Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物醫學碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99112
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾嘉綾zh_TW
dc.contributor.advisorChia-Lin Chungen
dc.contributor.author黃昱銘zh_TW
dc.contributor.authorYu-Ming Huangen
dc.date.accessioned2025-08-21T16:26:05Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation吳孟玲、林雋軼。2018。臺灣常見樹木病害介紹。頁 139。一般財團法人日本綠化中心、林業試驗所 (編輯)。臺日樹木醫手冊。農委會林試所,臺北市。
林英任、侯成林、承河元、刘云和。1995。中国北部地区松生斑痣盘菌分类研究。真菌学报,14(2):92-100 頁。
松村明 (編輯)。1995。大辞泉 (第二版)。東京:株式会社小学館。3968 頁。(日文)
飛田範夫。2002。日本庭園の植栽史。日本:京都大学学術出版会。435 頁。(日文)
师光开、罗建堂、侯成林。2010。华山松上的斑痣盘菌。菌物学报,29(2):159-163 頁。
張東柱、傅春旭。2017。樹病學。頁 176-177。五南圖書,臺北市。
黄翠琴、2004。松落针病药剂防治试验。福建林业科技,31(3):47-49 頁。
傅春旭、謝煥儒。2004。林木苗圃病害防治。臺灣林業,30(2):19-20 頁。
曾德賜。2021。農藥藥理與應用—殺菌劑 (第二版)。頁 19-93。國立中興大學、藝軒圖書,臺中市。
曾顯雄、曾國欽、張清安、蔡東纂、嚴新富。2019。臺灣植物病害名彙 (第五版)。頁 242-243。中華民國植物病理學會,臺中市。
謝文瑞、吳德強。1989。臺灣原記錄之尾子菌及其相關屬之訂正與新歸類。中華真菌學會會刊,4(1):9-41 頁。
謝煥儒。1987。臺灣木本植物病害調查報告。中華林學季刊,20(1):65 頁。
Agrios, G. N. 2005. Plant Pathology (Fifth edition). USA: Elsevier Academic Press. 922 pp.
Aime, M. C., Toome, M., McLaughlin, D. J. 2014. Pucciniomycotina. Systematics and Evolution: Part A. pp 271-294 In: McLaughlin D. J., Spatafora J. W. (eds). Systematics and Evolution, 2nd Edition The Mycota VII Part A. Springer-Verlag, Germany.
Aime, M. C., Urbina, H., Liber, J. A., Bonito, G., Oono, R. 2018. Two new endophytic Atractiellomycetes, Atractidochium hillariae and Proceropycnis hameedii. Mycologia, 110(1): 136-146.
Akimitsu, K., Tsuge, T., Kodama, M., Yamamoto, M., Otani, H. 2014. Alternaria host-selective toxins: determinant factors of plant disease. Journal of General Plant Pathology, 80: 109-122.
Ammermann E, Lorenz G, Schelberger K, Mueller B, Kirstgen R, Sauter H. 2000. BAS 500 F – the new broad-spectrum strobilurin fungicide. pp 541-548. In: British Crop Protection Council (eds). The BCPC Conference: Pests and Diseases, Volume 2. Proceedings of an international conference; 2000 Nov 13-16; Brighton Hilton Metropole Hotel, Brighton, UK. pp 541-548.
Andrew, M., Peever, T. L., Pryor, B. M. 2009. An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia, 101(1): 95-109.
Ata, J. P., Burns, K. S., Marchetti, S. B., Worrall, J. J., Mondo, S. J., Stewart, J. E. 2022. Development of PCR-based markers for the identification and detection of Lophodermella needle cast pathogens on Pinus contorta var. latifolia and P. flexilis. Journal of Microbiological Methods, 200: e106546.
Behnke‐Borowczyk, J., Kwaśna, H., Kulawinek, B. 2019. Fungi associated with Cyclaneusma needle cast in Scots pine in the west of Poland. Forest Pathology, 49(2): e12487.
Berbee, M. L., Pirseyedi, M., Hubbard, S. 1999. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia, 91(6): 964-977.
Bettgenhaeuser, J., Gilbert, B., Ayliffe, M., Moscou, M. J. 2014. Nonhost resistance to rust pathogens–a continuation of continua. Frontiers in Plant Science, 5: 664.
Bonito, G., Hameed, K., Toome-Heller, M., Healy, R., Reid, C., Liao, H. L., Aime, M. C. Schadt. C., Vilgalys, R. 2017. Atractiella rhizophila, sp. nov., an endorrhizal fungus isolated from the Populus root microbiome. Mycologia, 109(1): 18-26.
Braun, U., Nakashima, C., Crous, P. W. 2013. Cercosporoid fungi (Mycosphaerellaceae) 1. Species on other fungi, Pteridophyta and Gymnospermae. IMA Fungus, 4(2): 265-345.
Bulman, L., Ganley, R. J., Dick, M. 2008. Needle diseases of radiata pine in New Zealand. Scion Client Report, 13010: 1-81.
