請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99114完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林璧鳳 | zh_TW |
| dc.contributor.advisor | Bi-Fong Lin | en |
| dc.contributor.author | 邱德益 | zh_TW |
| dc.contributor.author | Te-I Chiu | en |
| dc.date.accessioned | 2025-08-21T16:26:35Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | 黃薰儀 (2019)。探討gamma-胺基丁酸對Vhlh基因剔除小鼠腎臟病與免疫調節的影響。國立臺灣大學生化科技學系暨研究所博士論文。
國民健康署 (2022)。臺灣國民營養健康狀況變遷調查成果報告 (民國106-109年)。 袁意雲 (2022)。探討gamma-胺基丁酸對Imiquimod誘發乾癬小鼠免疫調節之影響。國立臺灣大學生化科技學系暨研究所碩士論文。 陳立芬 (2022)。以HK-2腎小管細胞株探討葉酸與高葡萄糖或果糖對腎的影響。國立臺灣大學生化科技學系暨研究所碩士論文。 陳駿威 (2023)。葉酸營養狀況對脂質代謝和慢性腎病變的影響之研究。國立臺灣大學生化科技學系暨研究所博士論文。 邱雅靖 (2024)。葉酸與果糖對腺嘌呤誘發腎損傷小鼠免疫反應的影響。國立臺灣大學生化科技學系暨研究所碩士論文。 陳亭語 (2024)。果糖與葉酸對腺嘌呤誘發腎損傷小鼠腎功能的影響。國立臺灣大學生化科技學系暨研究所碩士論文。 Aoyama, M., Isshiki, K., Kume, S., Chin-Kanasaki, M., Araki, H., Araki, S., Koya, D., Haneda, M., Kashiwagi, A., Maegawa, H., & Uzu, T. (2012). Fructose induces tubulointerstitial injury in the kidney of mice. Biochemical and Biophysical Research Communications, 419 (2), 244–249. Basu, R. K., Hubchak, S., Hayashida, T., Runyan, C. E., Schumacker, P. T., & Schnaper, H. W. (2011). Interdependence of HIF-1α and TGF-β/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. American journal of physiology. Renal Physiology, 300(4), F898–F905. Bechtel, W., McGoohan, S., Zeisberg, E. M., Müller, G. A., Kalbacher, H., Salant, D. J., Müller, C. A., Kalluri, R., & Zeisberg, M. (2010). Methylation determines fibroblast activation and fibrogenesis in the kidney. Nature Medicine, 16(5), 544–550. Bender, D. A. (2003). Folate and other pterins and vitamin B12. In Nutritional Biochemistry of the Vitamins (pp. 270–323). chapter, Cambridge: Cambridge University Press. Björkman O, Felig P. (1982). Role of the kidney in the metabolism of fructose in 60-hour fasted humans. Diabetes (31), 516-520 Burch HB, Choi S, Dence CN, Alvey TR, Cole BR, Lowry OH. (1980) Metabolic effects of large fructose loads in different parts of the rat nephron. Journal of Biological Chemistry, 255, 8239 – 8244 Chan, C. W., & Lin, B. F. (2023). Folate deficiency enhanced inflammation and exacerbated renal fibrosis in high-fat high-fructose diet-fed mice. Nutrients, 15(16), 3616. Chan, C. W., Chan, P. H., & Lin, B. F. (2022). Folate deficiency increased lipid accumulation and leptin production of adipocytes. Frontiers in Nutrition, 9, 852451. Chandler, C. J., Wang, T. T., & Halsted, C. H. (1986). Pteroylpolyglutamate hydrolase from human jejunal brush borders. Purification and characterization. The Journal of Biological Chemistry, 261(2), 928–933. Cianciolo Cosentino, C., Skrypnyk, N. I., Brilli, L. L., Chiba, T., Novitskaya, T., Woods, C., West, J., Korotchenko, V. N., McDermott, L., Day, B. W., Davidson, A. J., Harris, R. C., de Caestecker, M. P., & Hukriede, N. A. (2013). Histone deacetylase inhibitor enhances recovery after AKI. Journal of the American Society of Nephrology, 24(6), 943–953. Cirillo, P., Gersch, M. S., Mu, W., Scherer, P. M., Kim, K. M., Gesualdo, L., Henderson, G. N., Johnson, R. J., & Sautin, Y. Y. (2009). Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells. Journal of the American Society of Nephrology, 20 (3), 545–553. Clasen, J. L., Heath, A. K., Scelo, G., & Muller, D. C. (2020). Components of one-carbon metabolism and renal cell carcinoma: a systematic review and meta-analysis. European Journal of Nutrition, 59(8), 3801–3813. Coletta, I., Soldo, L., Polentarutti, N., Mancini, F., Guglielmotti, A., Pinza, M., Mantovani, A., & Milanese, C. (2000). Selective induction of MCP-1 in human mesangial cells by the IL-6/sIL-6R complex. Experimental Nephrology, 8(1), 37–43. Dai, Y., Gu, L., Yuan, W., Yu, Q., Ni, Z., Ross, M. J., Kaufman, L., Xiong, H., Salant, D. J., He, J. C., & Chuang, P. Y. (2013). Podocyte-specific deletion of signal transducer and activator of transcription 3 attenuates nephrotoxic serum-induced glomerulonephritis. Kidney International, 84(5), 950–961. Dong, J., Li, M., Peng, R., Zhang, Y., Qiao, Z., & Sun, N. (2024). ACACA reduces lipid accumulation through dual regulation of lipid metabolism and mitochondrial function via AMPK- PPARα- CPT1A axis. Journal of Translational Medicine, 22(1), 196. Erdö, S. L., & Wolff, J. R. (1990). gamma-Aminobutyric acid outside the mammalian brain. Journal of Neurochemistry, 54 (2), 363–372. Fan, J. H., Xu, H. X., Qin, Z. Z., Chang, C., Lu, L. C., Qian, J. F., Liu, Q. J., & Pan, W. (2023). Folic acid protects against kidney damage in mice with diabetic nephropathy by inhibiting M1 macrophage polarization via nuclear factor-k-gene binding pathway. Alternative Therapies in Health and Medicine, 29(6), 418–420. Ferenbach, D. A., & Bonventre, J. V. (2015). Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nature reviews. Nephrology, 11(5), 264–276. Forbes J. M. (2016). Mitochondria-power players in kidney function?. Trends in Endocrinology and Metabolism, 27(7), 441–442. Funk, J. A., & Schnellmann, R. G. (2013). Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia-reperfusion injury. Toxicology and Applied Pharmacology, 273(2), 345–354. Gao, J., Chen, Q. Q., Huang, Y., Li, K. H., Geng, X. J., Wang, T., Lin, Q. S., & Yao, R. S. (2021). Design, synthesis and pharmacological evaluation of naphthofuran derivatives as potent SIRT1 activators. Frontiers in Pharmacology, 12, 653233. Gao, Z., Zhang, C., Peng, F., Chen, Q., Zhao, Y., Chen, L., Wang, X., & Chen, X. (2022). Hypoxic mesenchymal stem cell-derived extracellular vesicles ameliorate renal fibrosis after ischemia-reperfusion injure by restoring CPT1A mediated fatty acid oxidation. Stem Cell Research & Therapy, 13(1), 191. Garbers, C., Aparicio-Siegmund, S., & Rose-John, S. (2015). The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Current Opinion in Immunology, 34, 75–82. Gou, R., Chen, J., Sheng, S., Wang, R., Fang, Y., Yang, Z., Wang, L., & Tang, L. (2016). KIM-1 mediates high glucose-induced autophagy and apoptosis in renal tubular epithelial cells. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 38(6), 2479–2488. Guder, W. G., & Ross, B. D. (1984). Enzyme distribution along the nephron. Kidney International, 26(2), 101–111. Guo, H., Fang, T., Cheng, Y., Li, T., Qu, J. R., Xu, C. F., Deng, X. Q., Sun, B., & Chen, L. M. (2023). ChREBP-β/TXNIP aggravates fructose-induced renal injury through triggering ferroptosis of renal tubular epithelial cells. Free Radical Biology & Medicine, 199, 154–165. Hoogstraten, C. A., Hoenderop, J. G., & de Baaij, J. H. F. (2024). Mitochondrial dysfunction in kidney tubulopathies. Annual Review of Physiology, 86, 379–403. Hou, Y., Liu, D., Guo, Z., Wei, C., Cao, F., Xu, Y., Feng, Q., & Liu, F. (2025). Lactate and lactylation in AKI-to-CKD: epigenetic regulation and therapeutic opportunities. Cell Proliferation, e70034. Advance online publication. Huang, C. Y., Chen, W. J., Lee, H. L., Lin, Y. C., Huang, Y. L., Shiue, H. S., Pu, Y. S., & Hsueh, Y. M. (2023). Possible combined effects of plasma folate levels, global DNA methylation, and blood cadmium concentrations on renal cell carcinoma. Nutrients, 15(4), 937. Huang, H. Y., Hsu, T., & Lin, B. F. (2019) Gamma-aminobutyric acid decreases macrophages infiltration and suppresses inflammatory responses in renal injury. Journal of Functional Foods 60, 103419. Huang, S., Jin, Y., Zhang, L., Zhou, Y., Chen, N., & Wang, W. (2024). PPAR gamma and PGC-1alpha activators protect against diabetic nephropathy by suppressing the inflammation and NF-kappaB activation. Nephrology (Carlton, Vic.), 29(12), 858–872. Humphreys, B. D., Xu, F., Sabbisetti, V., Grgic, I., Movahedi Naini, S., Wang, N., Chen, G., Xiao, S., Patel, D., Henderson, J. M., Ichimura, T., Mou, S., Soeung, S., McMahon, A. P., Kuchroo, V. K., & Bonventre, J. V. (2013). Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. The Journal of Clinical Investigation, 123(9), 4023–4035. Jang, C., Hui, S., Lu, W., Cowan, A. J., Morscher, R. J., Lee, G., Liu, W., Tesz, G. J., Birnbaum, M. J., & Rabinowitz, J. D. (2018). The small intestine converts dietary fructose into glucose and organic acids. Cell Metabolism, 27(2), 351–361.e3. Jang, C., Wada, S., Yang, S., Gosis, B., Zeng, X., Zhang, Z., Shen, Y., Lee, G., Arany, Z., & Rabinowitz, J. D. (2020). The small intestine shields the liver from fructose-induced steatosis. Nature Metabolism, 2(7), 586–593. Jordan, S., Tung, N., Casanova-Acebes, M., Chang, C., Cantoni, C., Zhang, D., Wirtz, T. H., Naik, S., Rose, S. A., Brocker, C. N., Gainullina, A., Hornburg, D., Horng, S., Maier, B. B., Cravedi, P., LeRoith, D., Gonzalez, F. J., Meissner, F., Ochando, J., Rahman, A., … Merad, M. (2019). Dietary intake regulates the circulating inflammatory monocyte pool. Cell, 178(5), 1102–1114.e17. Kellum J. A. (2015). Diagnostic criteria for acute kidney injury: present and future. Critical Care Clinics, 31(4), 621–632. Kolb, A. F., Petrie, L., Mayer, C. D., Pirie, L., & Duthie, S. J. (2019). Folate deficiency promotes differentiation of vascular smooth muscle cells without affecting the methylation status of regulated genes. The Biochemical Journal, 476(19), 2769–2795. Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A., & Humphreys, B. D. (2014). Differentiated kidney epithelial cells repair injured proximal tubule. Proceedings of the National Academy of Sciences of the United States of America, 111(4), 1527–1532. Kushida, N., Nomura, S., Mimura, I., Fujita, T., Yamamoto, S., Nangaku, M., & Aburatani, H. (2016). Hypoxia-inducible factor-1α activates the transforming growth factor-β/SMAD3 pathway in kidney tubular epithelial cells. American Journal of Nephrology, 44(4), 276–285. Layton, A. T., Vallon, V., & Edwards, A. (2016). A computational model for simulating solute transport