請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99119完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李昆達 | zh_TW |
| dc.contributor.advisor | Kung-Ta Lee | en |
| dc.contributor.author | 楊子耘 | zh_TW |
| dc.contributor.author | Tzu-Yun Yang | en |
| dc.date.accessioned | 2025-08-21T16:27:43Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | Sani, A., Qin, W. Q., Li, J. Y., Liu, Y. F., Zhou, L., Yang, S. Z., & Mu, B. Z. (2024). Structural diversity and applications of lipopeptide biosurfactants as biocontrol agents against phytopathogens: A review. Microbiological Research, 278, 127518. https://doi.org/10.1016/j.micres.2023.127518
Ali, N., Pang, Z., Wang, F., Xu, B., & El-Seedi, H. R. (2022). Lipopeptide biosurfactants from Bacillus spp.: Types, production, biological activities, and applications in food. Journal of Food Quality, 2022, Article 3930112. https://doi.org/10.1155/2022/3930112 Das, P., Mukherjee, S., & Sen, R. (2008). Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. Journal of Applied Microbiology, 104(6), 1675–1684. https://doi.org/10.1111/j.1365-2672.2007.03701.x Zhang, Y. Y., Liu, C., Dong, B., et al. (2015). Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation, 38, 756–764. https://doi.org/10.1007/s10753-014-9986-y Sachdev, D. P., & Cameotra, S. S. (2013). Biosurfactants in agriculture. Applied Microbiology and Biotechnology, 97, 1005–1016. https://doi.org/10.1007/s00253-012-4641-8 Banat, I. M. (1995). Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review. Bioresource Technology, 51(1), 1–12. https://doi.org/10.1016/0960-8524(94)00101-6 Falardeau, J., Wise, C., Novitsky, L., & Avis, T. J. (2013). Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. Journal of Chemical Ecology, 39(7), 869–878. https://doi.org/10.1007/s10886-013-0319-7 Meena, K. R., & Kanwar, S. S. (2015). Lipopeptides as the antifungal and antibacterial agents: Applications in food safety and therapeutics. BioMed Research International, 2015, 473050. https://doi.org/10.1155/2015/473050 Pilz, M., Cavelius, P., Qoura, F., Awad, D., & Brück, T. (2023). Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnology Advances, 67, 108210. https://doi.org/10.1016/j.biotechadv.2023.108210 Yang, J., Bahreman, A., Daudey, G., Bussmann, J., Olsthoorn, R. C., & Kros, A. (2016). Drug delivery via cell membrane fusion using lipopeptide modified liposomes. ACS Central Science, 2(9), 621–630. https://doi.org/10.1021/acscentsci.6b00172 Wu, G., Zhou, J., Zheng, J., Abdalmegeed, D., Tian, J., Wang, M., Sun, S., Sedjoah, R.-C., Shao, Y., Sun, S., & Xin, Z. (2023). Construction of lipopeptide mono-producing Bacillus strains and comparison of their antimicrobial activity. Food Bioscience, 53, 102813. https://doi.org/10.1016/j.fbio.2023.102813 Guo, Z., Sun, J., Ma, Q., Li, M., Dou, Y., Yang, S., & Gao, X. (2024). Improving surfactin production in Bacillus subtilis 168 by metabolic engineering. Microorganisms, 12(5), 998. https://doi.org/10.3390/microorganisms12050998 Liu, J. F., Mbadinga, S. M., Yang, S. Z., Gu, J. D., & Mu, B. Z. (2015). Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. International Journal of Molecular Sciences, 16(3), 4814–4837. https://doi.org/10.3390/ijms16034814 Rebello, S., Anoopkumar, A. N., Sindhu, R., Binod, P., Pandey, A., & Aneesh, E. M. (2020). Comparative life-cycle analysis of synthetic detergents and biosurfactants—an overview. In R. P. Kumar, E. Gnansounou, J. K. Raman, & G. Baskar (Eds.), Refining biomass residues for sustainable energy and bioproducts (pp. 511–521). Academic Press. Research and Markets. (2025, January). Biosurfactants market report 2025. Retrieved June 18, 2025, from https://www.researchandmarkets.com/reports/5741503/biosurfactants-market-report DataIntelo. (2024, October). Lipopeptide biosurfactant market report 2024–2032. Retrieved June 18, 2025, from https://dataintelo.com/report/lipopeptide-biosurfactant-market Degen, A., Mayerthaler, F., Mootz, H. D., & Di Ventura, B. (2019). Context-dependent activity of A domains in the tyrocidine synthetase. Scientific Reports, 9(1), 5119. https://doi.org/10.1038/s41598-019-41492-8 Grangemard, I., Wallach, J., Maget-Dana, R., & Peypoux, F. (2001). Lichenysin: A more efficient cation chelator than surfactin. Applied Biochemistry and Biotechnology, 90(3), 199–210. https://doi.org/10.1385/abab:90:3:199 Jung, M., Lee, S., & Kim, H. (2000). Recent studies on natural products as anti-HIV agents. Current Medicinal Chemistry, 7(6), 649–661. https://doi.org/10.2174/0929867003374822 Gilliard, G., Demortier, T., Boubsi, F., Jijakli, M. H., Ongena, M., De Clerck, C., & Deleu, M. (2024). Deciphering the distinct biocontrol activities of lipopeptides fengycin and surfactin through their differential impact on lipid membranes. Colloids and Surfaces B: Biointerfaces, 239, 113933. https://doi.org/10.1016/j.colsurfb.2024.113933 Wu, Y. S., Ngai, S. C., Goh, B. H., Chan, K. G., Lee, L. H., & Chuah, L. H. (2017). Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. Frontiers in Pharmacology, 8, 761. https://doi.org/10.3389/fphar.2017.00761 Zhang, Y., Liu, C., Dong, B., Ma, X., Hou, L., Cao, X., & Wang, C. (2015). Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages. Inflammation, 38(2), 756–764. https://doi.org/10.1007/s10753-014-9986-y Nagtode, V. S., Cardoza, C., Yasin, H. K. A., Mali, S. N., Tambe, S. M., Roy, P., Singh, K., Goel, A., Amin, P. D., Thorat, B. R., Cruz, J. N., & Pratap, A. P. (2023). Green surfactants (biosurfactants): A petroleum-free substitute for sustainability—comparison, applications, market, and future prospects. ACS Omega, 8(13), 11674–11699. https://doi.org/10.1021/acsomega.3c00591 Nagtode, V. S., Cardoza, C., Yasin, H. K. A., Mali, S. N., Tambe, S. M., Roy, P., Singh, K., Goel, A., Amin, P. D., Thorat, B. R., Cruz, J. N., & Pratap, A. P. (2023). Green surfactants (biosurfactants): A petroleum-free substitute for sustainability—comparison, applications, market, and future prospects. ACS Omega, 8(13), 11674–11699. https://doi.org/10.1021/acsomega.3c00591 Tank, J. G., & Pandya, R. V. (2022). Anti-proliferative activity of surfactins on human cancer cells and their potential use in therapeutics. Peptides, 155, 170836. https://doi.org/10.1016/j.peptides.2022.170836 Tank, J. G., & Pandya, R. V. (2022). Anti-proliferative activity of surfactins on human cancer cells and their potential use in therapeutics. Peptides, 155, 170836. https://doi.org/10.1016/j.peptides.2022.170836 Koglin, A., Löhr, F., Bernhard, F., Rogov, V. V., Frueh, D. P., Strieter, E. R., Mofid, M. R., Güntert, P., Wagner, G., Walsh, C. T., Marahiel, M. A., & Dötsch, V. (2008). Structural basis for the selectivity of the external thioesterase of the surfactin synthetase. Nature, 454(7206), 907–911. https://doi.org/10.1038/nature07161 Qiao, J., Borriss, R., Sun, K., Zhang, R., Chen, X., Liu, Y., & Liu, Y. (2024). Research advances in the identification of regulatory mechanisms of surfactin production by Bacillus: A review. Microbial Cell Factories, 23(1), 100. https://doi.org/10.1186/s12934-024-02372-7 Yuan, L., Zhang, S., Wang, Y., Li, Y., Wang, X., & Yang, Q. (2018). Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses. Journal of Virology, 92(21), e00809-18. https://doi.org/10.1128/JVI.00809-18 Wang, Y., Wang, Z., Gao, Z., Luan, Y., Li, Q., Pang, Y., & Gou, M. (2024). Identification of antibacterial activity of liver-expressed antimicrobial peptide 2 (LEAP2) from primitive vertebrate lamprey. Fish & Shellfish Immunology, 146, 109413. https://doi.org/10.1016/j.fsi.2024.109413 Fan, H., Ru, J., Zhang, Y., Wang, Q., & Li, Y. (2017). Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiological Research, 199, 89–97. https://doi.org/10.1016/j.micres.2017.03.004 Jiang, M., Wang, H., Liu, J., Hou, X., Zhang, Y., Liu, X., Wei, S., & Cui, Q. (2024). Isolation and characterization of biosurfactant-producing bacteria for enhancing oil recovery. Processes, 12(11), 2575. https://doi.org/10.3390/pr12112575 Pilz, M., Cavelius, P., Qoura, F., Awad, D., & Brück, T. (2023). Lipopeptides development in cosmetics and pharmaceutical applications: A comprehensive review. Biotechnology Advances, 67, 108210. https://doi.org/10.1016/j.biotechadv.2023.108210 Zihalirwa Kulimushi, P., Argüelles Arias, A., Franzil, L., Steels, S., & Ongena, M. (2017). Stimulation of fengycin-type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis. Frontiers in Microbiology, 8, 850. https://doi.org/10.3389/fmicb.2017.00850 Löffler, W., Tschen, J. S. M., Vanittanakom, N., Kugler, M., Knorpp, E., Hsieh, T. F., & Wu, T. G. (1986). Antifungal effects of bacilysin and fengycin from Bacillus subtilis F-29-3: A comparison with activities of other Bacillus antibiotics. Journal of Phytopathology, 115, 204–213. https://doi.org/10.1111/j.1439-0434.1986.tb00878.x Wei, Y. H., Wang, L. C., Chen, W. C., & Chen, S. Y. (2010). Production and characterization of fengycin by indigenous Bacillus subtilis F29-3 originating from a potato farm. International Journal of Molecular Sciences, 11(11), 4526–4538. https://doi.org/10.3390/ijms11114526 Deleu, M., Paquot, M., & Nylander, T. (2008). Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophysical Journal, 94(7), 2667–2679. https://doi.org/10.1529/biophysj.107.114090 Yin, Y., Wang, X., Zhang, P., Wang, P., & Wen, J. (2024). Strategies for improving fengycin production: A review. Microbial Cell Factories, 23(1), 144. https://doi.org/10.1186/s12934-024-02425-x Hanif, A., Zhang, F., Li, P., Li, C., Xu, Y., Zubair, M., Zhang, M., Jia, D., Zhao, X., Liang, J., Majid, T., Yan, J., Farzand, A., Wu, H., Gu, Q., & Gao, X. (2019). Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins, 11(5), 295. https://doi.org/10.3390/toxins11050295 Fan, H., Ru, J., Zhang, Y., Wang, Q., & Li, Y. (2017). Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiological Research, 199, 89–97. https://doi.org/10.1016/j.micres.2017.03.004 Kourmentza, K., Gromada, X., Michael, N., Degraeve, C., Vanier, G., Ravallec, R., Coutte, F., Karatzas, K. A., & Jauregi, P. (2021). Antimicrobial activity of lipopeptide biosurfactants against foodborne pathogen and food spoilage microorganisms and their cytotoxicity. Frontiers in Microbiology, 11, 561060. https://doi.org/10.3389/fmicb.2020.561060 Eeman, M., Olofsson, G., Sparr, E., Nasir, M. N., Nylander, T., & Deleu, M. (2014). Interaction of fengycin with stratum corneum mimicking model membranes: A calorimetry study. Colloids and Surfaces B: Biointerfaces, 121, 27–35. https://doi.org/10.1016/j.colsurfb.2014.05.019 Errington, J., & van der Aart, L. T. (2020). Microbe profile: Bacillus subtilis: Model organism for cellular development, and industrial workhorse. Microbiology (Reading, England), 166(5), 425–427. https://doi.org/10.1099/mic.0.000922 Su, Y., Liu, C., Fang, H., Zhang, D., & Chen, X. (2020). Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine. Microbial Cell Factories, 19, 173. https://doi.org/10.1186/s12934-020-01436-8 Bremer, E., Calteau, A., Danchin, A., Harwood, C., Helmann, J. D., Médigue, C., Palsson, B. O., Sekowska, A., Vallenet, D., Zúñiga, A., & Zúñiga, C. (2023). A model industrial workhorse: Bacillus subtilis strain 168 and its genome after a quarter of a century. Microbial Biotechnology, 16(6), 1203–1231. https://doi.org/10.1111/1751-7915.14257 Tsuge, K., Ano, T., Hirai, M., Nakamura, Y., & Shoda, M. (1999). The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrobial Agents and Chemotherapy, 43(9), 2183–2192. https://doi.org/10.1128/AAC.43.9.2183 Guo, Z., Sun, J., Ma, Q., Li, M., Dou, Y., Yang, S., & Gao, X. (2024). Improving Surfactin Production in Bacillus subtilis 168 by Metabolic Engineering. Microorganisms, 12(5), 998. https://doi.org/10.3390/microorganisms12050998 Markelova, N., & Chumak, A. (2025). Antimicrobial activity of Bacillus cyclic lipopeptides and their role in the host adaptive response to changes in environmental conditions. International Journal of Molecular Sciences, 26(1), 336. https://doi.org/10.3390/ijms26010336 Qiao, J., Borriss, R., Sun, K., Zhang, R., Chen, X., Liu, Y., & Liu, Y. (2024). Research advances in the identification of regulatory mechanisms of surfactin production by Bacillus: A review. Microbial Cell Factories, 23(1), 100. https://doi.org/10.1186/s12934-024-02372-7 Rahmer, R., Morabbi Heravi, K., & Altenbuchner, J. (2015). Construction of a super-competent Bacillus subtilis 168 using the PmtlA-comKS inducible cassette. Frontiers in Microbiology, 6, 1431. https://doi.org/10.3389/fmicb.2015.01431 Wei, Y. H., Wang, L. F., & Chang, J. S. (2004). Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnology Progress, 20(3), 979–983. https://doi.org/10.1021/bp030051a Wei, Y. H., Wang, L. C., Chen, W. C., & Chen, S. Y. (2010). Production and characterization of fengycin by indigenous Bacillus subtilis F29-3 originating from a potato farm. International Journal of Molecular Sciences, 11(11), 4526–4538. https://doi.org/10.3390/ijms11114526 Nguyen, H. D., Phan, T. T., & Schumann, W. (2007). Expression vectors for the rapid purification of recombinant proteins in Bacillus subtilis. Current Microbiology, 55(2), 89–93. https://doi.org/10.1007/s00284-006-0419-5 Tran, D. T. M., Phan, T. T. P., Huynh, T. K., Dang, N. T. K., Huynh, P. T. K., Nguyen, T. M., Truong, T. T. T., Tran, T. L., Schumann, W., & Nguyen, H. D. (2017). Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis. Microbial Cell Factories, 16(1), 130. https://doi.org/10.1186/s12934-017-0747-0 Crook, N. C., Freeman, E. S., & Alper, H. S. (2011). Re-engineering multicloning sites for function and convenience. Nucleic acids research, 39(14), e92. https://doi.org/10.1093/nar/gkr346 Tham, H. Y., Song, A. A., Yusoff, K., & Tan, G. H. (2020). Effect of different cloning strategies in pET-28a on solubility and functionality of a staphylococcal phage endolysin. BioTechniques, 69(3), 161–170. https://doi.org/10.2144/btn-2020-0034 Hiller, E., Off, M., Hermann, A., Vahidinasab, M., Benatto Perino, E. H., Lilge, L., & Hausmann, R. (2024). The influence of growth rate-controlling feeding strategy on the surfactin production in Bacillus subtilis bioreactor processes. Microbial cell factories, 23(1), 260. https://doi.org/10.1186/s12934-024-02531-w Gao, G. R., Wei, S. Y., Ding, M. Z., Hou, Z. J., Wang, D. J., Xu, Q. M., Cheng, J. S., & Yuan, Y. J. (2023). Enhancing fengycin production in the co-culture of Bacillus subtilis and Corynebacterium glutamicum by engineering proline transporter. Bioresource technology, 383, 129229. https://doi.org/10.1016/j.biortech.2023.129229 Wu, Q., Zhi, Y., & Xu, Y. (2019). Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metabolic engineering, 52, 87–97. https://doi.org/10.1016/j.ymben.2018.11.004 Lilge, L., Vahidinasab, M., Adiek, I., Becker, P., Kuppusamy Nesamani, C., Treinen, C., Hoffmann, M., Morabbi Heravi, K., Henkel, M., & Hausmann, R. (2021). Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains. MicrobiologyOpen, 10(5), e1241. https://doi.org/10.1002/mbo3.1241 Chen, B., Wen, J., Zhao, X., Ding, J., & Qi, G. (2020). Surfactin: A Quorum-Sensing Signal Molecule to Relieve CCR in Bacillus amyloliquefaciens. Frontiers in microbiology, 11, 631. https://doi.org/10.3389/fmicb.2020.00631 Kriel, A., Brinsmade, S. R., Tse, J. L., Tehranchi, A. K., Bittner, A. N., Sonenshein, A. L., & Wang, J. D. (2014). GTP dysregulation in Bacillus subtilis cells lacking (p)ppGpp results in phenotypic amino acid auxotrophy and failure to adapt to nutrient downshift and regulate biosynthesis genes. Journal of bacteriology, 196(1), 189–201. https://doi.org/10.1128/JB.00918-13 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99119 | - |
| dc.description.abstract | 表面活性素(surfactin)與豐原素(fengycin)是由枯草桿菌所產生的脂肽類生物界面活性劑,分別具有抗菌、抗病毒與抗絲狀真菌的活性,應用潛力橫跨生醫、農業與環境工程等多元領域。然而,由於天然生產菌株的產量普遍偏低,限制了其工業化應用的可行性。本研究首先針對枯草桿菌野生型菌株Bacillus subtilis NTU-14進行產能測試與發酵條件優化,測試兩種不同培養基對脂肽產量之影響,結果顯示YGF培養基具有最佳表現(培養48小時後,surfactin與fengycin產量分別為288.39 mg/L與40.41 mg/L)。隨後,本研究建構一個雙宿主穿梭載體系統,使其能同時適用於大腸桿菌與枯草桿菌,用於異源表現導入功能性基因sfp與degQ,分別應用於重建枯草桿菌模式菌株Bacillus subtilis 168的脂肽生合成能力,以及強化NTU-14的脂肽生合成調控效能。本研究確認質體可穩定轉形進入枯草桿菌並成功放大培養,並於後續整合驗證階段,初步比較改造菌株與對照株於不同培養條件下之脂肽產量。儘管異源表現尚未成功展現明確增效,推測可能與誘導條件、表現系統設計或蛋白折疊效率有關,本研究已建立一個具可行性之基因工程與菌株開發平台。未來若結合調控元件優化與培養參數微調,將可建構出具備實用價值的脂肽工業化生產系統。 | zh_TW |
| dc.description.abstract | Surfactin and fengycin are lipopeptide-type biosurfactants produced by Bacillus subtilis, exhibiting antibacterial, antiviral, and antifungal activities against filamentous fungi. These compounds hold significant application potential in diverse fields including biomedicine, agriculture, and environmental engineering. However, the generally low production levels of natural producer strains have limited their feasibility for industrial-scale applications. In this study, we first evaluated the production capacity of the wild-type Bacillus subtilis NTU-14 and optimized its fermentation conditions by testing two different culture medium. The results showed that NTU-14 achieved the highest lipopeptide production when cultivated in