Bulman, L. S. 1993. Cyclaneusma needle-cast and Dothistroma needle blight in NZ pine plantations. New Zealand Forestry, 38(2): 21-24.
Bulman, L. S., Bradshaw, R. E., Fraser, S., Martín‐García, J., Barnes, I., Musolin, D. L., Porta, N. La., Woods A. J., Diez, J. J., Koltay, A., Drenkhan, R., Ahumada, R., Poljakovic-Pajnik, L., Queloz, V., Piškur, B., Tomešová-Haataja, V., Anselmi, N., Markovskaja, S., Papazova-Anakieva, I., Sotirovski, K., Lazarević, J., Adamčíková, K., Jankovský, L., Georgieva, M., Boroń , P., Bragança, H., Doğmuş-Lehtijärvi, H. T., Chira, D., Vettraino, A. M., Selikhovkin, A. V., Bulgakov, T. S., Tubby, K. 2016. A worldwide perspective on the management and control of Dothistroma needle blight. Forest Pathology, 46(5): 472-488.
Calabrese, E. J., Mattson, M. P. 2017. How does hormesis impact biology, toxicology, and medicine? NPJ Aging and Mechanisms of Disease, 3(1): 13.
Carbone, I., Kohn, L. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91: 553-556.
Chen C. C. 1965. Survey of Epidemic Diseases of Forest Trees in Taiwan I. Botanical Bulletin of Academia Sinica. 6:80.
Cram, M. M., Frank, M. S., Mallams, K. M. (eds). 2012. Forest nursery pests. USA: US Department of Agriculture, Forest Service. 202 pp.
Crous, P. W., Schoch, C. L., Hyde, K. D., Wood, A. R., Gueidan, C., De Hoog, G. S., Groenewald, J. Z. 2009. Phylogenetic lineages in the Capnodiales. Studies in Mycology, 64(1): 17-47.
Dai, J., Mumper, R. J. 2010. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10): 7313-7352.
Dar, G. H., Beig, M. A., Shah, M. U. D., Ahanger, F. A., Nabi, A. 2018. Myrothecium verrucaria causing needle blight disease on Blue pine (Pinus wallichiana): molecular characterization and host range. European Journal of Plant Pathology, 150(2): 427-437.
de Pascual-Teresa, S., Sanchez-Ballesta, M. T. 2008. Anthocyanins: from plant to health. Phytochemistry Reviews, 7: 281-299.
Diwani, S. A. 1981. Pathogenicity of Lophodermium species on Scots pine. [dissertation]. Aberdeen (UK): University of Aberdeen for degree of Doctor of Philosophy. Aberdeen. 294 pp.
Diwani, S. A., Millar, C. S. 1984. Infection Processes of Three Lophodermium Species on Pinus sylvestris L.. In: Glenn W. P. (eds). Recent Research on Conifer Needle Diseases: Conference Proceedings; 1984 October 14-18; Mississippi: USDA, Forest Service. pp 22-26.
Diwani, S. A., Millar, C. S. 1987. Pathogenicity of three Lophodermium species on Pinus sylvestris L. European Journal of Forest Pathology, 17(1): 53-58.
Doyle, J. J., Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.
European Food Safety Authority, Tramontini, S., Gilioli, G., Maiorano, A., Baldassarre, F., Scala, M., Sánchez, B., Nougadère, A., Vos, S. 2025. Pseudocercospora pini‐densiflorae – Pest Report to support the ranking of EU candidate priority pests, 2025: EN-9401. 34 pp.
Figueroa-Corona, L., Baesen, K., Bhattarai, A., Kegley, A., Sniezko, R. A., Wegrzyn, J., De La Torre, A. R. 2024. Transcriptional Profiling of Early Defense Response to White Pine Blister Rust Infection in Pinus albicaulis (Whitebark Pine). Genes, 15(5): 602.
Flor H. H. 1971. Current Status of the Gene-for-gene Concept. Annual Review of Phytopathology 9: 275–296.
Flora of North America Editorial Committee (eds). 1993. Flora of North America: Volume 2: Pteridophytes and Gymnosperms. USA: Oxford University Press. 496 pp.
Fraser, S., Baker, M., Pearse, G., Todoroki, C. L., Estarija, H. J., Hood, I. A., Bulman, L. S., Somchit, C., Rolando, C. A. 2022. Efficacy and optimal timing of low-volume aerial applications of copper fungicides for the control of red needle cast of pine. New Zealand Journal of Forestry Science, 52: 18.
Gao, X. M., Lin, Y. R., Huang, H. Y., Hou, C. L. 2013. A new species of Lophodermium associated with the needle cast of Cathay silver fir. Mycological Progress, 12: 141-149.
Hata, K., Futai, K. 1995. Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge, Thecodiplosis japonensis. Canadian Journal of Botany, 73(3): 384-390.
Huttunen, S., Manninen, S. 2013. A review of ozone responses in Scots pine (Pinus sylvestris. Environmental and Experimental Botany, 90: 17-31.
Ivory, M. H., Wingfield, M.J. 1986. First report of Mycosphaerella gibsonii in South Africa. Phytophylactica, 18(2): 51-53.
Jiang, H., Meng, X., Ma, J., Sun, X., Wang, Y., Hu, T., Cao, K., Wang, S. 2021. Control effect of fungicide pyraclostrobin alternately applied with Bordeaux mixture against apple Glomerella leaf spot and its residue after preharvest application in China. Crop Protection, 142: e105489.
Jurgens, J. A., Blanchette, R. A., Zambino, P. J., David, A. 2003. Histology of white pine blister rust in needles of resistant and susceptible eastern white pine. Plant Disease, 87(9): 1026-1030.
Karadimos, D. A., Karaoglanidis, G. S., Tzavella–Klonari, K. 2005. Biological activity and physical modes of action of the Qo inhibitor fungicides trifloxystrobin and pyraclostrobin against Cercospora beticola. Crop Protection, 24(1): 23-29.
Kinloch Jr, B. B., Sniezko, R. A., Barnes, G. D., Greathouse, T. E. 1999. A major gene for resistance to white pine blister rust in western white pine from the western Cascade Range. Phytopathology, 89(10): 861-867.
Knezevic, S. Z., Streibig, J. C., Ritz, C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technology, 21(3): 840-848.
Kottke, I., Suárez, J. P., Herrera, P., Cruz, D., Bauer, R., Haug, I., Garnica, S. 2010. Atractiellomycetes belonging to the ‘rust’lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic neotropical orchids. Proceedings of the Royal Society B: Biological Sciences, 277(1685): 1289-1298.
Koukol, O., Pusz, W., Minter, D. 2015. A new species of Lophodermium on needles of mountain pine (Pinus mugo) from the Giant Mountains in Poland. Mycological Progress, 14: 1-13.
Lagunas-Allué, L., Sanz-Asensio, J., Martínez-Soria, M. T. 2015. Mobility and distribution of eight fungicides in surface, skin and pulp in grapes. An application to pyraclostrobin and boscalid. Food Control, 51: 85-93.
Lantz, H., Johnston, P. R., Park, D., Minter, D. W. 2011. Molecular phylogeny reveals a core clade of Rhytismatales. Mycologia, 103(1): 57-74.
Lazarev, V., Karadžic, D., Marković, M., Pap, P., Poljaković-Pajnik, L. 2007. The Most Frequent Lophodermium spp. on Scots Pine and Austrian Pine and Their Role in the Appearance of Other Fungi on the Needles. Acta Silvatica et Lignaria Hungarica: 53-59.
Liang, H., Li, J., Luo, C., Li, J., Zhu, F. X. 2019. Effects of SHAM on the sensitivity of Sclerotinia sclerotiorum and Botrytis cinerea to QoI fungicides. Plant Disease, 103(8): 1884-1888.
Lilja, A., Poteri, M., Petäistö, R. L., Rikala, R., Kurkela, T., Kasanen, R. 2010. Fungal diseases in forest nurseries in Finland. Silva Fennica, 44(3): 525-545.
Lin, S., Yang, L., Zheng, Q., Wang, Y., Cheng, D., Zhang, Z. 2022. Dissipation and distribution of pyraclostrobin in bananas at different temperature and a risk assessment of dietary intake. International Journal of Environmental Analytical Chemistry, 102(17): 5798-5810.
Liu, Y., Whelen, S., Hall, B. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution, 16: 1799-1808.
Makarewicz, M., Drożdż, I., Tarko, T., Duda-Chodak, A. 2021. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants, 10(2): 188.
McDougal, R. L., Cunningham, L., Hunter, S., Caird, A., Flint, H., Lewis, A., Ganley, R. J. 2021. Molecular detection of Phytophthora pluvialis, the causal agent of red needle cast in Pinus radiata. Journal of Microbiological Methods, 189: 106299.
Millberg, H., Hopkins, A. J. M., Boberg, J., Davydenko, K., Stenlid, J. 2016. Disease development of Dothistroma needle blight in seedlings of Pinus sylvestris and Pinus contorta under Nordic conditions. Forest Pathology, 46: 515-521.
Minter, D. W. 1981. Lophodermium on pines. Mycological Papers, 147(16): 1-54.
Minter, D. W., Millar, C. S. 1980. Ecology and biology of three Lophodermium species on secondary needles of Pinus sylvestris. European Journal of Forest Pathology, 10(2‐3): 169-181.
Minter, D. W., Staley, J. M., Millar, C. S. 1978. Four species of Lophodermium on Pinus sylvestris. Transactions of the British Mycological Society, 71(2): 295-301.
Monteiro, P., Gonçalves, M. F., Pinto, G., Silva, B., Martín-García, J., Diez, J. J., Alves, A. 2022. Three novel species of fungi associated with pine species showing needle blight-like disease symptoms. European Journal of Plant Pathology: 1-20.
Moura, B. B., Carrari, E., Dalstein-Richier, L., Sicard, P., Leca, S., Badea, O., Pitar-Silaghi, D., Shashikumar, A., Cirianic, M., Paolettia, E., Hoshika, Y. 2022. Bridging experimental and monitoring research for visible foliar injury as bio-indicator of ozone impacts on forests. Ecosystem Health and Sustainability, 8(1): e2144466.
Müller, M. M., Hamberg, L. 2021. Eradication of endophytes from needles, their inoculation with Lophodermium piceae and persistence of this fungus in needles of Norway spruce. Mycological Progress, 20: 981-992.
Nishimura, S., Kohmoto, K. 1983. Host-specific toxins and chemical structures from Alternaria species. Annual Review of Phytopathology, 21(1): 87-116.
Noel, Z. A., Wang, J., Chilvers, M. I. 2018. Significant influence of EC50 estimation by model choice and EC50 type. Plant Disease, 102(4): 708-714.
Nweke, C. O., Ogbonna, C. J. 2017. Statistical models for biphasic dose-response relationships (hormesis) in toxicological studies. Ecotoxicology and Environmental Contamination, 12(1): 39-55.
O’Donnell, K., Kistler, H. C., Cigelnik, E., Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences, 95(5): 2044-2049.
Oberwinkler, F., Kirschner, R., Arenal, F., Villarreal, M., Rubio, V., Begerow, D., Bauer, R. 2006. Two new pycnidial members of the Atractiellales: Basidiopycnis hyalina and Proceropycnis pinicola. Mycologia, 98(4): 637-649.
Okamoto, M., Hirai, N., Koshimizu, K. 1988. Biosynthesis of abscisic acid in Cercospora pini-densiflorae. Phytochemistry, 27(7): 2099-2103.
Oono, R., Black, D., Slessarev, E., Sickler, B., Strom, A., Apigo, A. 2020. Species diversity of fungal endophytes across a stress gradient for plants. New Phytologist, 228(1): 210-225.
Oono, R., Lefèvre, E., Simha, A,, Lutzoni, F. 2015. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biology, 119: 917-928.
Ortiz-García, S., Gernandt, D. S., Stone, J. K., Johnston, P. R., Chapela, I. H., Salas-Lizana, R., Alvarez-Buylla, E. R. 2003. Phylogenetics of Lophodermium from pine. Mycologia, 95(5): 846-859.
Osono, T., Hirose, D. 2011. Colonization and lignin decomposition of pine needle litter by Lophodermium pinastri. Forest Pathology, 41(2): 156-162.
Osorio, M., Stephan, B. R. 1989. Ascospore germination and appressorium formation in vitro of some species of the Rhytismataceae. Mycological Research, 93(4): 439-451.
Parlakidis, P., Adamidis, G., Alexoudis, C., Pythoglou, P., Papadopoulos, S., Vryzas, Z. 2023. Adjuvant Effects on Pyraclostrobin and Boscalid Residues, Systemic Movement, and Dietary Risk in Garlic under Field Conditions. Agriculture, 13(8): 1636.
Pawsey, R. G. 1964. Needle-cast of Pine (Lophodermium pinastri). Forest Commission Leaflet No.48. England: Swindon Press. 8 pp.
Phukan, H., Brahma, R., Mitra, P. K. 2020. An endophytic fungus associated with Kayea assamica (King & Prain): A study on its molecular phylogenetics and natural products. South African Journal of Botany, 134: 314-321.
Pinruan, U., Rungjindamai, N., Choeyklin, R., Lumyong, S., Hyde, K. D., Jones, E. G. 2010. Occurrence and diversity of basidiomycetous endophytes from the oil palm, Elaeis guineensis in Thailand. Fungal Diversity, 41: 71-88.
Rajkovic, S., Markovic, M. L. 2013. Incubation Methods for Forecasting the Occurrence and Development of Lophodermium seditiosum Minter, Staley & Millar on Pine. pp 153-182 In: Nita, M. (eds). Fungicides: Showcases of Integrated Plant Disease Management from Around the World. IntechOpen, Croatia.
Ritz, C., Baty, F., Streibig, J. C., Gerhard, D. 2015. Dose-response analysis using R. PloS One, 10(12): e0146021.
Rolando, C. A., Dick, M. A., Gardner, J., Bader, M. K. F., Williams, N. M. 2017. Chemical control of two Phytophthora species infecting the canopy of Monterey pine (Pinus radiata). Forest Pathology, 47(3): e12327.
Sakuyama, T. 1993. Physiological characteristics of two pine needle cast fungi, Lophodermium iwatense and Lophodermium pinastri. Journal of the Japanese Forest Society, 75(4): 273-277. (In Japanese)
Salas-Lizana, R., Oono, R. 2018. A comparative analysis of Lophodermium fissuratum, sp. nov., found in haploxylon pine needles in the Pacific Northwest, and other Lophodermium endophytes. Mycologia, 110(5): 797-810.
Santos, M. V. O., Barbosa, F. R., Magalhães, D. M. A., Luz, E. D. M. N., Bezerra, J. L. 2014. Beltraniella species associated with leaf litter of the Atlantic Forest in southern Bahia, Brazil. Mycotaxon, 129(1): 1-6.
Sarver, J., Schultz, E., Apigo, A., Gernandt, D. S., Salas‐Lizana, R., Oono, R. 2022. Deep sequencing across multiple host species tests pine‐endophyte specificity. American Journal of Botany, 109(1): 83-98.
Sawada, K. 1959. Descriptive Catalogue of Taiwan (Formosan) Fungi, Part XI, special publication No. 8. Taipei: College of Agriculture National Taiwan University. 268 pp.
Schneider, S., Jung, E., Queloz, V., Meyer, J. B., Rigling, D. 2019. Detection of pine needle diseases caused by Dothistroma septosporum, Dothistroma pini and Lecanosticta acicola using different methodologies. Forest Pathology, 49(2): e12495.
Schoettle, A. W., Sniezko, R. A., Kegley, A., Burns, K. S. 2014. White pine blister rust resistance in limber pine: evidence for a major gene. Phytopathology, 104(2): 163-173.
Schoutteten, N., Roberts, P., Van De Put, K., Verbeken, A. 2018. New species in Helicogloea and Spiculogloea, including a type study of H. graminicola (Bres.) GE Baker (Basidiomycota, Pucciniomycotina. Cryptogamie, Mycologie, 39(3): 311-323.
Shanthi, S., Vittal, B. P. R. 2010. Fungi associated with decomposing leaf litter of cashew (Anacardium occidentale). Mycology, 1(2): 121-129.
Shirouzu, T., Hirose, D., Fukasawa, Y., Tokumasu, S. 2009. Fungal succession associated with the decay of leaves of an evergreen oak, Quercus myrsinaefolia. Fungal Diversity, 34: 87.
Shirouzu, T., Hirose, D., Tokumasu, S., To-Anun, C., Maekawa, N. 2010. Host affinity and phylogenetic position of a new anamorphic fungus Beltraniella botryospora from living and fallen leaves of evergreen oaks. Fungal Diversity, 43: 85-92.
Sieber, T. N. 2007. Endophytic fungi in forest trees: are they mutualists? Fungal Biology Reviews, 21(2-3): 75-89.
Simko, I., Piepho, H. P. 2012. The area under the disease progress stairs: calculation, advantage, and application. Phytopathology, 102(4): 381-389.
Singh, S., Khan, S.N., Misra, B.M. 1988. Cercoseptoria needle blight of pines in nurseries: disease spread and control strategies. Forest Pathology, 18: 397-400.
Smith R. S., Scharpf, R. F. 1993. Diseases of Pacific Coast Conifers. pp 52-54 In: Scharpf, R. F. (eds) Agriculture handbook. USDA, Forest Service, Pacific Southwest Research Station, USA.
Smith, D. R., Stanosz, G. R. 2008. PCR primers for identification of Sirococcus conigenus and S. tsugae, and detection of S. conigenus from symptomatic and asymptomatic red pine shoots. Forest Pathology, 38(3): 156-168.
Šņepste, I., Krivmane, B., Šķipars, V., Zaluma, A., Ruņģis, D. E. 2021. Induction of defense responses in Pinus sylvestris seedlings by methyl jasmonate and response to Heterobasidion annosum and Lophodermium seditiosum inoculation. Forests, 12(5): 628.
Spirin, V., Malysheva, V., Trichies, G., Savchenko, A., Põldmaa, K., Nordén, J., Miettinen, O., Larsson, K. H. 2018. A preliminary overview of the corticioid Atractiellomycetes (Pucciniomycotina, Basidiomycetes). Fungal Systematics and Evolution, 2(1): 311-340.
Stenström, E., Arvidsson, B. 2001. Fungicidal control of Lophodermium seditiosum on Pinus sylvestris seedlings in Swedish forest nurseries. Scandinavian Journal of Forest Research, 16(2): 147-154.
Stenström, E., Ihrmark, K. 2005. Identification of Lophodermium seditiosum and L. pinastri in Swedish forest nurseries using species‐specific PCR primers from the ribosomal ITS region. Forest Pathology, 35(3): 163-172.
Su, Y. Y., Qi, Y. L., Cai, L. 2012. Induction of sporulation in plant pathogenic fungi. Mycology, 3(3): 195-200.
Sung, G. H., Sung, J. M., Hywel-Jones, N. L., Spatafora, J. W. 2007. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution, 44(3): 1204-1223.
Suto, Y. 1979. Pathogenicity of Cercospora pini-densiflorae Hori et Nambu to various coniferous seedlings. Journal of the Japanese Forestry Society, 61(5): 180-183.
