請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99115完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃漢邦 | zh_TW |
| dc.contributor.advisor | Han-Pang Huang | en |
| dc.contributor.author | 黃正渝 | zh_TW |
| dc.contributor.author | Cheng-Yu Huang | en |
| dc.date.accessioned | 2025-08-21T16:26:50Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | [1] S. Abdumalikov, J. Kim, and Y. Yoon, "Performance Analysis and Improvement of Machine Learning with Various Feature Selection Methods for EEG-Based Emotion Classification," Applied Sciences, vol. 14, no. 22, 2024.
[2] Y. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from Data: A Short Course. 2012. [3] Z. Ajra, B. Xu, G. Dray, J. Montmain, and S. Perrey, "Using Shallow Neural Networks with Functional Connectivity from EEG Signals for Early Diagnosis of Alzheimer's and Frontotemporal Dementia," Frontiers in Neurology, Original Research vol. 14, 2023. [4] A.S. Al-Fahoum and A.A. Al-Fraihat, "Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains," International Scholarly Research Notices, vol. 2014, no. 1, p. 730218, 2014. [5] N.K. Al-Qazzaz, S.H.B.M.D. Ali, S.A. Ahmad, K. Chellappan, M.S. Islam, and J. Escudero, "Role of EEG as Biomarker in the Early Detection and Classification of Dementia," The Scientific World Journal, vol. 2014, no. 1, p. 906038, 2014. [6] M. Aljalal, M. Molinas, S.A. Aldosari, K. AlSharabi, A.M. Abdurraqeeb, and F.A. Alturki, "Mild Cognitive Impairment Detection with Optimally Selected EEG Channels Based on Variational Mode Decomposition and Supervised Machine Learning," Biomedical Signal Processing and Control, vol. 87, p. 105462, 2024. [7] American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders (DSM-5-TR), 5 ed. 2022. [8] Arnaud Delorme, Scott Makeig, Dung Truong, Claire Braboszcz, Makoto Miyakoshi, Ramon Martinez, Devapratim Sarma, Derrick Lock, Hilit Serby, Toby Fernsler, "EEGLAB Wiki," accessed 9 June 2025. <https://eeglab.org/> [9] H. Azami, M. Mirjalili, T.K. Rajji, C.T. Wu, A. Humeau-Heurtier, T.P. Jung, C.S. Wei, T.T. Trinh, and Y.H. Liu, "Electroencephalogram and Event-Related Potential in Mild Cognitive Impairment: Recent Developments in Signal Processing, Machine Learning, and Deep Learning," IEEE Journal of Selected Areas in Sensors, vol. 2, pp. 162-184, 2025. [10] C. Babiloni, X. Arakaki, H. Azami, K. Bennys, K. Blinowska, L. Bonanni, A. Bujan, M.C. Carrillo, A. Cichocki, J. de Frutos-Lucas, C. Del Percio, B. Dubois, R. Edelmayer, G. Egan, S. Epelbaum, J. Escudero, A. Evans, F. Farina, K. Fargo, A. Fernández, R. Ferri, G. Frisoni, H. Hampel, M.G. Harrington, V. Jelic, J. Jeong, Y. Jiang, M. Kaminski, V. Kavcic, K. Kilborn, S. Kumar, A. Lam, L. Lim, R. Lizio, D. Lopez, S. Lopez, B. Lucey, F. Maestú, W.J. McGeown, I. McKeith, D.V. Moretti, F. Nobili, G. Noce, J. Olichney, M. Onofrj, R. Osorio, M. Parra-Rodriguez, T. Rajji, P. Ritter, A. Soricelli, F. Stocchi, I. Tarnanas, J.P. Taylor, S. Teipel, F. Tucci, M. Valdes-Sosa, P. Valdes-Sosa, M. Weiergräber, G. Yener, and B. Guntekin, "Measures of Resting State EEG Rhythms for Clinical Trials in Alzheimer's Disease: Recommendations of an Expert Panel," Alzheimer's & Dementia, vol. 17, no. 9, pp. 1528-1553, 2021. [11] C. Babiloni, K. Blinowska, L. Bonanni, A. Cichocki, W. De Haan, C. Del Percio, B. Dubois, J. Escudero, A. Fernández, G. Frisoni, B. Guntekin, M. Hajos, H. Hampel, E. Ifeachor, K. Kilborn, S. Kumar, K. Johnsen, M. Johannsson, J. Jeong, F. LeBeau, R. Lizio, F. Lopes da Silva, F. Maestú, W.J. McGeown, I. McKeith, D.V. Moretti, F. Nobili, J. Olichney, M. Onofrj, J.J. Palop, M. Rowan, F. Stocchi, Z.M. Struzik, H. Tanila, S. Teipel, J.P. Taylor, M. Weiergräber, G. Yener, T. Young-Pearse, W.H. Drinkenburg, and F. Randall, "What Electrophysiology Tells Us About Alzheimer's Disease: A Window into the Synchronization and Connectivity of Brain Neurons," Neurobiology of Aging, vol. 85, pp. 58-73, 2020. [12] C. Babiloni, R. Ferri, D.V. Moretti, A. Strambi, G. Binetti, G. Dal Forno, F. Ferreri, B. Lanuzza, C. Bonato, F. Nobili, G. Rodriguez, S. Salinari, S. Passero, R. Rocchi, C.J. Stam, and P.M. Rossini, "Abnormal Fronto-Parietal Coupling of Brain Rhythms in Mild Alzheimer's Disease: A Multicentric EEG Study," European Journal of Neuroscience, vol. 19, no. 9, pp. 2583-2590, 2004. [13] F. Bacigalupo and S.J. Luck, "Alpha-Band EEG Suppression as a Neural Marker of Sustained Attentional Engagement to Conditioned Threat Stimuli," Soc Cogn Affect Neurosci, vol. 17, no. 12, pp. 1101-1117, 2022. [14] W. Bai, P. Chen, H. Cai, Q. Zhang, Z. Su, T. Cheung, T. Jackson, S. Sha, and Y.-T. Xiang, "Worldwide Prevalence of Mild Cognitive Impairment among Community Dwellers Aged 50 years and Older: A Meta-Analysis and Systematic Review of Epidemiology Studies," Age and Ageing, vol. 51, no. 8, p. afac173, 2022. [15] M. Baker, K. Akrofi, R. Schiffer, and M.W. O’Boyle, "EEG Patterns in Mild Cognitive Impairment (MCI) Patients," The open neuroimaging journal, vol. 2, p. 52, 2008. [16] C. Bandt and B. Pompe, "Permutation Entropy: A Natural Complexity Measure for Time Series," Physical Review Letters, vol. 88, no. 17, p. 174102, 2002. [17] E. Başar, "A Review of Alpha Activity in Integrative Brain Function: Fundamental Physiology, Sensory Coding, Cognition and Pathology," International Journal of Psychophysiology, vol. 86, no. 1, pp. 1-24, 2012. [18] V. Betti, S. Della Penna, F. de Pasquale, and M. Corbetta, "Spontaneous Beta Band Rhythms in the Predictive Coding of Natural Stimuli," The Neuroscientist, vol. 27, no. 2, pp. 184-201, 2020. [19] R.K.J. Brown, N.I. Bohnen, K.K. Wong, S. Minoshima, and K.A. Frey, "Brain PET in Suspected Dementia: Patterns of Altered FDG Metabolism," RadioGraphics, vol. 34, no. 3, pp. 684-701, 2014. [20] Q. Cao, C.-C. Tan, W. Xu, H. Hu, X.-P. Cao, Q. Dong, L. Tan, and J.-T. Yu, "The Prevalence of Dementia: A Systematic Review and Meta-Analysis," Journal of Alzheimer’s Disease, vol. 73, no. 3, pp. 1157-1166, 2019. [21] J. Castelhano, J. Rebola, B. Leitão, E. Rodriguez, and M. Castelo-Branco, "To Perceive or Not Perceive: The Role of Gamma-Band Activity in Signaling Object Percepts," PLOS ONE, vol. 8, no. 6, p. e66363, 2013. [22] J.F. Cavanagh and M.J. Frank, "Frontal Theta as a Mechanism for Cognitive Control," Trends in Cognitive Sciences, vol. 18, no. 8, pp. 414-421, 2014. [23] C. Chayer and M. Freedman, "Frontal Lobe Functions," Current Neurology and Neuroscience Reports, vol. 1, no. 6, pp. 547-552, 2001. [24] S.-J. Chen, C.-J. Peng, Y.-C. Chen, Y.-R. Hwang, Y.-S. Lai, S.-Z. Fan, and K.-K. Jen, "Comparison of FFT and Marginal Spectra of EEG Using Empirical Mode Decomposition to Monitor Anesthesia," Computer Methods and Programs in Biomedicine, vol. 137, pp. 77-85, 2016. [25] T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, [Online]. Available: https://doi.org/10.1145/2939672.2939785, 2016. [26] R. Cho, M. Zaman, K.T. Cho, and J. Hwang, "Analyzing Brain Activity during Learning Tasks with EEG and Machine Learning," arXiv preprint arXiv:2401.10285, 2024. [27] P.E. Clayson, S.A. Baldwin, H.A. Rocha, and M.J. Larson, "The Data-Processing Multiverse of Event-Related Potentials (ERPs): A Roadmap for the Optimization and Standardization of ERP Processing and Reduction Pipelines," NeuroImage, vol. 245, p. 118712, 2021. [28] M. Clerc, "Electroencephalography Data Preprocessing," Brain–Computer Interfaces 1, pp. 101-125, 2016. [29] S. Coelli, A. Calcagno, C.M. Cassani, F. Temporiti, P. Reali, R. Gatti, M. Galli, and A.M. Bianchi, "Selecting Methods for a Modular EEG Pre-Processing Pipeline: An Objective Comparison," Biomedical Signal Processing and Control, vol. 90, p. 105830, 2024. [30] M.X. Cohen, Analyzing Neural Time Series Data: Theory and Practice. The MIT Press, 2014. [31] Wikipedia contributors, "Hilbert–Huang Transform - Wikipedia," accessed 10 June 2025. <https://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform> [32] J. Dauwels, F. Vialatte, T. Musha, and A. Cichocki, "A Comparative Study of Synchrony Measures for the Early Diagnosis of Alzheimer's Disease Based on EEG," NeuroImage, vol. 49, no. 1, pp. 668-693, 2010. [33] A. Delorme, "EEG Is Better Left Alone," Scientific Reports, vol. 13, no. 1, p. 2372, 2023. [34] A. Delorme and S. Makeig, "EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis," Journal of Neuroscience Methods, vol. 134, no. 1, pp. 9-21, 2004. [35] H. Díaz M, F.M. Cid, J. Otárola, R. Rojas, O. Alarcón, and L. Cañete, "EEG Beta Band Frequency Domain Evaluation for Assessing Stress and Anxiety in Resting, Eyes Closed, Basal Conditions," Procedia Computer Science, vol. 162, pp. 974-981, 2019. [36] S. Ding, L. Meng, Y. Han, and Y. Xue, "A Review on Feature Binding Theory and Its Functions Observed in Perceptual Process," Cognitive Computation, vol. 9, no. 2, pp. 194-206, 2017. [37] R.J. Dolan, R. Lane, P. Chua, and P. Fletcher, "Dissociable Temporal Lobe Activations during Emotional Episodic Memory Retrieval," NeuroImage, vol. 11, no. 3, pp. 203-209, 2000. [38] L. Dong, F. Li, Q. Liu, X. Wen, Y. Lai, P. Xu, and D. Yao, "Matlab Toolboxes for Reference Electrode Standardization Technique (REST) of Scalp EEG," Frontiers in Neuroscience, vol. 11, p. 601, 2017. [39] P. Durongbhan, Y. Zhao, L. Chen, P. Zis, M.D. Marco, Z.C. Unwin, A. Venneri, X. He, S. Li, Y. Zhao, D.J. Blackburn, and P.G. Sarrigiannis, "A Dementia Classification Framework Using Frequency and Time-Frequency Features Based on EEG Signals," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 5, pp. 826-835, 2019. [40] J. Eisma, E. Rawls, S. Long, R. Mach, and C. Lamm, "Frontal Midline Theta Differentiates Separate Cognitive Control Strategies While Still Generalizing the Need for Cognitive Control," Scientific Reports, vol. 11, no. 1, p. 14641, 2021. [41] Salvatore Ferragamo, "The Metropolitan Enigma - Parco Dell'idroscalo Park," accessed 15 June 2025. <https://enigma.ferragamo.com/zh/idroscalo/memory> [42] A.A. Fingelkurts and A.A. Fingelkurts, "Altered Structure of Dynamic Electroencephalogram Oscillatory Pattern in Major Depression," Biological Psychiatry, vol. 77, no. 12, pp. 1050-1060, 2015. [43] A. Fink and M. Benedek, "EEG Alpha Power and Creative Ideation," Neuroscience & Biobehavioral Reviews, vol. 44, pp. 111-123, 2014. [44] L. Fogassi and G. Luppino, "Motor Functions of the Parietal Lobe," Current Opinion in Neurobiology, vol. 15, no. 6, pp. 626-631, 2005. [45] M.F. Folstein, S.E. Folstein, and P.R. McHugh, "“Mini-Mental State”: A Practical Method for Grading the Cognitive State of Patients for the Clinician," Journal of Psychiatric Research, vol. 12, no. 3, pp. 189-198, 1975. [46] J.J. Foxe and A.C. Snyder, "The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention," Frontiers in Psychology, Review vol. 2, 2011. [47] K. Fu, J. Qu, Y. Chai, and Y. Dong, "Classification of Seizure Based on the Time-Frequency Image of EEG Signals Using HHT and SVM," Biomedical Signal Processing and Control, vol. 13, pp. 15-22, 2014. [48] R.C. Gonzalez and R.E. Woods, Digital Image Processing, 4th ed. Prentice Hall, 2017. [49] A. Gramfort, M. Luessi, E. Larson, D.A. Engemann, D. Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen, and M. Hämäläinen, "MEG and EEG Data Analysis with MNE-Python," Frontiers in Neuroscience, Methods vol. 7, 2013. [50] P.M. Grasby, C.D. Frith, K.J. Friston, C. Bench, R.S.J. Frackowiak, and R.J. Dolan, "Functional Mapping of Brain Areas Implicated in Auditory—Verbal Memory Function," Brain, vol. 116, no. 1, pp. 1-20, 1993. [51] M. Hassan Mana Hassan Al, J. Ali Saleh Hussain Al, H. Ateeq Mubarak Hussein Bani, R. Mohammed Abdullah Saleh Al, A. Mohammed Manea Hamad, A. Nasser Mahdi , A. Fatimah Mohammed, A. Sultan Khaled Ali, A. Hamad Ali Mohammed, and Q. Abdullah Nasser Abdullah Al, "Comparison of CT and MRI for Brain Imaging: Review Article," Journal of International Crisis and Risk Communication Research, vol. 7, no. S10, pp. 337-351, 2024. [52] C.S. Herrmann, I. Fründ, and D. Lenz, "Human Gamma-Band Activity: A Review on Cognitive and Behavioral Correlates and Network Models," Neuroscience & Biobehavioral Reviews, vol. 34, no. 7, pp. 981-992, 2010. [53] C.S. Hima, A. Asheeta, C.N. Chithra, M.J.N. Sandhya, and U. Fathima Beevi, "A Review on Brainwave Therapy," World Journal of Pharmaceutical Sciences, vol. 8, no. 11, pp. 59-66, 2020. [54] Y.-T. Hsiao, C.-F. Tsai, C.-T. Wu, T.-T. Trinh, C.-Y. Lee, and Y.-H. Liu, "MCI Detection Using Kernel Eigen-Relative-Power Features of EEG Signals," Actuators, vol. 10, no. 7, 2021. [55] C.-Y. Huang, J.-H. Lo, H.-P. Huang, S.-C. Sung, W.-C. Chen, H.-F. Chiou, and B.-T. Hong, "Predictive Value of the MoCA-T for Early Detection of MCI and Dementia in Taiwanese Older Adults," International Journal of iRobotics, vol. 6, no. 3, pp. 1-5, 2023. [56] N.E. Huang, Hilbert-Huang Transform and Its Applications. World scientific, 2014. [57] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, and H.H. Liu, "The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis," Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903-995, 1998. [58] C.P. Hughes, L. Berg, W. Danziger, L.A. Coben, and R.L. Martin, "A New Clinical Scale for the Staging of Dementia," British Journal of Psychiatry, vol. 140, no. 6, pp. 566-572, 1982. [59] A. Hyvarinen, "Fast and Robust Fixed-Point Algorithms for Independent Component Analysis," IEEE Transactions on Neural Networks, vol. 10, no. 3, pp. 626-634, 1999. [60] T. Inouye, K. Shinosaki, H. Sakamoto, S. Toi, S. Ukai, A. Iyama, Y. Katsuda, and M. Hirano, "Quantification of EEG Irregularity by Use of the Entropy of the Power Spectrum," Electroencephalography and Clinical Neurophysiology, vol. 79, no. 3, pp. 204-210, 1991. [61] A. Iraji, Z. Fu, E. Damaraju, T.P. DeRamus, N. Lewis, J.R. Bustillo, R.K. Lenroot, A. Belger, J.M. Ford, S. McEwen, D.H. Mathalon, B.A. Mueller, G.D. Pearlson, S.G. Potkin, A. Preda, J.A. Turner, J.G. Vaidya, T.G.M. van Erp, and V.D. Calhoun, "Spatial Dynamics within and between Brain Functional Domains: A Hierarchical Approach to Study Time-Varying Brain Function," Human Brain Mapping, vol. 40, no. 6, pp. 1969-1986, 2019. [62] D.J. Irwin and H.I. Hurtig, "The Contribution of Tau, Amyloid-Beta and Alpha-Synuclein Pathology to Dementia in Lewy Body Disorders," J Alzheimers Dis Parkinsonism, vol. 8, no. 4, 2018. [63] R. Joseph, "The Occipital Lobe," Neuropsychology, Neuropsychiatry, and Behavioral Neurology, R. Joseph Ed. Boston, MA: Springer US, pp. 233-245, 1990. [64] V. Jurcak, D. Tsuzuki, and I. Dan, "10/20, 10/10, and 10/5 Systems Revisited: Their Validity as Relative Head-Surface-Based Positioning Systems," NeuroImage, vol. 34, no. 4, pp. 1600-1611, 2007. [65] I. Kakkos, E. Tzavellas, E. Feleskoura, S. Mourtakos, E. Kontopodis, I. Vezakis, T. Kalamatianos, E. Synadinakis, G.K. Matsopoulos, I. Kalatzis, E.M. Ventouras, and A. Skouroliakou, "EEG-Based Assessment of Cognitive Resilience Via Interpretable Machine Learning Models," AI, vol. 6, no. 6, 2025. [66] P.W. Kaplan, "The EEG in Metabolic Encephalopathy and Coma," Journal of Clinical Neurophysiology, vol. 21, no. 5, 2004. [67] S.-P. Kim, "Preprocessing of EEG," Computational EEG Analysis: Methods and Applications, C.-H. Im Ed. Singapore: Springer Singapore, pp. 15-33, 2018. [68] M.K. Kıymık, İ. Güler, A. Dizibüyük, and M. Akın, "Comparison of STFT and Wavelet Transform Methods in Determining Epileptic Seizure Activity in EEG Signals for Real-Time Application," Computers in Biology and Medicine, vol. 35, no. 7, pp. 603-616, 2005. [69] W. Klimesch, "EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis," Brain Research Reviews, vol. 29, no. 2, pp. 169-195, 1999. [70] S. Koehler, P. Lauer, T. Schreppel, C. Jacob, M. Heine, A. Boreatti-Hümmer, A.J. Fallgatter, and M.J. Herrmann, "Increased EEG Power Density in Alpha and Theta Bands in Adult ADHD Patients," Journal of Neural Transmission, vol. 116, no. 1, pp. 97-104, 2009. [71] Z. Koudelková and M. Strmiska, "Introduction to the Identification of Brain Waves Based on Their Frequency," MATEC Web Conf., 10.1051/matecconf/201821005012 vol. 210, 2018. [72] L.R. Krol, "EEG Electrode Positions in the 10-10 System Using Modified Combinatorial Nomenclature, Along with the Fiducials and Associated Lobes of the Brain.," ed. Wikimedia Commons, 2020. [73] N. Kulkarni and V. Bairagi, "Chapter Four - Use of Complexity Features for Diagnosis of Alzheimer Disease," EEG-Based Diagnosis of Alzheimer Disease, N. Kulkarni and V. Bairagi Eds.: Academic Press, pp. 47-59, 2018. [74] J.-P. Lachaux, E. Rodriguez, J. Martinerie, and F.J. Varela, "Measuring Phase Synchrony in Brain Signals," Human Brain Mapping, vol. 8, no. 4, pp. 194-208, 1999. [75] G. Livingston, J. Huntley, A. Sommerlad, D. Ames, C. Ballard, S. Banerjee, C. Brayne, A. Burns, J. Cohen-Mansfield, C. Cooper, S.G. Costafreda, A. Dias, N. Fox, L.N. Gitlin, R. Howard, H.C. Kales, M. Kivimäki, E.B. Larson, A. Ogunniyi, V. Orgeta, K. Ritchie, K. Rockwood, E.L. Sampson, Q. Samus, L.S. Schneider, G. Selbæk, L. Teri, and N. Mukadam, "Dementia Prevention, Intervention, and Care: 2020 Report of the Lancet Commission," The Lancet, vol. 396, no. 10248, pp. 413-446, 2020. [76] M. Lobier, J.M. Palva, and S. Palva, "High-Alpha Band Synchronization across Frontal, Parietal and Visual Cortex Mediates Behavioral and Neuronal Effects of Visuospatial Attention," NeuroImage, vol. 165, pp. 222-237, 2018. [77] K.A. Ludwig, R.M. Miriani, N.B. Langhals, M.D. Joseph, D.J. Anderson, and D.R. Kipke, "Using a Common Average Reference to Improve Cortical Neuron Recordings from Microelectrode Arrays," Journal of Neurophysiology, vol. 101, no. 3, pp. 1679-1689, 2009. [78] J.C. Lynch, V.B. Mountcastle, W.H. Talbot, and T.C. Yin, "Parietal Lobe Mechanisms for Directed Visual Attention," Journal of Neurophysiology, vol. 40, no. 2, pp. 362-389, 1977. [79] D. Mathersul, L.M. Williams, P.J. Hopkinson, and A.H. Kemp, "Investigating Models of Affect: Relationships among EEG Alpha Asymmetry, Depression, and Anxiety," vol. 8, ed. US: American Psychological Association, pp. 560-572, 2008. [80] J.C. McBride, X. Zhao, N.B. Munro, C.D. Smith, G.A. Jicha, L. Hively, L.S. Broster, F.A. Schmitt, R.J. Kryscio, and Y. Jiang, "Spectral and Complexity Analysis of Scalp EEG Characteristics for Mild Cognitive Impairment and Early Alzheimer's Disease," Computer Methods and Programs in Biomedicine, vol. 114, no. 2, pp. 153-163, 2014. [81] S. Michelmann, M.S. Treder, B. Griffiths, C. Kerrén, F. Roux, M. Wimber, D. Rollings, V. Sawlani, R. Chelvarajah, S. Gollwitzer, G. Kreiselmeyer, H. Hamer, H. Bowman, B. Staresina, and S. Hanslmayr, "Data-Driven Re-Referencing of Intracranial EEG Based on Independent Component Analysis (ICA)," Journal of Neuroscience Methods, vol. 307, pp. 125-137, 2018. [82] A.J. Mitchell and M. Shiri-Feshki, "Rate of Progression of Mild Cognitive Impairment to Dementia – Meta-Analysis of 41 Robust Inception Cohort Studies," Acta Psychiatrica Scandinavica, vol. 119, no. 4, pp. 252-265, 2009. [83] D.V. Moretti, C. Fracassi, M. Pievani, C. Geroldi, G. Binetti, O. Zanetti, K. Sosta, P.M. Rossini, and G.B. Frisoni, "Increase of Theta/Gamma Ratio Is Associated with Memory Impairment," Clinical Neurophysiology, vol. 120, no. 2, pp. 295-303, 2009. [84] Z.S. Nasreddine, N.A. Phillips, V. Bédirian, S. Charbonneau, V. Whitehead, I. Collin, J.L. Cummings, and H. Chertkow, "The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment," Journal of the American Geriatrics Society, vol. 53, no. 4, pp. 695-699, 2005. [85] E. Niedermeyer and F.L. da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, 2005. [86] P.L. Nunez and R. Srinivasan, "Measures of EEG Dynamic Properties," Electric Fields of the Brain: The neurophysics of EEG, P.L. Nunez and R. Srinivasan, Eds.: Oxford University Press, 2006, pp. 353-431. [Online]. Available: https://doi.org/10.1093/acprof:oso/9780195050387.003.0009 [87] E. Nyhus and T. Curran, "Functional Role of Gamma and Theta Oscillations in Episodic Memory," Neuroscience & Biobehavioral Reviews, vol. 34, no. 7, pp. 1023-1035, 2010. [88] T.M. Oshiro, P.S. Perez, and J.A. Baranauskas, "How Many Trees in a Random Forest?," Machine Learning and Data Mining in Pattern Recognition, Berlin, Heidelberg, P. Perner, Ed.: Springer Berlin Heidelberg, pp. 154-168, 2012. [89] S. Palva and J.M. Palva, "New Vistas for Α-Frequency Band Oscillations," Trends in Neurosciences, vol. 30, no. 4, pp. 150-158, 2007. [90] R.M.P. Pessoa, A.J.L. Bomfim, B.L.C. Ferreira, and M.H.N. Chagas, "Diagnostic Criteria and Prevalence of Mild Cognitive Impairment in Older Adults Living in the Community: A Systematic Review and Meta-Analysis," Archives of Clinical Psychiatry (São Paulo), vol. 46, no. 3, pp. 72-79, 2019. [91] G. Pfurtscheller and F.H. Lopes da Silva, "Event-Related EEG/MEG Synchronization and Desynchronization: Basic Principles," Clinical Neurophysiology, vol. 110, no. 11, pp. 1842-1857, 1999. [92] G. Pfurtscheller, A. Stancák, and C. Neuper, "Event-Related Synchronization (ERS) in the Alpha Band — an Electrophysiological Correlate of Cortical Idling: A Review," International Journal of Psychophysiology, vol. 24, no. 1, pp. 39-46, 1996. [93] L. Pion-Tonachini, K. Kreutz-Delgado, and S. Makeig, "ICLabel: An Automated Electroencephalographic Independent Component Classifier, Dataset, and Website," NeuroImage, vol. 198, pp. 181-197, 2019. [94] M. Prince, G.-C. Ali, M. Guerchet, A.M. Prina, E. Albanese, and Y.-T. Wu, "Recent Global Trends in the Prevalence and Incidence of Dementia, and Survival with Dementia," Alzheimer's Research & Therapy, vol. 8, no. 1, p. 23, 2016. [95] M. Prince, R. Bryce, E. Albanese, A. Wimo, W. Ribeiro, and C.P. Ferri, "The Global Prevalence of Dementia: A Systematic Review and Metaanalysis," Alzheimer's & Dementia, vol. 9, no. 1, pp. 63-75.e2, 2013. [96] W.J. Ray and H.W. Cole, "EEG Alpha Activity Reflects Attentional Demands, and Beta Activity Reflects Emotional and Cognitive Processes," Science, vol. 228, no. 4700, pp. 750-752, 1985. [97] J.S. Richman and J.R. Moorman, "Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy," American Journal of Physiology-Heart and Circulatory Physiology, vol. 278, no. 6, pp. H2039-H2049, 2000. [98] S.-C. Roh, E.-J. Park, M. Shim, and S.-H. Lee, "EEG Beta and Low Gamma Power Correlates with Inattention in Patients with Major Depressive Disorder," Journal of Affective Disorders, vol. 204, pp. 124-130, 2016. [99] P.A. Rowley, A.A. Samsonov, T.J. Betthauser, A. Pirasteh, S.C. Johnson, and L.B. Eisenmenger, "Amyloid and Tau PET Imaging of Alzheimer Disease and Other Neurodegenerative Conditions," Seminars in Ultrasound, CT and MRI, vol. 41, no. 6, pp. 572-583, 2020. [100] L.M. Sánchez-Reyes, J. Rodríguez-Reséndiz, G.N. Avecilla-Ramírez, M.L. García-Gomar, and J.B. Robles-Ocampo, "Impact of EEG Parameters Detecting Dementia Diseases: A Systematic Review," IEEE Access, vol. 9, pp. 78060-78074, 2021. [101] M. Şeker, Y. Özbek, G. Yener, and M.S. Özerdem, "Complexity of EEG Dynamics for Early Diagnosis of Alzheimer's Disease Using Permutation Entropy Neuromarker," Computer Methods and Programs in Biomedicine, vol. 206, p. 106116, 2021. [102] A. Shoka, M. Dessouky, A. El-Sherbeny, and A. El-Sayed, "Literature Review on EEG Preprocessing, Feature Extraction, and Classifications Techniques," Menoufia J. Electron. Eng. Res, vol. 28, no. 1, pp. 292-299, 2019. [103] K.K. Shyu, S.C. Huang, L.H. Lee, and P.L. Lee, "A Low Complexity Estimation Method of Entropy for Real-Time Seizure Detection," IEEE Access, vol. 11, pp. 5990-5999, 2023. [104] A.K. Singh and S. Krishnan, "Trends in EEG Signal Feature Extraction Applications," Frontiers in Artificial Intelligence, Review vol. 5, 2023. [105] J.O. Smith Iii, Spectral Audio Signal Processing. W3K Publishing, 2011. [106] C.J. Stam, G. Nolte, and A. Daffertshofer, "Phase Lag Index: Assessment of Functional Connectivity from Multi Channel EEG and MEG with Diminished Bias from Common Sources," Human Brain Mapping, vol. 28, no. 11, pp. 1178-1193, 2007. [107] M. Stéphane, "Chapter 4 - Time Meets Frequency," A Wavelet Tour of Signal Processing (Third Edition), M. Stéphane Ed. Boston: Academic Press, pp. 89-153, 2009. [108] D.T. Stuss and R.T. Knight, Principles of Frontal Lobe Function. OUP USA, 2013. [109] A. Subasi, "EEG Signal Classification Using Wavelet Feature Extraction and a Mixture of Expert Model," Expert Systems with Applications, vol. 32, no. 4, pp. 1084-1093, 2007. [110] R. Sutter, R.D. Stevens, and P.W. Kaplan, "Clinical and Imaging Correlates of EEG Patterns in Hospitalized Patients with Encephalopathy," Journal of Neurology, vol. 260, no. 4, pp. 1087-1098, 2013. [111] M. Toscani, T. Marzi, S. Righi, M.P. Viggiano, and S. Baldassi, "Alpha Waves: A Neural Signature of Visual Suppression," Experimental Brain Research, vol. 207, no. 3, pp. 213-219, 2010. [112] C.-F. Tsai, W.-J. Lee, S.-J. Wang, B.-C. Shia, Z. Nasreddine, and J.-L. Fuh, "Psychometrics of the Montreal Cognitive Assessment (MoCA) and Its Subscales: Validation of the Taiwanese Version of the MoCA and an Item Response Theory Analysis," International Psychogeriatrics, vol. 24, no. 4, pp. 651-658, 2012. [113] J.A. van Deursen, E.F.P.M. Vuurman, F.R.J. Verhey, V.H.J.M. van Kranen-Mastenbroek, and W.J. Riedel, "Increased EEG Gamma Band Activity in Alzheimer’s Disease and Mild Cognitive Impairment," Journal of Neural Transmission, vol. 115, no. 9, pp. 1301-1311, 2008. [114] E.C.W. van Straaten, P. Scheltens, and F. Barkhof, "MRI and CT in the Diagnosis of Vascular Dementia," Journal of the Neurological Sciences, vol. 226, no. 1, pp. 9-12, 2004. [115] C. Wang, R. Rajagovindan, S.-M. Han, and M. Ding, "Top-Down Control of Visual Alpha Oscillations: Sources of Control Signals and Their Mechanisms of Action," Frontiers in Human Neuroscience, Original Research vol. 10, 2016. [116] S. Waninger, C. Berka, A. Meghdadi, M.S. Karic, K. Stevens, C. Aguero, T. Sitnikova, D.H. Salat, and A. Verma, "Event-Related Potentials during Sustained Attention and Memory Tasks: Utility as Biomarkers for Mild Cognitive Impairment," Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, vol. 10, no. 1, pp. 452-460, 2018. [117] P. Welch, "The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms," IEEE Transactions on Audio and Electroacoustics, vol. 15, no. 2, pp. 70-73, 1967. [118] S.J. Williamson, L. Kaufman, Z.L. Lu, J.Z. Wang, and D. Karron, "Study of Human Occipital Alpha Rhythm: The Alphon Hypothesis and Alpha Suppression," International Journal of Psychophysiology, vol. 26, no. 1, pp. 63-76, 1997. [119] World Health Organization, "Global Status Report on the Public Health Response to Dementia," 2021. [120] C.-T. Wu, D.G. Dillon, H.-C. Hsu, S. Huang, E. Barrick, and Y.-H. Liu, "Depression Detection Using Relative EEG Power Induced by Emotionally Positive Images and a Conformal Kernel Support Vector Machine," Applied Sciences, vol. 8, no. 8, 2018. [121] J. Wu, Q. Zhou, J. Li, Y. Chen, S. Shao, and Y. Xiao, "Decreased Resting-State Alpha-Band Activation and Functional Connectivity after Sleep Deprivation," Scientific Reports, vol. 11, no. 1, p. 484, 2021. [122] Z. Wu and N.E. Huang, "Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method," Advances in adaptive data analysis, vol. 1, no. 01, pp. 1-41, 2009. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99115 | - |
| dc.description.abstract | 本研究旨在探討腦電訊號(EEG)作為認知功能評估之輔助工具的可行性。由社區量測開始,針對數十名50 至90歲受試者蒐集靜息狀態與任務狀態EEG資料,並搭配 MoCA-T 認知測驗進行分析,而後根據 MoCA-T 分數可以將受測者切分為兩個認知群體。本研究不僅進行傳統二元分類任務,也引入迴歸模型預測 MoCA-T 分數,再以此分數進行分類,作為一種新型態的認知評估方法。
本研究建構完整建模流程,使用隨機森林與梯度提升樹(XGBoost)為主要演算法,資料經三種預處理策略(原始訊號、獨立成分分析、重新參考以及獨立成分分析),並提取多種EEG特徵(如時域、頻域、複雜性、連接度、小波、希爾伯特-黃轉換及其組合)進行訓練與預測。結果顯示結合靜息狀態與任務狀態EEG之模有著平均最高的分類準確性,特別是在經過兩種預處理方法後。此外,預處理策略與特徵性質交互影響模型表現,獨立成分分析(ICA)能有效提升任務狀態在回歸模型中的表現,而部分非線性特徵在原始資料中反而保留更多資訊,例如希爾伯特-黃轉換(HHT)相關特徵可達到 80% 以上的分類準確率。 綜上所述,藉由大規模的特徵提取與模型訓練,本研究成功篩選出在靜息態 EEG 中,原始訊號結合非線性特徵(如 Connectivity HHT)可達到最高 92% 的分類準確率。在任務態 EEG 中,原始訊號搭配與連結性相關的特徵表現最佳,分類準確率可達 87% 至 88%。在整合後的模型中,若搭配 ICA 前處理與複雜度特徵,或是結合重參考與 ICA 前處理與連結性特徵,皆可達到 88% 至 89% 的分類準確率。雖然本研究模型預測效能仍有進步空間,但已建立一套可行的分析框架,未來經由資料規模擴充、特徵篩選、模型優化與模型間的集成學習,有潛力應用於失智症早期篩檢,並進一步發展為認知功能評估之輔助工具。 | zh_TW |
| dc.description.abstract | This study aimed to investigate the feasibility of using electroencephalography (EEG) as an auxiliary tool for cognitive function assessment. Beginning with community-based data collection, resting-state and task-state EEG recordings were obtained from dozens of participants aged 50 to 90, alongside administration of the MoCA-T cognitive assessment. Based on the MoCA-T scores, participants were categorized into two cognitive groups. In addition to traditional binary classification tasks, this study further introduced a regression-based approach to predict MoCA-T scores and subsequently classify cognitive status based on the predicted values, offering a novel framework for cognitive evaluation.
