Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99103
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭宇翔zh_TW
dc.contributor.advisorYu-Hsiang Chengen
dc.contributor.author王裕翔zh_TW
dc.contributor.authorYu-Hsiang Wangen
dc.date.accessioned2025-08-21T16:23:57Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citation[1] E. Calvanese Strinati et al., "6G: The Next Frontier: From Holographic Messaging to Artificial Intelligence Using Subterahertz and Visible Light Communication," in IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 42-50, Sept. 2019.
[2] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan and M. Zorzi, "Toward 6G Networks: Use Cases and Technologies," in IEEE Communications Magazine, vol. 58, no. 3, pp. 55-61, March 2020.
[3] C. Carlowitz and M. Dietz, "Integrated Front-End Approaches for Wireless 100 Gb/s and Beyond: Enabling Efficient Ultra-High Speed Wireless Communication Systems," in IEEE Microwave Magazine, vol. 24, no. 8, pp. 16-34, Aug. 2023.
[4] J. L. Gonzalez-Jimenez, “Channel-bonding CMOS transceiver for 100 Gbps wireless point-to-point links,” CEA-LETI, Grenoble, France, Tech. Rep., 2019.
[5] T. H. Jang, K. P. Jung, J. -S. Kang, C. W. Byeon and C. S. Park, "120-GHz 8-Stage Broadband Amplifier With Quantitative Stagger Tuning Technique," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 3, pp. 785-796, March 2020.
[6] I. Kim, H. Koo, W. Kim and S. Hong, "A 131–162-GHz Wideband CMOS LNA Using Asymmetric Frequency Responses of Triple-Coupled Transformers," in IEEE Microwave and Wireless Technology Letters, vol. 33, no. 11, pp. 1544-1547.
[7] D. -H. Kim, D. Kim and J. -S. Rieh, "A D -Band CMOS Amplifier With a New Dual-Frequency Interstage Matching Technique," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 5, pp. 1580-1588, May 2017.
[8] G. Feng, C. C. Boon, F. Meng, X. Yi and C. Li, "An 88.5–110 GHz CMOS Low-Noise Amplifier for Millimeter-Wave Imaging Applications," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 2, pp. 134-136, Feb. 2016.
[9] D.-R. Lu, Y.-C. Hsu, J.-C. Kao, J.-J. Kuo, D.-C. Niu, and K.-Y. Lin, “A 75.5-to-120.5-GHz, high-gain CMOS low-noise amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012, pp. 1–3.
[10] E. Aguilar, A. Hagelauer, D. Kissinger, and R. Weigel, “A low-power wideband D-Band LNA in a 130 nm BiCMOS technology for imaging applications,” in IEEE 18th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Jan 2018.
[11] E. Kobal, T. Siriburanon, R. B. Staszewski and A. Zhu, "A Compact, Low-Power, Low-NF, Millimeter-Wave Cascode LNA With Magnetic Coupling Feedback in 22-nm FD-SOI CMOS for 5G Applications," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 4, pp. 1331-1335, April 2023.
[12] R. Chikkanagouda and C. P. Raj P., "W-band CMOS LNA with 29 dB Gain and 5.2 dB Noise Figure for mm-wave Imaging Applications," 2019 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 2019, pp. 0783-0786.
[13] A. Ç. Ulusoy, M. Kaynak, V. Valenta, B. Tillack and H. Schumacher, "A 110 GHz LNA with 20dB gain and 4dB noise figure in an 0.13μm SiGe BiCMOS technology," 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2013, pp. 1-3.
[14] I. Cheol Yoo, D. Ouk Cho, D. -W. Kang, B. Koo and C. Woo Byeon, "A 120 GHz gm-boosting Low-Noise Amplifier in 40-nm CMOS," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 72, no. 1, pp. 153-157, Jan. 2025.
[15] C. J. Lee, H. Nam, D. Kim, S. -K. Kim and D. Y. Lee, "A D-Band Variable Gain Low Noise Amplifier in a 28-nm CMOS Process for 6G Wireless Communications," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 1, pp. 131-135, Jan. 2024.
[16] Z. Xu, Q. J. Gu, I. Ku and M. -C. F. Chang, "A compact, fully differential D-band CMOS amplifier in 65nm CMOS," 2010 IEEE Asian Solid-State Circuits Conference, Beijing, China, 2010, pp. 1-4.
[17] Z. Deng and A. M. Niknejad, "A layout-based optimal neutralization technique for mm-wave differential amplifiers," 2010 IEEE Radio Frequency Integrated Circuits Symposium, Anaheim, CA, USA, 2010, pp. 355-358.
[18] A. Hamani, A. Siligaris, B. Blampey, C. Dehos and J. L. Gonzalez Jimenez, "A 125.5-157 GHz 8 dB NF and 16 dB of Gain D-band Low Noise Amplifier in CMOS SOI 45 nm," 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 197-200.
[19] C. -k. Lu, Y. -S. Wang, C. -C. Chiong and H. Wang, "A 140 GHz Low-Noise Amplifier with 22-dB Gain and 8.2-dB Noise Figure in 65-nm CMOS," 2024 IEEE Asia-Pacific Microwave Conference (APMC), Bali, Indonesia, 2024, pp. 351-353.
[20] K. -S. Choi, H. Lee, B. Yun and S. -G. Lee, "A D-Band Low-Noise and High-Gain Receiver Front-End Adopting Gmax-Driven Active Mixer," in IEEE Transactions on Microwave Theory and Techniques, vol. 72, no. 9, pp. 5576-5587, Sept. 2024.
[21] F. He, Q. Xie and Z. Wang, "Analysis and Design of a Novel Gain-Boosting Technique Based on Lossy Series Embedding Network for Near-fmax Embedded Amplifier," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 71, no. 2, pp. 874-884, Feb. 2024.
[22] B. Yun, D. -W. Park, H. U. Mahmood, D. Kim and S. -G. Lee, "A D-Band High-Gain and Low-Power LNA in 65-nm CMOS by Adopting Simultaneous Noise- and Input-Matched Gmax-Core," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 5, pp. 2519-2530, May 2021.
[23] H. -S. Chen and J. Y. -C. Liu, "A 180-GHz Low-Noise Amplifier With Recursive Z-Embedding Technique in 40-nm CMOS," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 12, pp. 4649-4653, Dec. 2022.
[24] K. Takano et al., "17.9 A 105Gb/s 300GHz CMOS transmitter," 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 308-309.
[25] H. Hamada et al., "300-GHz. 100-Gb/s InP-HEMT Wireless Transceiver Using a 300-GHz Fundamental Mixer," 2018 IEEE/MTT-S International Microwave Symposium - IMS, 2018, pp. 1480-1483.
[26] H. -J. Song, J. -Y. Kim, K. Ajito, N. Kukutsu and M. Yaita, "50-Gb/s Direct Conversion QPSK Modulator and Demodulator MMICs for Terahertz Communications at 300 GHz," in IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 3, pp. 600-609, March 2014.
[27] S. Hara et al., "A 32Gbit/s 16QAM CMOS receiver in 300GHz band," 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1703-1706.
[28] G. Su et al., "A H-band double balanced passive down-conversion mixer in a 65 nm bulk CMOS," 2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), 2017, pp. 1-4.
[29] K. David and H. Berndt, “6G vision and requirements: Is there any need for beyond 5G? ” IEEE Veh. