai, Adv. Sci. 2021, 8, 2003334. [293] Y. Chen, J. Wu, S. Zhang, X. Zhu, B. Zou, R. Zeng, J. Phys. Chem. Lett. 2023, 14, 7108. [294] B. J. Moon, S. J. Kim, S. Lee, A. Lee, H. Lee, D. S. Lee, T. W. Kim, S. K. Lee, S. Bae, S. H. Lee, Adv Mater 2019, 31, 1901716. [295] X. Zhang, F. Wang, Y. Wang, X. Wu, Q. Ou, S. Zhang, The Journal of Physical Chemistry Letters 2023, 14, 5580. [296] Y. Li, T. Gao, Z. He, C. Shen, S. Zhou, M. Li, D. Zhang, Q. Zhang, Y. Fu, X. Mo, npj Flexible Electronics 2025, 9, 32. [297] J. H. Jang, S. Li, D. H. Kim, J. Yang, M. K. Choi, Adv. Electron. Mater. 2023, 9, 2201271. [298] J. Zhao, L. W. Lo, H. Wan, P. Mao, Z. Yu, C. Wang, Adv. Mater. 2021, 33, 2102095. [299] L. Zhao, N. Rolston, K. M. Lee, X. Zhao, M. A. Reyes‐Martinez, N. L. Tran, Y. W. Yeh, N. Yao, G. D. Scholes, Y. L. Loo, Adv. Funct. Mater. 2018, 28, 1802060. [300] H. Liu, G. Shi, R. Khan, S. Chu, Z. Huang, T. Shi, H. Sun, Y. Li, H. Zhou, P. Xiao, Adv. Mater. 2024, 36, 2309921. [301] S. Chu, W. Chen, Z. Fang, X. Xiao, Y. Liu, J. Chen, J. Huang, Z. Xiao, Nat. Commun. 2021, 12, 147. [302] S. Chu, Y. Zhang, P. Xiao, W. Chen, R. Tang, Y. Shao, T. Chen, X. Zhang, F. Liu, Z. Xiao, Adv. Mater. 2022, 34, 2108939. [303] C. Liu, R. Lin, Y. Wang, H. Gao, P. Wu, H. Luo, X. Zheng, B. Tang, Z. Huang, H. Sun, Angew. Chem. 2023, 62, e202313374. [304] B. Yu, F. Tang, Y. Yang, J. Huang, S. Wu, F. Lu, W. Duan, A. Lambertz, K. Ding, Y. Mai, Adv. Mater. 2023, 35, 2202447. [305] X. Jiang, S. Qin, L. Meng, G. He, J. Zhang, Y. Wang, Y. Zhu, T. Zou, Y. Gong, Z. Chen, Nature 2024, 635, 860. [306] Z. He, R. Yu, Y. Dong, R. Wang, Y. Zhang, Z. a. Tan, Nat. Commun. 2025, 16, 1773. [307] Z. Zhang, W. Chen, X. Jiang, J. Cao, H. Yang, H. Chen, F. Yang, Y. Shen, H. Yang, Q. Cheng, Nat. Energy 2024, 9, 592. [308] S. Wu, Y. Yan, J. Yin, K. Jiang, F. Li, Z. Zeng, S.-W. Tsang, A. K.-Y. Jen, Nat. Energy 2024, 1. [309] Y. Cho, Z. Sun, G. Li, D. Zhang, S. Yang, T. J. Marks, C. Yang, A. Facchetti, JACS 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99127 | - |
| dc.description.abstract | 金屬鹵化物鈣鈦礦發光二極體(Perovskite light-emitting diodes, PeLEDs)因具備高螢光量子產率(photoluminescence quantum yield, PLQY)、窄半高寬(FWHM)發光、能階可調控性,以及可利用低溫溶液製程等優勢,成為次世代高效率顯示與照明應用的重要候選材料。不同維度的鈣鈦礦材料在光電特性與結構穩定性上展現出顯著差異,進一步決定其在元件應用中的潛力與挑戰。本論文針對三維(3D)、準二維(quasi-2D)以及二維錫基(2D Sn-based)無鉛鈣鈦礦等三種系統,分別發展出具針對性的材料設計與元件工程策略,期以提升PeLEDs在效率、穩定性與實用性上的綜合表現。
在3D全無機PeLED方面,因其具備高載流子遷移率與優異的載子傳輸特性,曾為早期研究之重點,但卻易受濕氣與熱的影響而導致結構崩解與效率衰退。本研究導入具共軛主鏈與極性橋接官能基的高分子中間層,應用於PEDOT:PSS與CsPbBr₃之間,以改善能階對齊、提升界面浸潤性並優化鈣鈦礦薄膜之結晶品質。實驗結果顯示,在最佳化條件下,此設計可將元件之最高亮度提升六倍,外部量子效率(external quantum efficiency, EQE)亦提高至原始裝置的3.6倍,證實高分子中間層於界面修飾之成效。 進一步也針對準二維鈣鈦礦之挑戰來提出解決方法,本研究聚焦於其相位分佈控制與電子注入界面之工程優化。quasi-2D材料內部同時存在多個不同n值的相(n = 1至∞),彼此間之能量傳遞與載子注入效率對元件性能影響深遠。透過引入天然環狀分子添加劑α-與β-環糊精(cyclodextrin)成功調控不同n相之相對含量,其中α-CD可抑制低n相形成、而β-CD有助於穩定中n相並促進能量傳遞效率。此外,利用具有籠狀結構的cryptand分子進一步強化配位能力與晶體均勻性,有效壓抑非輻射複合路徑。配合具導電性且具缺陷鈍化能力之磷氧化物(PPT與PPF)界面層設計,本研究成功製備出亮度達73,897 cd/m²、EQE超過10%的quasi-2D PeLED元件,並顯著抑制高電流密度下的效率衰退(efficiency roll-off),展現跨尺度相位與界面工程之協同優勢。 而在面對鉛毒性所帶來之環境與健康疑慮,無鉛鈣鈦礦材料逐漸受到重視,其中以錫(Sn)為B位金屬的二維鈣鈦礦材料具備可比擬鉛材料之能帶結構與載流子特性。然而,Sn²⁺易氧化為Sn⁴⁺且晶化速率過快,導致薄膜缺陷密度高、元件穩定性差。為克服此一挑戰,本研究提出結合天然抗氧化劑維生素C(ascorbic acid, VitC)與螯合劑18-Crown-6之雙添加劑策略,兩者可分別抑制氧化反應與捕捉過量離子,有效降低缺陷密度與提升薄膜緻密性與均勻性。實驗結果顯示,優化後元件之EQE由原始的0.21%提升至1.87%,亮度提升近四倍,並展現良好之操作穩定性,證明此策略於無鉛紅光PeLED具高度潛力。 綜合以上,本研究針對不同維度鈣鈦礦材料發展出具系統性與針對性的設計策略,涵蓋高分子界面修飾、環狀分子相位調控、無鉛系統穩定化與多功能界面層應用,成功實現具高效率與高穩定性之PeLED元件,為推動鈣鈦礦光電材料實用化與環境友善化之重要里程碑。 | zh_TW |
| dc.description.abstract | Metal halide perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for next-generation display and lighting applications due to their high photoluminescence quantum yield (PLQY), narrow emission bandwidths, and low-temperature solution processability. However, PeLEDs based on different perovskite dimensionalities—three-dimensional (3D), quasi-two-dimensional (quasi-2D), and two-dimensional (2D) lead-free tin-based systems—each face distinct challenges related to efficiency, stability, and material control. This dissertation presents a series of dimension-specific material and device engineering strategies aimed at overcoming these bottlenecks and improving the performance of PeLEDs.
In the 3D PeLED system, we introduce conjugated polymeric interlayers bearing polar-bridged side groups to tailor the energy-level alignment and crystallization behavior between PEDOT:PSS and CsPbBr₃. This interfacial modification significantly enhances hole injection and film morphology, yielding a sixfold increase in luminance and a 3.6-fold improvement in external quantum efficiency (EQE) compared to the control device. For quasi-2D perovskites, phase control and interfacial optimization are crucial. We employed cyclic molecular additives such as α-/β-cyclodextrins and cryptands to regulate the distribution of different n-phases, enhance energy transfer, and suppress nonradiative losses. Furthermore, we introduced multifunctional phosphine oxide additives (PPT and PPF) at the electron transport interface to facilitate electron injection and defect passivation. This comprehensive approach enabled quasi-2D PeLEDs to achieve an EQE exceeding 10% and luminance over 73,000 cd/m², while effectively mitigating efficiency roll-off under high bias conditions. To address lead toxicity, we explored 2D Sn-based PeLEDs as an alternative. A dual-additive strategy combining ascorbic acid (Vitamin C) and 18-crown-6 was developed to prevent Sn²⁺ oxidation and trap formation, thereby improving film quality and device stability. The resulting devices exhibited an enhanced EQE from 0.21% to 1.87%, along with improved operational stability, validating this approach for efficient red-emitting, lead-free PeLEDs. In summary, this study provides a comprehensive framework for dimension-dependent optimization of perovskite optoelectronic materials, integrating additive engineering, phase control, and interfacial design. The results demonstrate significant advances in efficiency, stability, and structural tunability, paving the way toward practical and environmentally friendly PeLED technologies. Overall, this work presents a unified framework for optimizing perovskite LEDs across varying structural dimensionalities, offering practical solutions to enhance efficiency, phase purity, and operational robustness for future commercial applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:29:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:29:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iv ABSTRACT vi CONTENTS viii LIST OF FIGURES xii LIST OF TABLES xxiv Chapter 1 Introduction 1 1.1 Introduction of Perovskites 1 1.2 Introduction of Perovskite Light-Emitting Diodes (PeLEDs) 5 1.3 Research Objectives for Dimension-Specific Strategies to Enhance the Performance of