A comprehensive modeling pipeline was established using Random Forest and XGBoost as the primary algorithms. EEG data underwent three preprocessing strategies: raw signals, Independent Component Analysis (ICA), and re-referencing combined with ICA. A wide range of EEG features were extracted for model training and prediction, including time-domain, frequency-domain, complexity, connectivity, wavelet, Hilbert-Huang Transform (HHT), and their combinations. The results showed that models utilizing integrated EEG features (i.e., normalized differences between task-state and resting-state EEG) achieved the highest average classification accuracy, especially under the two preprocessing methods. Furthermore, the interaction between preprocessing methods and feature types significantly influenced model performance: ICA preprocessing notably improved regression results in task-state EEG, while certain nonlinear features, e.g., HHT-related features, retained more informative content in raw EEG, achieving classification accuracies exceeding 80%. In summary, through large-scale feature extraction and systematic model training, this study identified high-performing combinations across EEG paradigms. In resting-state EEG, raw signals paired with nonlinear features (Connectivity HHT) achieved the highest classification accuracy of 92%. For task-state EEG, raw data combined with connectivity-based features yielded optimal results, reaching 87%–88% accuracy. In integrated EEG models, classification accuracies of 88%–89% were achieved when using complexity features with ICA preprocessing, or connectivity features with both re-referencing and ICA. Although there remains room for improvement in model performance, this study establishes a feasible analytical framework. With future enhancements through expanded datasets, feature optimization, model refinement, and ensemble learning, EEG has the potential to support early detection of dementia and serve as an assistive tool for cognitive function assessment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:26:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:26:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文口試委員會審定書 ii
英文口試委員會審定書 iv 誌謝 vi 摘要 viii Abstract x Contents xii List of Tables xvi List of Figures xx Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Electroencephalography and Brainwaves 3 1.2.1 EEG Bands 3 1.2.2 Brain Regions and Their Corresponding Functions 6 1.2.3 Value of Research 9 1.3 Thesis Statement and Contributions 10 1.4 Thesis Framework 11 Chapter 2 Literature Review 13 2.1 Preprocessing of EEG Signals 13 2.2 Time-Frequency Methods of EEG 15 2.3 Feature Extraction from EEG 19 2.4 Machine Learning Methods 22 2.5 Summary 24 Chapter 3 Materials and Methods 25 3.1 Dataset Description 25 3.1.1 Data Source and Demographics 25 3.1.2 Taiwanese Version of Montreal Cognitive Assessment 27 3.1.3 Subgroup Division 30 3.2 EEG Recording 31 3.2.1 Equipment and Preparatory Procedures 31 3.2.2 Resting-State EEG 36 3.2.3 Task-State EEG: Memory Test 37 3.3 Preprocessing of EEG 39 3.4 Summary 42 Chapter 4 EEG Feature Extraction 43 4.1 EEG Segmentation 43 4.2 Time-Domain Features 44 4.2.1 Mean 44 4.2.2 Absolute Mean 45 4.2.3 Standard Deviation 45 4.2.4 Skewness 46 4.2.5 Kurtosis 46 4.3 Frequency-Domain Features 47 4.3.1 Band Power 47 4.3.2 Band Power Ratio 49 4.3.3 Relative Band Power 49 4.4 Complexity Features 50 4.4.1 Spectral Entropy 50 4.4.2 Permutation Entropy 51 4.4.3 Approximate Entropy 52 4.4.4 Sample Entropy 53 4.5 Connectivity Features 55 4.5.1 Coherence 55 4.5.2 Phase Locking Value 56 4.5.3 Phase Lag Index 57 4.6 Wavelet Features 58 4.6.1 Discrete Wavelet Transform 59 4.6.2 Statistical Features 61 4.6.3 Wavelet Energy 62 4.6.4 Wavelet Entropy 62 4.7 Hilbert-Huang Transform Features 63 4.7.1 Intrinsic Mode Functions 64 4.7.2 Empirical Mode Decomposition 65 4.7.3 Ensemble Empirical Mode Decomposition 67 4.7.4 IMF Features 68 4.7.5 Hilbert Features 69 4.7.6 Marginal Spectrum Features 70 4.8 Summary 72 Chapter 5 Machine Learning Approaches for EEG 75 5.1 Tree-Based Models 75 5.1.1 Decision Tree 75 5.1.2 Random Forest 77 5.1.3 XGBoost 78 5.2 Process Framework 81 5.2.1 Features Input 83 5.2.2 Feature Selection 86 5.2.3 Cross-Validation 87 5.2.4 Evaluation Metrics 88 5.3 Resting-State EEG Models 91 5.3.1 Raw EEG 91 5.3.2 ICA-Preprocessed EEG 102 5.3.3 Re-Referenced and ICA-Preprocessed EEG 113 5.3.4 Discussion 124 5.4 Task-State EEG Models 128 5.4.1 Raw EEG 128 5.4.2 ICA-Preprocessed EEG 139 5.4.3 Re-Referenced and ICA-Preprocessed EEG 150 5.4.4 Discussion 161 5.5 Integrated EEG Models 165 5.5.1 Raw EEG 165 5.5.2 ICA-Preprocessed EEG 176 5.5.3 Re-Referenced and ICA-Preprocessed EEG 187 5.5.4 Discussion 198 5.6 Summary 200 Chapter 6 Conclusions and Future Work 203 6.1 Conclusions 203 6.2 Future Works 207 References 209 Biography 219 | - |
| dc.language.iso | en | - |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 腦電訊號 | zh_TW |
| dc.subject | 認知功能評估 | zh_TW |
| dc.subject | 訊號處理 | zh_TW |
| dc.subject | 特徵提取 | zh_TW |
| dc.subject | feature extraction | en |
| dc.subject | signal processing | en |
| dc.subject | cognitive function assessment | en |
| dc.subject | machine learning | en |
| dc.subject | EEG | en |
| dc.title | 結合多元特徵與預處理策略之腦電訊號認知建模研究 | zh_TW |
| dc.title | EEG-Based Cognitive Modeling with Multi-Domain Features and Preprocessing Strategies | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 程藴菁;劉益宏;李柏磊 | zh_TW |
| dc.contributor.oralexamcommittee | Yen-Ching Chen;Yi-Hung Liu;Po-Lei Lee | en |
| dc.subject.keyword | 腦電訊號,機器學習,特徵提取,訊號處理,認知功能評估, | zh_TW |
| dc.subject.keyword | EEG,machine learning,feature extraction,signal processing,cognitive function assessment, | en |
| dc.relation.page | 219 | - |
| dc.identifier.doi | 10.6342/NTU202503048 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 10.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