and oxygen consumption along the nephrons. American Journal of Physiology. Renal Physiology, 311(6), F1378–F1390. Lee, D. Y., Kim, J. Y., Ahn, E., Hyeon, J. S., Kim, G. H., Park, K. J., Jung, Y., Lee, Y. J., Son, M. K., Kim, S. W., Han, S. Y., Kim, J. H., Roh, G. S., Cha, D. R., Hwang, G. S., & Kim, W. H. (2022). Associations between local acidosis induced by renal LDHA and renal fibrosis and mitochondrial abnormalities in patients with diabetic kidney disease. Translational Research : the Journal of Laboratory and Clinical Medicine, 249, 88–109. Li, H., Leung, J. C. K., Yiu, W. H., Chan, L. Y. Y., Li, B., Lok, S. W. Y., Xue, R., Zou, Y., Lai, K. N., & Tang, S. C. W. (2022). Tubular β-catenin alleviates mitochondrial dysfunction and cell death in acute kidney injury. Cell Death & Disease, 13(12), 1061. Li, X., Zhang, C., Zhao, T., Su, Z., Li, M., Hu, J., Wen, J., Shen, J., Wang, C., Pan, J., Mu, X., Ling, T., Li, Y., Wen, H., Zhang, X., & You, Q. (2020). Lysine-222 succinylation reduces lysosomal degradation of lactate dehydrogenase a and is increased in gastric cancer. Journal of Experimental & Clinical Cancer Research, 39(1), 172. Loeffler, I., & Wolf, G. (2014). Transforming growth factor-β and the progression of renal disease. Nephrology, Dialysis, Transplantation : Official Publication of the European Dialysis and Transplant Association - European Renal Association, 29 Suppl 1, i37–i45. Lowe, K. E., Osborne, C. B., Lin, B. F., Kim, J. S., Hsu, J. C., & Shane, B. (1993). Regulation of folate and one-carbon metabolism in mammalian cells. II. Effect of folylpoly-gamma-glutamate synthetase substrate specificity and level on folate metabolism and folylpoly-gamma-glutamate specificity of metabolic cycles of one-carbon metabolism. The Journal of Biological Chemistry, 268(29), 21665–21673. Marshall C. B. (2016). Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic?. American Journal of Physiology. Renal Physiology, 311(5), F831–F843. Mayes P. A. (1993). Intermediary metabolism of fructose. The American Journal of Clinical Nutrition, 58 (5 Suppl), 754S–765S. McNulty, H., & Pentieva, K. (2004). Folate bioavailability. The Proceedings of the Nutrition Society, 63(4), 529–536. Miguel, V., Tituaña, J., Herrero, J. I., Herrero, L., Serra, D., Cuevas, P., Barbas, C., Puyol, D. R., Márquez-Expósito, L., Ruiz-Ortega, M., Castillo, C., Sheng, X., Susztak, K., Ruiz-Canela, M., Salas-Salvadó, J., González, M. A. M., Ortega, S., Ramos, R., & Lamas, S. (2021). Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. The Journal of Clinical Investigation, 131(5), e140695. Moll, S., & Varga, E. A. (2015). Homocysteine and MTHFR Mutations. Circulation, 132(1), e6–e9. Nadkarni, G. N., Rao, V., Ismail-Beigi, F., Fonseca, V. A., Shah, S. V., Simonson, M. S., Cantley, L., Devarajan, P., Parikh, C. R., & Coca, S. G. (2016). Association of urinary biomarkers of inflammation, injury, and fibrosis with renal function decline: The ACCORD Trial. Clinical Journal of the American Society of Nephrology, 11(8), 1343–1352. Napal, L., Marrero, P. F., & Haro, D. (2005). An intronic peroxisome proliferator-activated receptor-binding sequence mediates fatty acid induction of the human carnitine palmitoyltransferase 1A. Journal of Molecular Biology, 354(4), 751–759. Phillips, A. O., & Steadman, R. (2002). Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury. Histology and Histopathology, 17(1), 247–252. Piret, S. E., Attallah, A. A., Gu, X., Guo, Y., Gujarati, N. A., Henein, J., Zollman, A., Hato, T., Ma'ayan, A., Revelo, M. P., Dickman, K. G., Chen, C. H., Shun, C. T., Rosenquist, T. A., He, J. C., & Mallipattu, S. K. (2021). Loss of proximal tubular transcription factor Krüppel-like factor 15 exacerbates kidney injury through loss of fatty acid oxidation. Kidney International, 100(6), 1250–1267. Portilla, D., Dai, G., McClure, T., Bates, L., Kurten, R., Megyesi, J., Price, P., & Li, S. (2002). Alterations of PPARalpha and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney International, 62(4), 1208–1218. Price, B. R., Wilcock, D. M., & Weekman, E. M. (2018). Hyperhomocysteinemia as a risk factor for vascular contributions to cognitive impairment and dementia. Frontiers in Aging Neuroscience, 10, 350. Ranganathan, P., Jayakumar, C., & Ramesh, G. (2013). Proximal tubule-specific overexpression of netrin-1 suppresses acute kidney injury-induced interstitial fibrosis and glomerulosclerosis through suppression of IL-6/STAT3 signaling. American Journal of Physiology. Renal Physiology, 304(8), F1054–F1065. Sato, Y., Takahashi, M., & Yanagita, M. (2020). Pathophysiology of AKI to CKD progression. Seminars in Nephrology, 40(2), 206–215. Schlaepfer, I. R., & Joshi, M. (2020). CPT1A-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology, 161(2), bqz046. Schrauben, S. J., Shou, H., Zhang, X., Anderson, A. H., Bonventre, J. V., Chen, J., Coca, S., Furth, S. L., Greenberg, J. H., Gutierrez, O. M., Ix, J. H., Lash, J. P., Parikh, C. R., Rebholz, C. M., Sabbisetti, V., Sarnak, M. J., Shlipak, M. G., Waikar, S. S., Kimmel, P. L., Vasan, R. S., … CKD biomarkers consortium and the chronic renal insufficiency cohort (CRIC) study investigators (2021). Association of Multiple Plasma Biomarker Concentrations with Progression of Prevalent Diabetic Kidney Disease: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Journal of the American Society of Nephrology, 32(1), 115–126. Sharfuddin, A. A., & Molitoris, B. A. (2011). Pathophysiology of ischemic acute kidney injury. Nature Reviews. Nephrology, 7(4), 189–200. Song, S., Attia, R. R., Connaughton, S., Niesen, M. I., Ness, G. C., Elam, M. B., Hori, R. T., Cook, G. A., & Park, E. A. (2010). Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma coactivator (PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements. Molecular and Cellular Endocrinology, 325(1-2), 54–63. Su, H., Lei, C. T., & Zhang, C. (2017). Interleukin-6 signaling pathway and its role in kidney disease: an update. Frontiers in Immunology, 8, 405. Szeto, H. H., Liu, S., Soong, Y., Seshan, S. V., Cohen-Gould, L., Manichev, V., Feldman, L. C., & Gustafsson, T. (2017). Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1β and IL-18 and arrests CKD. Journal of the American Society of Nephrology, 28(5), 1437–1449. Takano, K., Yatabe, M. S., Abe, A., Suzuki, Y., Sanada, H., Watanabe, T., Kimura, J., & Yatabe, J. (2014). Characteristic expressions of GABA receptors and GABA producing/transporting molecules in rat kidney. PloS one, 9 (9), e105835. Takaori, K., Nakamura, J., Yamamoto, S., Nakata, H., Sato, Y., Takase, M., Nameta, M., Yamamoto, T., Economides, A. N., Kohno, K., Haga, H., Sharma, K., & Yanagita, M. (2016). Severity and requency of poximal tubule injury determines renal prognosis. Journal of the American Society of Nephrology, 27(8), 2393–2406. Tian, H., Ge, Y., Yu, J., Chen, X., Wang, H., Cai, X., Shan, Z., Zuo, L., & Liu, Y. (2025). CPT1A mediates succinylation of LDHA at K318 site promoteing metabolic reprogramming in NK/T-cell lymphoma nasal type. Cell Biology and Toxicology, 41(1), 42. Tian, J., Dang, H. N., Yong, J., Chui, W. S., Dizon, M. P., Yaw, C. K., & Kaufman, D. L. (2011). Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice. PloS one, 6(9), e25338. Viedt, C., Dechend, R., Fei, J., Hänsch, G. M., Kreuzer, J., & Orth, S. R. (2002). MCP-1 induces inflammatory activation of human tubular epithelial cells: involvement of the transcription factors, nuclear factor-kappaB and activating protein-1. Journal of the American Society of Nephrology, 13(6), 1534–1547. Visentin, M., Diop-Bove, N., Zhao, R., & Goldman, I. D. (2014). The intestinal absorption of folates. Annual Review of Physiology, 76, 251–274. Wang, Y., Li, H., Jiang, S., Fu, D., Lu, X., Lu, M., Li, Y., Luo, D., Wu, K., Xu, Y., Li, G., Zhou, Y., Zhou, Y., Chen, W., Liu, Q., & Mao, H. (2024). The glycolytic enzyme PFKFB3 drives kidney fibrosis through promoting histone lactylation-mediated NF-κB family activation. Kidney International, 106(2), 226–240. Wassmann, S., Stumpf, M., Strehlow, K., Schmid, A., Schieffer, B., Böhm, M., & Nickenig, G. (2004). Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circulation Research, 94(4), 534–541. Wen, Y., Thiessen-Philbrook, H., Moledina, D. G., Kaufman, J. S., Reeves, W. B., Ghahramani, N., Ikizler, T. A., Go, A. S., Liu, K. D., Siew, E. D., Himmelfarb, J., Kimmel, P. L., Hsu, C. Y., & Parikh, C. R. (2022). Considerations in controlling for urine concentration for biomarkers of kidney disease progression after acute kidney injury. Kidney International Reports, 7(7), 1502–1513. Xing, A., Li, X., Jiang, C., Chen, Y., Wu, S., Zhang, J., & An, L. (2019). As a histone deacetylase inhibitor, γ-aminobutyric acid upregulates GluR2 expression: an in vitro and in vivo study. Molecular Nutrition & Food Research, 63 (17), e1900001. Yan L. J. (2021). Folic acid-induced animal model of kidney disease. Animal Models and Experimental Medicine, 4(4), 329–342. Zeng, J., Gu, Y., Fu, H., Liu, C., Zou, Y., & Chang, H. (2020). Association between one-carbon metabolism-related vitamins and risk of breast cancer: a systematic review and meta-analysis of prospective studies. Clinical Breast Cancer, 20(4), e469–e480. Zhang, X., Chen, J., Lin, R., Huang, Y., Wang, Z., Xu, S., Wang, L., Chen, F., Zhang, J., Pan, K., & Yin, Z. (2024). Lactate drives epithelial-mesenchymal transition in diabetic kidney disease via the H3K14la/KLF5 pathway. Redox Biology, 75, 103246. Zhang, J., Zhang, W., Yang, L., Zhao, W., Liu, Z., Wang, E., & Wang, J. (2023). Phytochemical gallic acid alleviates nonalcoholic fatty liver disease via AMPK-ACC-PPARa axis through dual regulation of lipid metabolism and mitochondrial function. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 109, 154589. Zhang, P., Bai, L., Tong, Y., Guo, S., Lu, W., Yuan, Y., Wang, W., Jin, Y., Gao, P., & Liu, J. (2023). CIRP attenuates acute kidney injury after hypothermic cardiovascular surgery by inhibiting PHD3/HIF-1α-mediated ROS-TGF-β1/p38 MAPK activation and mitochondrial apoptotic pathways. Molecular Medicine (Cambridge, Mass.), 29(1), 61. Zhang, R., Ma, J., Xia, M., Zhu, H., & Ling, W. (2004). Mild hyperhomocysteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes. The Journal of Nutrition, 134(4), 825–830. Zhu, Z., Hu, J., Chen, Z., Feng, J., Yang, X., Liang, W., & Ding, G. (2022). Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabolism: Clinical and Experimental, 131, 155194. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99114 | - |
| dc.description.abstract | 台灣末期腎臟病盛行率、洗腎人口高居世界之冠,其增幅亦名列前茅;又,國人葉酸邊緣缺乏盛行率漸增。本研究室已發表葉酸缺乏加劇高果糖高油誘發之小鼠腎損傷,以及補充 γ-aminobutyric acid (GABA) 延緩自發性腎炎小鼠之腎損傷之研究,故本研究欲探討葉酸、果糖和 GABA 飲食因子對腎小管細胞激素分泌及代謝之影響。研究方法為以人類腎小管上皮細胞株 HK-2 細胞在各濃度的葉酸、果糖和 GABA 以及有無 LPS 刺激、有無 LDH 抑制劑 oxamate 等不同條件下,分別測定促發炎細胞激素 IL-6、MCP-1、抗發炎/纖維化細胞激素 TGF-β1 分泌量、腎損傷相關基因 Vegf, Kim-1, Caspase-3 mRNA 表現量、乳酸生成和其生成酵素 lactate dehydrogenase (LDH) 活性,以及脂肪酸氧化酵素 carnitine-palmitoyltransferase 1 (CPT1A)、參與能量代謝與粒線體生合成之轉錄活化因子 PPARγ coactivator (PGC)-1α、纖維化指標 α-smooth muscle actin (α-SMA) 之表現量,並以海馬生物能量儀測定HK-2細胞在葉酸充足或缺乏時之耗氧率代表其粒線體功能。結果顯示,2 mM 果糖增加 HK-2 細胞 Vegf, Kim-1, Caspase-3 mRNA 表現量,5 mM 果糖促進其 IL-6、MCP-1 分泌;添加 GABA 則可減緩果糖處理或葉酸缺乏下之促發炎細胞激素分泌。葉酸缺乏的 HK-2 細胞內 ROS 累積、LDH 活性上升,造成胞內外乳酸含量上升。雖然 CPT1A 表現量上升,但粒線體基礎耗氧率下降,電子傳遞鏈去耦合且ATP產量下降。若以 oxamate 抑制葉酸缺乏 HK-2 細胞的乳酸生成,則使其 IL-6 分泌下降,而 MCP-1 分泌上升;反之,添加乳酸使 IL-6、TGF-β1 分泌量上升,但 MCP-1 分泌下降。由以上結果可知,葉酸缺乏的 HK-2 細胞粒線體 ATP 生成功能受損、乳酸生成增加,進而影響促發炎激素分泌;同時,葉酸缺乏亦加劇 LPS 刺激下的乳酸生成,顯示葉酸缺乏可能影響腎小管細胞的能量代謝傾向、促進乳酸生成,並增加促發炎細胞激素的分泌。 | zh_TW |
| dc.description.abstract | Taiwan has the highest prevalence of end-stage renal disease and hemodialysis globally, with a growing population suffered from folate insufficiency. Our previous studies have shown that folate deficiency worsened renal damage in mice fed with high-fructose, high-fat diet and that γ-aminobutyric acid (GABA) mitigated kidney injury in mice with spontaneous nephritis. Building on this, the present study aims to investigate how folate, fructose, and GABA might influence cytokine secretion and metabolism in renal tubular cells. HK-2 cells (human kidney proximal tubular epithelial cell line) were cultured with varying concentrations of folate, fructose, and GABA, with or without LPS stimulation, with or without oxamate (LDH inhibitor) for determination of IL-6, MCP-1 (pro-inflammatory cytokines), TGF-β1 (anti-inflammatory/profibrotic cytokine) secretion, Vegf, Kim-1, Caspase-3 (renal injury-related genes) expression, lactate production, and CPT1A (a key enzyme in fatty acid oxidation), PGC-1α (a key transcription factor in regulating mitochondrial biogenesis), α-SMA (a pro-fibrotic marker) expression, alongside oxygen consumption rate (mitochondrial function marker) using Seahorse Analyzer. Results showed that 2 mM fructose increased mRNA expression of Vegf, Kim-1, Caspase-3; 5 mM fructose increased IL-6, MCP-1 secretion, while GABA alleviated pro-inflammatory cytokine secretion induced by fructose or folate deficiency. Notably, folate deficiency led to ROS accumulation, elevated LDH activity, and lactate buildup. Folate deficient HK-2 cells showed decreased mitochondrial basal respiration, decoupling in ATP production, despite a rise in CPT1A expression. Inhibiting lactate production in folate-deficient HK-2 cells increased MCP-1 secretion, with suppressed IL-6 secretion; lactate addition increased IL-6 and TGF-β1 secretion, with reduced MCP-1 secretion. These findings suggest that folate deficiency impairs mitochondrial ATP synthesis, elevates lactate production, and exacerbates pro-inflammatory cytokine secretion and LPS-induced lactate production in HK-2 cells, highlighting its critical role in metabolic preference, lactate production, and proinflammatory cytokine secretion. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:26:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:26:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 目次 v 圖次 ix 表次 x 第一章 文獻回顧 1 第一節 腎臟 1 一、腎臟結構與生理 1 二、腎臟病變 2 (一)腎臟疾病概述 2 (二)腎小管與急性腎損傷 2 (三)從急性腎損傷到慢性腎病變 3 (四)腎臟發炎、纖維化相關細胞激素 4 三、腎小管病變與代謝模式轉換 6 (一)腎小管的代謝偏好 6 (二)腎病變與代謝轉換 7 第二節 腎保健相關飲食因子 8 一、葉酸 8 (一)葉酸結構與化學特性 8 (二)葉酸來源與國人葉酸營養狀況 9 (三)葉酸的吸收與代謝 9 (四)葉酸之代謝角色 10 (五)葉酸缺乏與健康風險 11 二、果糖 13 (一)果糖的吸收與代謝 13 (二)果糖與腎臟 14 三、γ-胺基丁酸 15 (一)GABA簡介 15 (二)GABA與腎臟 15 第三節 研究動機與目的 16 第二章 實驗設計與材料方法 17 第一節、實驗設計 17 第二節、材料與方法 17 一、HK-2細胞株培養 17 (一)細胞培養 17 (二)細胞存活率標準曲線測定 19 (三)胞內葉酸含量測定 19 (四)藥品添加 21 (五)LPS刺激 21 二、細胞代謝指標測定 22 (一)上清液pH值測定 22 (二)胞內活性氧化物 (reactive oxygen species, ROS) 測定 22 (三)乳酸含量測定 23 (四)乳酸脫氫酶 (LDH) 活性測定 24 三、氧氣消耗率測定 25 四、細胞激素測定 27 (一)上清液IL-6、MCP-1測定 27 (二)上清液TGF-β1測定 28 五、基因mRNA表現量測定 30 六、Western blot 32 七、統計方法 36 第三章 實驗結果 37 第一節 飲食因子對HK-2細胞株腎損傷相關指標的影響 37 一、果糖對HK-2細胞株腎損傷相關指標mRNA表現之影響 37 二、果糖對HK-2細胞株促發炎激素分泌量之影響 38 三、GABA對HK-2細胞株促發炎激素分泌量之影響 40 四、葉酸缺乏對HK-2細胞株細胞激素分泌量之影響 43 第二節 葉酸對HK-2細胞株代謝影響促發炎的的可能性 45 一、葉酸缺乏對HK-2細胞株乳酸生成之影響 45 二、葉酸對HK-2細胞株粒線體脂肪酸氧化路徑之影響 47 三、葉酸缺乏致HK-2細胞株粒線體功能低下 49 四、葉酸缺乏下HK-2細胞株有氧糖解和發炎的關聯 51 第四章 討論與結論 53 第一節 討論 53 一、果糖對腎小管細胞的影響 53 二、GABA對腎小管細胞的影響 54 三、HK-2細胞株葉酸缺乏培養模式 54 四、葉酸缺乏或過量對發炎反應之影響 55 五、葉酸缺乏對CPT1A表達量的可能影響機轉 56 六、乳酸與促發炎激素IL-6、MCP-1分泌量之關係 56 七、乳酸與促纖維化激素TGF-β1分泌量之關係 57 八、有氧糖解與粒線體功能的交互作用 58 九、研究限制 58 第二節、結論 59 附錄 61 參考文獻 62 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | HK-2細胞株 | zh_TW |
| dc.subject | 葉酸缺乏 | zh_TW |
| dc.subject | 乳酸 | zh_TW |
| dc.subject | 乳酸脫氫酶 | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | 發炎 | zh_TW |
| dc.subject | folate deficiency | en |
| dc.subject | HK-2 | en |
| dc.subject | inflammation | en |
| dc.subject | mitochondria | en |
| dc.subject | LDH | en |
| dc.subject | lactate | en |
| dc.title | 葉酸缺乏促進HK-2腎小管細胞株發炎介質分泌與代謝重整 | zh_TW |
| dc.title | Folate deficiency boosted pro-inflammatory cytokine secretion and metabolic reprogramming in HK-2 renal tubular cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江伯倫;謝佳倩;江孟燦;洪永瀚 | zh_TW |
| dc.contributor.oralexamcommittee | Bor-Luen Chiang;Chia-Chien Hsieh;Meng-Tsan Chiang;Yong-Han Hong | en |
| dc.subject.keyword | HK-2細胞株,葉酸缺乏,乳酸,乳酸脫氫酶,粒線體,發炎, | zh_TW |
| dc.subject.keyword | HK-2,folate deficiency,lactate,LDH,mitochondria,inflammation, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202503757 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
