請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9911完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖中明(Chung-Min Liao) | |
| dc.contributor.author | Sheng-Feng Jau | en |
| dc.contributor.author | 趙聖峰 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:48:57Z | - |
| dc.date.available | 2008-08-01 | |
| dc.date.available | 2021-05-20T20:48:57Z | - |
| dc.date.copyright | 2008-07-18 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-06-29 | |
| dc.identifier.citation | Agency for Toxic Substances and Disease Registry (ATSDR). 2003. Public Health Statement for zinc. CAS#7440-66-6 U.S. Public Health Service. Department of Health and Human Services.
Arnot JA, Gobas FAPC. 2006. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organism. Environmental Review 14: 257–297. Ashauer R, Boxall A, Brown C. 2006. Predicting effects on aquatic organisms from fluctuating or pulsed exposure to pesticides. Environmental Toxicology and Chemistry 25: 1899–1912. Baines SB, Fisher NS. 2008. Modeling the effect of temperature on bioaccumulation of metals by a marine bioindicator organism, Mytilus edulis. Environmental Science and Technology 42: 3277–3282. Barber MC. 2003. A review and comparison models for predicting dynamic chemical bioconcentration in fish. Environmental Toxicology and Chemistry 22: 1963–1992. Barron MG. 1990. Bioconcentration. Environmental Science and Technology 24: 1612–1618. Bellissant E, Sebille V, Paintaud G. 1998. Methodological issues in pharmacokinetic–pharmacodynamic modeling. Clinical Pharmacokinetics 35: 151–166. Bilos C, Colombo JC, Presa MJR. 1998. Trace metals in suspended particles, sediments and Asiatic clams (C. fluminea) of the Rio de la Plata Estuary, Argentina. Environmental Pollution 99: 1–11. Chen CJ, Chen CL, Hsu LY, Chou WL, Lin YC, Tseng MP, Chiou HY, Hsueh YM. 2001. Biological gradient between long-term arsenic exposure and cancer risk in Taiwan. Toxicology 164: 17–18. Chen KP, Wu HY. 1962. A study of source of drinking water in relation to the disease. Journal of the Formosan Medical Association 61: 611–618. Chou BYH, Liao CM, Lin MC, Cheng HH. 2006. Toxicokinetics/toxicodynamics of arsenic for fanned juvenile milkfish Chanos chanos and human consumption risk in BFD-endemic area of Taiwan. Environment International 32: 545–553. Croteau MN, Luoma SN, Topping BR, Lopez CB. 2004. Stable metal lsotopes reveal copper accumulation and less dynamics in the freshwater bivalve Corbicula. Environmental Science and Technology 38: 5002–5009. Curtis TM, Williamson R, Depledge MH. 2000. Simultaneous, long–term monitoring of valve and cardiac activity in the blue mussel Mytilus edulis exposed to copper. Marine Biology 136: 837–846. Davenport GM, Boling JA, Schillo KK, Aaron DK. 1990. Nitrogen–metabolism and somatotropin secretion in lambs receiving arginine and ornithine via abomasal infusion. Journal of Animal Science 68: 222–232. Dell’Omo M. 2002. Behavioural ecotoxicology. Chichester, New York., pp. 463. Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR. 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environmental Toxicology Chemistry 10: 1541–1583. Diniz MS, Santos HM, Costa PM, Peres I, Costa MH, Capelo JL. 2007. Metallothionein responses in the Asiatic clam (Cubicula alumina) after exposure to trivalent arsenic. Biomarkers 12: 589–598. Doherty FG, Cherry DS, Cairns J. 1987. Valve closure responses of the Asiatic clam C. fluminea exposure to cadmium and zinc. Hydrobiologia 153: 159–167. Farrington JW, Goldberg ED, Risebrough RW, Martin JH, Bower VT. 1983. U.S. “Mussel Watch” 1976–1978: An overview of the trace–metal, DDE, PCB, hydrocarbon and artificial radionuclide data. Environmental Science and Technology 17: 490–496. Finney DJ. 1971. Probit analysis, 3rd ed, Cambridge University Press. London. Fournier E, Tran D, Denison F, Massabuau JC, Garnier–Laplace J. 2004. Valve closure response to uranium exposure for a freshwater bivalve (Corbicula fluminea): quantification of the influence of pH. Environmental Toxicology and Chemistry 23: 1108–1114. Fraysse B, Baudin JP, Garnier–Laplace J, Adam C, Boudou A. 2002. Effects of Cd and Zn waterborne exposure on the uptake and depuration of 57Co, 110mAg and 134Cs by the Asiatic clam (Corbicula fluminea) and the zebra mussel (Dreissena polymorpha) – whole organism study. Environmental Pollution 118: 297–306. Fraysse B, Baudin JP, Garnier-Laplace J, Boudou A, Ribeyre F, Adam C. 2000. Cadmium uptake by Cubicula flumina and Dreissena polymorpha: Effects of pH and temperature. Bulletin of Environmental Contamination and Toxicology 65: 638–645. Garcia-March JR, Solsona MAS, Garcia-Carrascosa AM. 2008. Shell gaping behaviour of Pinna nobilis L., 1758; circadian and circalunar rhythms revealed by in situ monitoring. Marine Biology 153: 689–698. Geyer HJ, Rimkus GG, Scheunert I, Kaune A, Kettrup KWSA, Zeeman M, Muir DCG, Hansen LG, Mackay D. 2001. Bioaccumulation and occurrence of endocrine–disrupting chemicals (EDCs), persistent organic pollutants (POPs), and other organic compounds in fish and other organisms including humans. In: Beek B (Ed), The handbook of environmental chemistry. Springer–Verlag. Berlin., pp. 1–166. Ham KD, Peterson MJ. 1994. Effect of fluctuating low–level chlorine concentration on valve movement behaviour of the Asiatic clam (Corbicula fluminea). Environmental Toxicology and Chemistry 13: 493–498. Han KN, Lee SW, Wang SY. 2008. The effect of temperature on the energy budget of the Manila clam, Ruditaper philippinarum. Aquaculture International 16: 143–152. Heininen J, Kukkonen JVK, Holopainen IJ. 2001. Temperature- and parasite-induced change in toxicity and lethal body burdens of pentachlorophenol in the freshwater clam Pisidium amnicum. Environmental Toxicology and Chemistry 20: 2778–2784. Heinrich–Hirsch B, Madle S, Oberemm A, Gundert–Remy U. 2001. The use of toxicodynamics in risk assessment. Toxicology Letters 120: 131–141. Hill AV, 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Journal of Physiology 4: 4–7. Huang YK, Lin KH, Chen HW, Chang CC, Liu CW, Yang MH, Hsueh YM. 2003. Arsenic species contents at aquaculture farm and in farmed mouthbreeder (Oreochromis mossambicus) in bkackfoot disease hyperendemic areas. Food and Chemical Toxicology 41: 1491–1500. Inza B, Ribeyre F, Boudou A. 1998. Dynamics of cadmium and mercury compounds (inorganic mercury or methylmercury): Uptake and depuration in Corbicula fluminea. Effects of temperature and pH. Aquatic Toxicology 43: 273–285. Inza B, Ribeyre F, Maury–Brachet R, Boudou A. 1997. Tissue distribution of inorganic mercury, methylmercury and cadmium in the Asiatic clam (Corbicula fluminea) in relation to the contamination levels of the water column and sediment. Chemosphere 35: 2817–2836. Johns C, Luoma SN. 1990. Arsenic in benthic bivalves of San Francisco Bay and the Sacramento San Joaquin River delta. Science of the Total Environment 97–98: 673–684. Kadar E, Salanki J, Jugdaohsingh R, Powell JJ, McCrohan CR, White KN. 2001. Avoidance response to aluminium in the freshwater bivalve Andonta cygnea. Aquatic Toxicology 55:137–148. Kavlock RJ, Plaab GL. 1995. Session summary: toxicodynamic interactive mechanisms. Toxicology 105: 235–236. LaBrecque JJ, Benzo Z, Alfonso JA, Cordoves–Manuelita–Quintal PR, Gomez CV, Marcano E. 2004. The concentrations of selected trace elements in clams, Trivela mactroidea along the Venezuelan coast in the state of Miranda. Marine Pollution Bulletin 49: 659–667. Leblanc GA. 1995. Trophic-level differences in the bioconcentration of chemicals: implications in assessing environmental biomagnifications. Environmental Science and Technology 29: 154–160. Lee BG, Lee JS, Luoma SN. 2006. Comparison of selenium bioaccumulation in the clams Corbicula fluminea and Potamocorbula amurensis: A bioenergetic modeling approach. Environmental Toxicology and Chemistry 25: 1933–1940. Lee JH, Peter FL, Koh CH. 2002. Prediction of time–dependent PAH toxicity in Hyalella azteca using a damage assessment model. Environment Science and Technology 36: 3131–3138. Legierse KCHM, Verhaar HJM, de Bruijn JHM, Herman JLM. 1999. Analysis of the time–dependent acute aquatic toxicity of organophosphorus pesticides: the critical target occupation model. Environmental Science and Technology 33: 917–925. Li Y, YU ZM, Song XX, Mu QL. 2006. Trace metal concentrations in suspended particles, sediments and clams (Ruditapes philippinarum) from Jiaozhou Bay of China. Environmental Monitoring and Assessment 121: 149–501. Liao CM, Chen BC, Singh S, Lin MC, Han BC. 2003. Acute toxicity and bioaccumulation of arsenic in tilapia Oreochromis mossambicus from blackfoot disease area in Taiwan. Environmental Toxicology 18: 252–259. Liao CM, Liang HM, Chen BC, Singh S, Tsai JW, Chou YH, Lin WT. 2005. Dynamical coupling of PBPK/PD and AUC–based toxicity models for arsenic in tilapia Oreochromis mossambicus from blackfoot disease area in Taiwan. Environmental Pollution 135: 221–233. Liao CM, Lin MC. 2001. Acute toxicity modeling of rainbow trout and silver sea bream exposed to waterborne metals. Environmental Toxicology 16: 349–360. Liao CM, Tsai JW, Ling MP, Liang HM, Chou YH, Yang PT. 2004. Organ-specific toxicokinetics and dose-response of arsenic in tilapia Oreochromis mossambicus. Archives of Environmental Contamination and Toxicology 47: 502–510. Liao CM, Yeh CH. 2007. Hard clam Meretrix lusoria to Hg-stressed birnavirus susceptibility revealed though stage-structured disease transmission dynamics. Aquaculture 264: 101–118. Lin MC, Liao CM, Liu CW, Singh S. 2001. Bioaccumulation of arsenic in aquacultural large-scale mullet Liza macrolepis from blackfoot disease area in Taiwan. Bulletin of Environmental Contamination and Toxicology 67: 91–97. Lin MC, Liao CM. 1999. 65Zn(II) accumulation in the soft tissue and shell of abalone Haliotis diversicolor supertexta via the alga Gracilaria tenuistipitata var. liui and the ambient water. Aquaculture 178: 89–101. Lin MC, Lin YH, Cheng HH, Chen YC, Liao CM, Shao KT. 2005. Risk assessment of arsenic exposure from consumption of cultured milkfish, Chamos chanos (Forsskål), from the arsenic–contaminated area in southwestern Taiwan. Bulletin of Environmental Contamination and Toxicology 75: 637–644. Liu CW, Huang FM, Hsueh YM. 2005. Revised cancer risk assessment of inorganic arsenic upon consumption of tilapia (Oreochromis mossambicus) from bkackfoot disease hyperendemic areas. Bulletin of Environmental Contamination and Toxicology 74: 1037–1044. Liu CW, Liang CP, Huang FM, Hsueh YM. 2006. Assessing the human health risks from exposure of inorganic arsenic through oyster (Crassostrea gigas) consumption in Taiwan. Science of the Total Environment 361: 57–66. Liu CW, Liang CP, Lin KH, Jang CS, Wang SW, Huang YK, Hsueh YM. 2007. Bioaccumulation of arsenic compounds in aquacultural clams (Meretrix lusoria) and assessment of potential carcinogenic risk to human health by ingestion. Chemosphere 69: 128–134. Marie V, Baudrimont M, Boudou A. 2006. Cadmium and Zinc bioaccumulation and metallothionein response in two freshwater bivalves (Cubicula alumina and Dreissena polymorpha) transplanted along a polymetallic gradient. Chemosphere 65: 609–617. Marigomez I, Soto M, Cajaraville MP, Angulo E, Giamberini L. 2002. Cellular and subcellular distribution of metals in mollusks. Microscopy Research and Technique 56: 358–392. Markich SJ, Brown PL, Jeffree RA. 2001. Divalent metal accumulation in freshwater bivalves: An inverse relationship with metal phosphate solubility. Science of the Total Environment 275: 27–41. Marr JCA, Hansen JA, Meyer JS, Cacela D, Podrabsky T, Lopton J, Berman HL. 1998. Toxicity of cobalt and copper to rainbow trout: application of a mechanistic model for predicting survival. Aquatic Toxicology 43: 225–238. Matthews MA, McMahon RF. 1999. Effects of temperature and temperature acclimation on survival of zrbra mussels (Dreissena polymorpha) and Asian clams (Corbicula fluminea) under extreme hypoxia. Journal of Molluscan Studies 65: 317–325. McCarty LS, Mackay D. 1993. Enhancing ecotoxicological modeling and assessment. Environmental Science and Technology 27: 1717–1728. Mehler WT, Schuler LJ, Lydy MJ. 2008. Examining the joint toxicity of chlorpyrifos and atrazine in the aquatic species: Lepomis macrochirus, Pimephales promelas and Chironomus tentans. Environmental Pollution 152: 217–224. Moriarty F. 1975. “Exposure and residues” in organochlorine insecticides: persistent organic pollutants. Moriarty F (Ed), Academic Press. UK. Pp. 29–72. Mubiana VK, Blust R. 2007. Effects of temperature on scope for growth and accumulation of Cd, Co, Cu and Pb by the marine bivalve Mytilus edulis. Marine Environmental Research 63: 219 – 235. Narbonne JF, Djomo JE, Ribeira FV, Garrigues P. 1999. Accumulation kinetics of polycyclic aromatic hydrocarbons adsorbed to sediment by the mollusk Corbicula fluminea. Ecotoxicology and Environment Safety 42: 1–8. Newton TJ, Cope WG. 2007. Biomarker responses of unionid mussels to environmental contaminants. In: Farris JL, van Hassel JH (Eds.), Freshwater Bivalve Ecotoxicology. SETAC, CRC press Inc., Boca Raton., pp. 169–213. Ortmann , Grieshaber MK. 2003. Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea. Journal of Experimental Biology 206, 4167–4178. Plette ACC, Nederlof MM, Temminghoff EJM, van Riemsdijk WH. 1999 Bioavailability of heavy metals in terrestrial and aquatic systems: A quantitative approach. Environment Toxicology and Chemistry 18: 1882–1890. Ramos EU, Vermeer C, Vaes WHJ, Hermens JLM. 1998. Acute toxicity of polar narcotics to three aquatic species (Daphnia magna, Poecilia reticulate and Lymnaea stagnalis) and its relation to hydrophobicity. Chemosphere 37: 633–650. Santos HM, Diniz MS, Costa PM, Peres I, Costa MH, Alves S, Capelo JL. 2007. Toxicological effects and bioaccumulation in the freshwater clam (Cubicula alumina) following exposure to trivalent arsenic. Environmental Toxicology 22: 502–509. Schuler LJ, Landrum PF, Lydy MJ. 2004. Time-dependent toxicity of fluoranthene to freshwater invertebrates and the role of biotransformation on lethal body residues. Environmental Science and Technology 38: 6247–6255. Schuler LJ, Landrum PF, Lydy MJ. 2007. Response spectrum of fluoranthene and pentachlorobenzene for the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry 26: 139–148. Sebesvari Z, Ettwig KF, Emons H. 2005. Biomonitoring of tin and arsenic in different compartments of a limnic ecosystem with emphasis on Cubicula alumina and Dikerogammarus villosus. Journal of Environmental Monitoring 7: 203–207. Sluyrs H, van Hoof F, Cornet A, Paulussen J. 1996. A dynamic new alarm system for use in biological early warning systems. Environmental Toxicology and Chemistry 15: 1317–1323. Smith AH, Lopipero PA, Bates MN, Steinmaus CM. 2002. Arsenic epidemiology and drinking water standards. Science 296: 2145–2146. Tas JW, Keizer A, Opperhuizen A. 1996. Bioaccumulation and lethal body burden of four triorganotin compounds. Bulletin of Environmental Contamination and Toxicology 57: 146–154. Tas JW, Seinen W, Opperhuizen A. 1991. Lethal body burden of tripenyltin chloride In fish: preliminary results. Comparative Biochemistry and Physiology. C, Comparative Pharmacology and Toxicology 100: 59–60. Thorsen WA, Cope WG, Shea D. 2007. Toxicokinetics of environmental contaminants in freshwater bivalves. In: Farris JL, van Hassel JH (Eds.), Freshwater Bivalve Ecotoxicology. SETAC, CRC press Inc., Boca Raton., pp. 169–213. Tran D, Boudou A, Massabuau JC. 2001. How water oxygenation level influences cadmium accumulation pattern in the Asiatic clam Cubicula fluminea: a laboratory and field study. Environmental Toxicology and Chemistry 20: 2073–2080. Tran D, Boudou A, Massabuau JC. 2002. Relationship between feeding-induced ventilatory activity and bioaccumulation of dissolved and algal-bound cadmium in the Asiatic clam Cubicula fluminea. Environmental Toxicology and Chemistry 21: 327–333. Tran D, Ciret P, Ciutat A, Durrieu G, Massabuau JC. 2003. Estimation of potential and limits of bivalve closure response to detect contaminants: application to cadmium. Environmental Toxicology and Chemistry 22: 914–920. Tran D, Fournier E, Durrieu G, Massabuau JC. 2004. Copper detection in the Asiatic clam Corbicula fluminea: optimum valve closure response. Aquatic Toxicology 66: 333–343. Tran D, Fournier E, Durrieu G, Massabuau JC. 2007. Inorganic mercury detection by valve closure response in the freshwater clam Corbicula fluminea: integration of time and water metal concentration changes. Environmental Toxicology and Chemistry 26: 1545–1551. Tsai JW, Liao CM. 2006. A dose-based modeling approach for accumulation and toxicity of arsenic in tilapia Oreochromis mossambicus. Environmental Toxiology 21: 8-21. U.S. Environmental Protection Agency (USEPA). 1991. Methods for measuring the acute toxicity of effluents and receiving water to freshwater and marine organism. EPA 600–4–90–027. Publication, Cincinnati, OH. U.S. Environmental Protection Agency (USEPA). 1995. Water quality criteria documents for the protection of aquatic life in ambient water. EPA 820–B–96–001. Office of Water, Washington, DC. Unlu MY, Fowler SW. 1979. Factors affecting the flux of arsenic through the mussel Mytilus galloprovincialis. Marine Biology 51: 209–219. Venitz J. 1995. Pharmacokinetic–pharmacodynamic modeling of reversible drug effect. In: Derendorf H, Hochhaus G (Eds.), Handbook of pharmacokinetic/ pharmacodynamic correlation, CRC Press. FL., pp. 1–34. Vidal ML, Basseres A, Narbonne JF. 2002. Influence of temperature, pH, oxygenation, water-type and substrate on biomarker responses in the freshwater clam Cubicula alumina (Muller). Comparative Biochemistry and Physiology Part C 132: 93–104. Vigano L, Farkas A, Guzzella L, Roscioli C, Erratico C. 2007. The accumulation levels of PAHs, PCBs and DDTs are related in an inverse way to the size of a benthic amphipod (Echinogammarus stammeri Karaman) in the River Po. Science of the Total Environment 373: 131–145. Wagner JG. 1968. Kinetics of pharmacologic response. I. Proposed relationships between response and drug concentration in the intact animal and man. Journal of Theoretical Biology 20: 173–201. Walsh K, Dunstan RH, Murdoch RN, Conroy BA, Roberts TK, Lake P. 1994. Bioaccumulation of pollutants and changes in population parameters in the gastropod mollusk Austrocochlea constricta. Archives of Environmental Contamination and Toxicology 26: 367-373. Wildridge PJ, Werner RG, Doherty FG, Neuhauser EF. 1998. Acute effects of potassium on filtration rates of adult zebra mussels, Dreissena polymorpha. Journal of Great Lakes Research 24: 629–636. 中央氣象局全球資訊網。2008。http://www.cwb.gov.tw。 江守山。2006。重金屬汙染事件頻傳有害國人健康:如何檢查及治療重金屬汙染。新光醫訊 173: 2. 行政院農委會漁業署。2006。http://www.fa.gov.tw。 行政院環境保護署。2008。http://www.epa.gov.tw。 何雲達。1995。貝類養殖(三)蜆。台灣農家要覽漁業篇,第252–255頁。豐年社,台北。 沈林琥。2001。生理為基礎之藥理動力及動態模式研析台灣烏腳病地區養殖魚類砷累積。台灣大學農業工程學研究所博士論文。195pp. 林志生。2003。飲用蜆萃出物對酒精性肝臟損傷之影響。中華民國營養學會雜誌,第28卷,第一期,第26–33頁。 林玠明。2007。結合銅可獲取率與淡水蜆之電生理反應模擬鰓膜介面交互作用。台灣大學生物環境系統工程學系碩士論文。113pp. 張崑雄,詹榮桂。1986。海域無脊椎動物。墾丁國家公園管理處。屏東。95pp. 陳立欣。2006。人工淡水蜆養殖的蜆貝與產於花蓮的黃金蜆。養魚世界,第一期,第104–107頁。 陸運姵。2005。台灣地區土壤重金屬汙染調查方法之相關性研究。逢甲大學環境工程與科學學系碩士論文。103pp. 蔡正偉。2005。以生物能量及生理為基礎之觀點探討砷毒性對吳郭魚之毒理動力/動態及作用模態。台灣大學生物環境系統工程學系博士論文。150pp. 蔡正勝。2006。95年度台灣地下水水質檢驗分析與評估。經濟部水利署水利規劃試驗所。649pp. 鄭旭惠。2003。台灣西南沿海地區地下水養殖虱目魚之砷累積研究。南華大學環境管理研究所碩士論文。46pp. 蕭一鵬。1987。台灣蜆(Corbicula fluminea)幼生之培育研究。輔仁大學生物學研究所碩士論文。77pp. 賴景陽。1988。台灣自然觀察圖鑑13貝類。渡假出版社有限公司。 魏彰郁,林晏熙,劉嘉剛。1985。重金屬毒性對淡水蝦及蜆的半致死濃度。行政院農委會水產試驗所試驗報告 38: 75–81。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9911 | - |
| dc.description.abstract | 本論文主要研究目的在於評估淡水蜆(Corbicula fluminea)暴露於砷之蜆殼律動毒性反應及生物動力。本研究完成實驗室14天之暴露試驗,並以一階單區塊模式擬合暴露試驗資料推估生物濃縮因子(bioconcentration factor, BCF)及排除速率常數(depuration rate constant, k2)等生物動力參數。本研究以關鍵體內濃度(critical body residue, CBR)模式、關鍵濃度曲線面積(critical area under the curve, CAUC)模式及損害評估模式(damage assessment model, DAM)等三種急性毒模式模擬7天急性砷毒生物試驗所求得之外部半致死濃度(external median lethal concentration, LC50)與時間關係的資料。本研究亦發展一套以感應線圈為基礎之蜆殼開闔監測技術特性化淡水蜆暴露於砷之每日蜆殼律動,並以三參數Hill模式推估半數蜆殼反應之效應濃度(median effect concentration, EC50)與時間之關係。結果顯示淡水蜆暴露於砷之BCF, k2及96小時LC50值分別為4.38 mL g-1、0.39 d-1 及 20.74 mg L-1。本研究採四參數正弦函數擬合無砷汙染下蜆殼每日開殼律動情形,同時結合Hill反應函數建構出淡水蜆暴露於砷之蜆殼每日律動方程式。結果指出一天中蜆殼開殼機率之最佳描述式可表示為 。經由推估所得砷暴露下時變之EC50值於整合時間10、15、30、60、120及300分鐘下分別為4.65、3.48、1.38、0.60、0.38及0.35 mg L-1。模擬結果顯示在蜆殼開殼時間為3:00 – 8:00時,在不同砷暴露濃度0.3 ~ 1.0 mg L-1下預測之淡水蜆每日蜆殼開殼變化與實驗結果非常穩合,其均方根誤差為4 – 10 %。此外,本研究結合DAM模式及Hill模式建構以內部效應濃度為基礎之時變致死率模式,進而推估出淡水蜆體內砷含量與致死率之關係。本研究指出淡水蜆暴露於砷將導致行為改變及死亡情形,於日後可提供淡水蜆養殖場一水域含砷之品質標準。 | zh_TW |
| dc.description.abstract | The purpose of this thesis is to assess the biokinetics and toxicological response of valve daily rhythms in the freshwater clam Corbicula fluminea following exposure to waterborne arsenic. We carried out a laboratory 14-day exposure experiment to obtain biokinetic parameters of bioconcentration factor (BCF) and depuration rate constant (k2). A one-compartment first-order model was used to fit the exposure data to estimate BCF and k2 values. The three acute toxicity models, critical body residue (CBR) model, critical area under the curve (CAUC) model and damage assessment model (DAM) were verified with time-dependent external median lethal concentration (LC50) data obtained from a 7-day acute arsenic toxicity bioassay. We develop an inductance-based valvometry technique to characterize the valve daily rhythms in C. fluminea in response to arsenic, and use a three-parameter Hill model to estimate intergration time-specific median effect concentration (EC50) values. The resulting values of BCF, k2 and 96-h LC50 of C. fluminea exposure to arsenic were 4.38 mL g-1, 0.39 d-1 and 20.74 mg L-1, respectively. We fitted valve opening daily rhythm in the absence of arsenic as the form of by 4-parameter sine function, linking Hill response function to predict valve daily rhythm dynamics in response to arsenic. The time-varying EC50s are estimated to be 4.65, 3.48, 1.38, 0.60, 0.38 and 0.35 mg L-1, respectively, at integration times of 10, 15, 30, 60, 120 and 300 min. The simulation results show that in the valve opening hours from 03:00 – 08:00 h the predicted daily rhythm changes in valve opening in response to different arsenic exposure concentrations ranging from 0.3 to 10 mg L-1 are notably agreed well with the observations justified by the root mean squared errors (RMSE) ranging from 4 – 10%. Moreover, we also kinetically linked a DAM model and a Hill sigmoid model to reconstruct an internal effect concentration based time-mortality model assessing the effect of soft tissue arsenic burden on the C. fluminea mortality. Our study indicates that C. fluminea exposed to arsenic will cause behavioral changes and mortality, suggesting that our results can provide the knowledge to establish the arsenic water quality criteria to clam farm. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:48:57Z (GMT). No. of bitstreams: 1 ntu-97-R95622016-1.pdf: 4257972 bytes, checksum: 3a9f38b0218fabe0e08af1a4ede06f51 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 III 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 X 第一章 前言 1 第二章 研究背景與目的 2 2.1 研究背景 2 2.2 研究目的 3 第三章 文獻回顧 4 3.1 淡水蜆生態毒理 4 3.1.1 淡水蜆(Corbicula fluminea) 4 3.1.2 淡水蜆對重金屬之生物累積 7 3.1.3 重金屬對蜆殼律動行為之改變 10 3.1.4 砷對淡水蜆之影響 14 3.2 生態毒理模式 16 3.2.1 生物累積模式 16 3.2.2 急性毒模式 18 3.2.3 劑量反應模式 23 3.2.4 急毒生物實驗 24 第四章 材料與方法 26 4.1 淡水蜆之採樣及馴養 28 4.2 暴露實驗 29 4.3 急毒生物試驗 30 4.4 蜆殼每日律動試驗 31 4.4.1 實驗裝置與原理 31 4.4.2 蜆殼行為生物試驗 36 4.5 化學分析與資料處理 37 4.5.1 總砷含量與離子分析 37 4.5.2 淡水蜆體內砷含量分析 38 4.5.3 淡水蜆殼律動資料處理 39 4.6 數學模式之建構與發展 41 4.6.1 生物累積模式之應用 41 4.6.2 內部效應濃度為基礎之時變致死率模式 43 4.6.3 蜆殼律動模式 45 第五章 結果與討論 48 5.1 淡水蜆對砷之生物濃縮 48 5.2 急毒效應 54 5.3 急性毒模式應用 60 5.4 內部半致死與時變致死率 64 5.5 淡水蜆每日律動特性 69 5.6 蜆殼行為效應 77 5.7 水域環境之重金屬監測 89 5.8 溫度對蜆殼行為及重金屬累積之影響 93 第六章 結論 97 第七章 未來研究建議 99 參考文獻 101 | |
| dc.language.iso | zh-TW | |
| dc.subject | 劑量 | zh_TW |
| dc.subject | 砷 | zh_TW |
| dc.subject | 生物累 | zh_TW |
| dc.subject | 積 | zh_TW |
| dc.subject | 急性毒 | zh_TW |
| dc.subject | 淡水蜆 | zh_TW |
| dc.subject | 反應 | zh_TW |
| dc.subject | 貝殼行 | zh_TW |
| dc.subject | 為活動 | zh_TW |
| dc.subject | 生物監測 | zh_TW |
| dc.title | 淡水蜆暴露於砷之殼律動毒性反應及生物動力 | zh_TW |
| dc.title | Biokinetics and toxicological response of valve daily rhythms in the freshwater clam Corbicula fluminea following exposure to arsenic | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉振宇(Chen-Wuing Liu),周立強(Li-John Jou),蔡正偉(Jeng-Wei Tsai),林明炤(Ming-Chao Lin) | |
| dc.subject.keyword | 淡水蜆,砷,生物累,積,急性毒,劑量,反應,貝殼行,為活動,生物監測, | zh_TW |
| dc.subject.keyword | Freshwater clam,Corbicula fluminea,Arsenic,Bioaccumulation,Acute toxicity,Dose-response,Valve movement,Biomonitor, | en |
| dc.relation.page | 114 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2008-06-30 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf | 4.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