Szczepkowski, A., Kujawa, A., Bujakiewicz, A., Nita, J., Karasiński, D., Wołkowycki, M., Wilga, M. S. 2008. Phleogena faginea (Pucciniomycotina, Atractiellales) in Poland–notes on ecology and distribution. Polish Botanical Journal, 53(1): 81-90.
Thomma, B. P. 2003. Alternaria spp.: from general saprophyte to specific parasite. Molecular Plant Pathology, 4(4): 225-236.
Van Der Nest, A., Wingfield, M. J., Ortiz, P. C., Barnes, I. 2019. Biodiversity of Lecanosticta pine-needle blight pathogens suggests a Mesoamerican Centre of origin. IMA Fungus, 10: 2.
Vilgalys, R., Hester, M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172(8): 4238-4246.
Wang, Y., Guo, L. D. 2007. A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis. Botany, 85(10): 911-917.
Weimer, M., Jiang, X., Ponta, O., Stanzel, S., Freyberger, A., Kopp-Schneider, A. 2012. The impact of data transformations on concentration–response modeling. Toxicology Letters, 213(2): 292-298.
White, T. J., Bruns, T. D., Lee, S. B., Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315­322. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J., White, T. J., (eds). PCR protocols: A guide to methods and applications. Academic Press, USA.
Woudenberg, J. H. C., Groenewald, J. Z., Binder, M., Crous, P. W. 2013. Alternaria redefined. Studies in Mycology, 75(1): 171-212.
Woudenberg, J. H. C., Seidl, M. F., Groenewald, J. Z., De Vries, M., Stielow, J. B., Thomma, B. P. H. J., Crous, P. W. 2015. Alternaria section Alternaria: Species, formae speciales or pathotypes? Studies in Mycology, 82(1): 1-21.
Wu, Z. Y., Raven, P. H. (eds). 1999. Flora of China (Vol. 4). USA: Science Press, Missouri Botanical Garden Press. 453 pp.
Yang, J., Wang, S., Zhang, Y., Chen, Y., Zhou, H., Zhang, G. 2023. Identification, Culture Characteristics and Whole-Genome Analysis of Pestalotiopsis neglecta Causing Black Spot Blight of Pinus sylvestris var. mongolica. Journal of Fungi, 9(5): 564.
Yuan, Z., Chen, L. 2014. The role of endophytic fungal individuals and communities in the decomposition of Pinus massoniana needle litter. PLoS One, 9(8): e105911.
Zhang, M. J., Zheng, X. R., Li, H., Chen, F. M. 2023. Alternaria alternata, the causal agent of a new needle blight disease on Pinus bungeana. Journal of Fungi, 9(1): 71.
Zheng, H., Yang, X. Q., Deng, J. S., Xu, J. P., Yu, Z. F. 2020. Beltrania sinensis sp. nov., an endophytic fungus from China and a key to species of the genus. International Journal of Systematic and Evolutionary Microbiology, 70(2): 1178-1185.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99112-
dc.description.abstract松樹在臺灣的景觀園藝產業中佔有重要地位,尤其黑松 (Pinus thunbergii) 因高觀賞價值而被廣泛應用。然而黑松葉部病害繁多,對其健康、經濟及觀賞價值造成重大影響。根據前人文獻,臺灣發生之松樹葉震病是由 Lophodermium pinastri 造成,使葉片出現鮮黃及紅棕色條斑;葉枯病則可由包含 Pseudocercospora pini-densiflorae 等多種病原菌造成,使葉片出現深褐色壞死病斑。但上述記載主要基於早期的採集紀錄,除缺乏系統性調查、病原性驗證及有效的防治策略外,部分資訊與近期發表之研究結果抵觸,例如國外研究經接種試驗已證實 L. pinastri 並不具有病原性。為釐清臺灣松樹葉部病害之病原真菌,本研究在新北市、臺北市、桃園市、新竹市、彰化縣及屏東縣進行共 54 次採樣,採集無病徵、疑似葉震病黃化斑 (I 至 V 型)、葉枯病及脫落的枯死松針進行組織分離。結果顯示,Lophodermium spp. 於各型黃化斑幾乎無法檢出 (分離率小於 0.5%),反而主要自枯死松針中檢出 (分離率 70.2%),顯示其腐生特性。Lophodermium spp. 分離株經多基因親緣分析鑑定大多為 L. conigenum 及 L. pinastri,此兩物種根據前人文獻皆不具病原性。另一方面,擔子菌 Atractidochium sp. 於嚴重 I 型黃化斑之分離率高達 62.6%,但在無病徵及枯死葉片則低於 3.0%;將其分離株進行多基因親緣分析鑑定為 At. hillariae,為臺灣首次記錄。前人文獻記載 At. hillariae 為德達松 (Pi. taeda) 之葉部內生菌,然而相關研究仍極為稀少。本研究以 At. hillariae 及 Lophodermium spp. 等菌株進行離葉、離枝及田間微創傷菌絲塊接種,發現僅 At. hillariae 能使松針出現黃化及紅棕色條斑,確認 At. hillariae 為臺灣松樹葉震病之病原菌,並建議更名為「Atractidochium 葉斑病」,以凸顯其典型病徵。此外,本研究執行田間罹病度之長期調查,結果顯示 Atractidochium 葉斑病從每年 11 月開始陸續發病至翌年 4 至 5 月達到高峰。為篩選防治藥劑,選擇常用於防治擔子菌果樹葉部病害之殺菌劑,包含滅普寧、氟克殺、百克敏、得克利及克熱淨 (烷苯磺酸鹽),透過含藥培養基測試菌絲抑制率,結果顯示氟克殺、百克敏、得克利及克熱淨 (烷苯磺酸鹽) 均有良好抑制率 (EC50 值 0.02 ppm 至 0.33 ppm)。挑選抑制效果最佳之百克敏進行田間試驗,發現其對 Atractidochium 葉斑病並無防治效果,可能與施藥時機不當或藥液不易附著在松針表面有關。此外,針對 At. hillariae 之 internal transcribed spacer (ITS) 區段,設計具高專一性及高靈敏度之引子對 Ah3_F/Ah3_R,以建立快速分子檢測技術。本研究亦針對松樹葉枯病進行菌相調查,發現 Pseudocercospora、Alternaria 及 Beltraniella 屬真菌之分離率較高,且三者接種後均能產生類似葉枯病之壞死病徵。本研究針對於臺灣地區黑松上發生之葉斑病及葉枯病,進行田間病害調查、病原菌分離與鑑定、病原性測試、快速分子檢測技術開發、藥劑篩選及評估,提供松樹葉部病害正確診斷及健康管理之依據。zh_TW