Perovskite Light-Emitting Diodes 7 1.4 Tables and Figures 9 Chapter 2 3D All-inorganic Perovskite Light-Emitting Diodes 14 2.1 Engineering of 3D All-inorganic Perovskite Light-Emitting Diodes by Interlayer Modification 14 2.1.1 Background 14 2.1.2 Experimental Section 16 2.1.3 Results and Discussion 21 2.1.4 Summary 31 2.1.5 Tables and Figures 32 Chapter 3 Quasi-2D Perovskite Light-Emitting Diodes 48 3.1 Engineering of Perovskite Light-Emitting Diodes Based on Quasi-2D Perovskites Formed by Diamine Cations 48 3.1.1 Background 48 3.1.2 Experimental Section 52 3.1.3 Results and Discussion 55 3.1.4 Summary 62 3.1.5 Tables and Figures 63 3.2 Regulating the Phase Distribution of Quasi-2D Perovskites Using Cyclic Molecules Toward Improved Light-Emitting Performance 75 3.2.1 Background 75 3.2.2 Experimental Section 78 3.2.3 Results and Discussion 80 3.2.4 Summary 86 3.2.5 Tables and Figures 87 3.3 Realizing High Brightness Quasi-2D Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-Off via Multifunctional Interface Engineering 100 3.3.1 Background 100 3.3.2 Experimental Section 103 3.3.3 Results and Discussion 105 3.3.4 Summary 117 3.3.5 Tables and Figures 118 Chapter 4 2D Lead-Free Perovskite Light-Emitting Diodes 130 4.1 Improving Performance of Lead-Free Two-Dimensional Pure Red Perovskite Light Emitting Diodes via Natural Antioxidants Additive 130 4.1.1 Background 130 4.1.2 Experimental Section 133 4.1.3 Results and Discussion 135 4.1.4 Summary 145 4.1.5 Tables and Figures 147 Chapter 5 Conclusion and Future Works 160 5.1 Conclusion 160 5.2 Future Works 161 5.2.1 Stability of PeLEDs 162 5.2.2 Full-Color and White PeLED Integration 163 5.2.3 Exploration of Environment-Friendly Materials for PeLEDs 165 5.2.4 Integration with Flexible and Large-Area Substrates 166 Chapter 6 (Appendix) Perovskite Tandem Solar Cells 168 6.1 Optimization of ALD SnO2 in All-Perovskite Tandem Solar Cells 168 6.1.1 Introduction 168 6.1.2 Experimental Section 171 6.1.3 Results and Discussion 175 6.1.4 Summary and Future works 179 6.1.5 Tables and Figures 181 6.2 Improving the Performance of Perovskite/Organic Tandem Solar Cells 188 6.2.1 Introduction 188 6.2.2 Experimental Section 191 6.2.3 Results and Discussion 195 6.2.4 Summary and Future works 200 6.2.5 Tables and Figures 201 REFERENCE 207 PUBLICATION LIST 226 | - |
| dc.language.iso | en | - |
| dc.subject | 鈣鈦礦材料 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | 添加劑工程 | zh_TW |
| dc.subject | 界面改善工程 | zh_TW |
| dc.subject | Interface Engineering | en |
| dc.subject | Perovskites | en |
| dc.subject | Light-Emitting Diodes | en |
| dc.subject | Additive Engineering | en |
| dc.title | 不同維度鈣鈦礦材料於發光二極體之應用 | zh_TW |
| dc.title | Applications of Perovskite Materials with Different Dimensionalities in Light-Emitting Diodes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 郭宗枋;趙宇強;呂宥蓉;黃裕清;廖英志;林皓武;陳嘉晉 | zh_TW |
| dc.contributor.oralexamcommittee | Tzung-Fang Guo;Yu-Chiang Chao;Yu-Jung Lu;Yu-Ching Huang;Ying-Chih Liao;Hao-Wu Lin;Chia-Chin Chen | en |
| dc.subject.keyword | 鈣鈦礦材料,發光二極體,添加劑工程,界面改善工程, | zh_TW |
| dc.subject.keyword | Perovskites,Light-Emitting Diodes,Additive Engineering,Interface Engineering, | en |
| dc.relation.page | 229 | - |
| dc.identifier.doi | 10.6342/NTU202502560 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 15.08 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