YGF medium (288.39 mg/L surfactin and 40.41 mg/L fengycin after 48 hours). Subsequently, a dual-host shuttle vector system compatible with both Escherichia coli and Bacillus subtilis was constructed to enable the heterologous expression of functional genes sfp and degQ. These genes were respectively applied to restore the lipopeptide biosynthetic capacity of the model strain B. subtilis 168 and to enhance the biosynthetic regulation in NTU-14. The plasmids were confirmed to be stably transformed into B. subtilis and successfully maintained during scale-up cultivation. In the final stage, the gene engineering and fermentation strategies were integrated to preliminarily assess the production performance of engineered strains under different cultivation conditions. Although the heterologous expression did not result in significant enhancement of lipopeptide yields, possibly due to induction conditions, expression system limitations, or protein folding inefficiency, this study has established a feasible platform for genetic engineering and strain development. With further improvements in regulatory element design and fermentation parameter refinement, this work may facilitate the development of a practically applicable and scalable lipopeptide production system for industrial use. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:27:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:27:43Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii Abstract iv 目次 vi 圖表目次 ix 壹、 緒論 1 1.1 脂肽 1 1.1.1 脂肽之簡介 1 1.1.2 脂肽之市場規模 2 1.1.3 非核糖體肽合成酶 3 1.1.4 促進脂肽生合成之條件 4 1.2 表面活性素 5 1.2.1 表面活性素之簡介 5 1.2.2 表面活性素之生合成途徑 6 1.2.3 表面活性素之應用 8 1.3 豐原素 9 1.3.1 豐原素之簡介 9 1.3.2 豐原素之生合成途徑 10 1.3.3 豐原素之應用 13 1.4 枯草桿菌 13 1.4.1 枯草桿菌之簡介 13 1.4.2 枯草桿菌模式菌株168之簡介 15 1.5 以枯草桿菌生產脂肽之策略 15 1.5.1 在枯草桿菌中進行異源表現 15 1.5.1.1 sfp基因之簡介 16 1.5.1.2 degQ基因之簡介 17 1.5.2 穿梭載體之建構策略 18 1.6 研究目的 19 1.7 研究架構 20 貳、 材料與方法 22 2.1 菌株來源 22 2.2 脂肽萃取與乾重測定 24 2.3 高效液相層析分析 26 2.3.1 高效液相層析條件 26 2.3.2 純度與產量計算 26 2.4 質體建構 27 2.4.1 PCR產物之純化 30 2.4.2 DNA定量 30 2.4.3 Gibson組裝 30 2.4.4 抽取質體 30 2.4.5 抽取基因組DNA 31 2.4.6 Zero-Blunt克隆 31 2.5 轉形方法 34 2.5.1 大腸桿菌轉形 34 2.5.2 枯草桿菌轉形 36 2.5.2.1 製備枯草桿菌勝任細胞 36 2.5.2.2 使用化學方法轉形 36 2.4 IPTG誘導與螢光顯微鏡觀察 36 參、 結果 38 3.1 發酵條件優化 38 3.1.1 B. subtilis NTU-14脂肽產能基礎確認 38 3.1.2 培養基條件優化 41 3.2 穿梭載體建構與轉形 45 3.2.1 枯草桿菌轉形試驗與條件優化 45 3.2.2 表現質體構建與確認 47 3.3 基因改造與培養條件整合效益驗證 58 肆、 討論 60 4.1 異源蛋白質無法成功表現之可能原因 60 4.1.1 基因表現匣 60 4.1.2 質體建構 62 伍、 結論 63 陸、 未來展望 64 參考文獻 65 附錄 75 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 枯草桿菌 | zh_TW |
| dc.subject | 表面活性素 | zh_TW |
| dc.subject | 豐原素 | zh_TW |
| dc.subject | 雙宿主穿梭載體系統 | zh_TW |
| dc.subject | surfactin | en |
| dc.subject | fengycin | en |
| dc.subject | Bacillus subtilis | en |
| dc.subject | dual-host shuttle vector system | en |
| dc.title | 開發以穿梭載體系統應用於枯草桿菌中的脂肽生產工程 | zh_TW |
| dc.title | Development of a Shuttle Vector System to Enhance Lipopeptide Biosynthesis in Bacillus subtilis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉啟德;蘇敬岳;蔡黛華 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Te Liu;Ching-Yueh Su;Dai-Hua Tsai | en |
| dc.subject.keyword | 枯草桿菌,表面活性素,豐原素,雙宿主穿梭載體系統, | zh_TW |
| dc.subject.keyword | Bacillus subtilis,surfactin,fengycin,dual-host shuttle vector system, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202503761 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 11.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