dc.description.abstractPine trees play a vital role in Taiwan’s landscape and horticultural industries, with black pine (Pinus thunbergii) being particularly favored for its high ornamental value. However, black pine is highly susceptible to foliar diseases that damage tree health, economic, and ornamental value. According to previous literature, needle cast disease in Taiwan has been attributed to Lophodermium pinastri, which causes yellowish and reddish-brown striped lesions, while needle blight has been linked to multiple pathogens including Pseudocercospora pini-densiflorae, which induces brown necrotic lesions on needles. However, these identifications were primarily based on early collections and lack comprehensive field surveys, pathogenicity tests, and effective control strategies. Moreover, some of the information is inconsistent with the findings from recent research; for example, studies conducted abroad have demonstrated through inoculation that L. pinastri is non-pathogenic. To identify the causal fungi of foliar diseases in pine trees in Taiwan, this study conducted 54 sampling surveys across New Taipei City, Taipei City, Taoyuan City, Hsinchu City, Changhua County, and Pingtung County. Samples were collected from asymptomatic needles, suspected needle cast lesions (types I to V yellowish spot), needle blight lesions, and dead detached needles for tissue isolation. The results showed that Lophodermium spp. were not isolated from any types of the yellowish spot (isolation rate < 0.5%) but were predominantly detected in dead needles on the ground (isolation rate 70.2%), suggesting their saprophytic nature. Multi-locus phylogenetic analysis identified the Lophodermium isolates primarily as L. conigenum and L. pinastri, both of which have been reported in previous literature as non-pathogenic. In contrast, the basidiomycete Atractidochium sp. was isolated at a high frequency from severe type I yellowish spots (isolation rate 62.6%), but at very low frequency from asymptomatic or dead needles (isolation rate < 3.0%). Multi-locus phylogenetic analysis identified these isolates as At. hillariae, representing the first record of this species in Taiwan. At. hillariae had previously been reported as a foliar endophyte in P. taeda, yet studies on this species remain limited. Detached needle, detached twig, and field-based wounded inoculation trials using mycelial discs of At. hillariae, Lophodermium spp. and other fungi revealed that only At. hillariae could cause the yellowish and reddish-brown lesions on needles. These results confirm At. hillariae as the causal agent of needle cast disease in Taiwan. To highlight its characteristic symptoms, it is proposed that the disease be renamed “Atractidochium needle spot disease”. A long-term field survey revealed that the disease onset begins in November and reaches its highest disease severity index between April and May of the following year. To screen for effective control fungicides, five fungicides commonly used against basidiomycete pathogens on foliar disease of fruit trees—tebuconazole, fluxapyroxad, mepronil, pyraclostrobin, and iminoctadine tris (albesilate)—were evaluated in vitro via mycelial growth inhibition assays using fungicide-amended media. Four of the tested fungicides (tebuconazole, fluxapyroxad, pyraclostrobin, and iminoctadine tris [albesilate]) exhibited strong inhibitory effects against At. hillariae, with EC₅₀ values ranging from 0.02 ppm to 0.33 ppm. Among them, pyraclostrobin showed the highest inhibitory efficiency and was therefore selected for subsequent field trials. However, effective disease control was not achieved, likely due to improper application timing or insufficient foliar adherence of the fungicide solution. In parallel, a highly specific and sensitive primer pair, Ah3_F/Ah3_R, was developed based on the internal transcribed spacer (ITS) region of At. hillariae, enabling rapid molecular detection from needle samples. This study also investigated the fungal communities associated with needle blight symptoms. Tissue isolation revealed that species of Pseudocercospora, Alternaria, and Beltraniella were isolated at relatively high frequencies, and all of them could induce necrotic lesions resembling needle blight upon inoculation. This research addressed needle cast and needle blight on Pi. thunbergii through field surveys, pathogen isolation and identification, pathogenicity testing, development of a rapid molecular detection method, and fungicide screening and evaluation. The findings provide a scientific basis for accurate diagnosis and effective management of pine needle diseases.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:26:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:26:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
謝辭 I
中文摘要 II
Abstract IV
目次 VII
表次 X
圖次 XI
附錄次 XIII
第一章、前言 1
1.1 松樹於臺灣景觀產業及苗圃生產之重要性 1
1.2 松樹葉部病害及其命名 1
1.3 Lophodermium 葉震病 2
1.4 松樹葉枯病 5
1.5 松樹葉部內生菌 7
1.6 松樹葉部病害之防治 7
1.7 松樹葉部病害之診斷 9
1.8 研究動機 9
第二章、材料與方法 11
2.1 病原菌採集、培養及保存 11
2.2 病原菌鑑定 14
2.2.1 形態鑑定 14
2.2.2 分子鑑定 14
2.2.3 親緣分析 15
2.3 接種系統及病原性測定 16
2.3.1 離葉接種 17
2.3.2 離枝接種 17
2.3.3 田間接種 18
2.4 Atractidochium hillariae 最適生長條件試驗 18
2.5 Atractidochium hillariae 對殺菌劑之敏感性試驗 19
2.6 田間葉震病罹病度調查 20
2.7 田間葉震病藥劑防治試驗 21
2.8 Atractidochium hillariae 分子檢測 22
2.8.1 PCR 快速檢測技術開發 22
2.8.2 田間樣本偵測 23
第三章、結果 24
3.1 病原菌分離及鑑定 24
3.1.1 松樹葉震病 24
3.1.2 松樹葉枯病 26
3.2 接種系統及病原性測定 27
3.3 最適生長條件試驗 29
3.4 殺菌劑敏感性試驗 29
3.5 田間葉震病罹病度調查 30
3.6 田間葉震病防治試驗 30
3.7 Atractidochium hillariae 分子檢測 31
3.7.1 PCR 快速檢測技術開發 31
3.7.2 田間樣本偵測 32
第四章、討論 34
4.1 臺灣松樹葉震病之病原鑑定 34
4.2 At. hillariae 之感染源及發病生態探討 35
4.3 Atractidochium hillariae 與寄主植物之交互關係 38
4.4 Atractidochium 葉斑病之快速分子檢測 41
4.5 Atractidochium 葉斑病之殺菌劑篩選 42
4.6 Lophodermium spp. 之生態 44
4.7 松樹葉枯病 45
4.8 結論 47
參考文獻 48
表 59
圖 89
附錄 124
-
dc.language.isozh_TW-
dc.subjectAtractidochium hillariaezh_TW
dc.subjectLophodermium pinastrizh_TW
dc.subjectAtractidochium 葉斑病zh_TW
dc.subject松樹葉震病zh_TW
dc.subject松樹葉枯病zh_TW
dc.subject診斷鑑定zh_TW
dc.subject殺菌劑zh_TW
dc.subjectAtractidochium hillariaeen
dc.subjectfungicidesen
dc.subjectpathogen diagnosisen
dc.subjectpine needle blight diseaseen
dc.subjectpine needle cast diseaseen
dc.subjectAtractidochium needle spot diseaseen
dc.subjectLophodermium pinastrien
dc.title臺灣松樹葉部病害之調查:病原鑑定及防治藥劑篩選zh_TW
dc.titleInvestigation of pine needle disease in Taiwan: pathogen identification and fungicide screeningen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee曾顯雄;黃振文;郭章信zh_TW
dc.contributor.oralexamcommitteeShean-Shong Tzean;Jenn-Wen Huang;Chang-Hsin Kuoen
dc.subject.keywordAtractidochium hillariae,Lophodermium pinastri,Atractidochium 葉斑病,松樹葉震病,松樹葉枯病,診斷鑑定,殺菌劑,zh_TW
dc.subject.keywordAtractidochium hillariae,Lophodermium pinastri,Atractidochium needle spot disease,pine needle cast disease,pine needle blight disease,pathogen diagnosis,fungicides,en
dc.relation.page125-
dc.identifier.doi10.6342/NTU202502993-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物醫學碩士學位學程-
dc.date.embargo-lift2030-08-04-
顯示於系所單位:植物醫學碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-04
35.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved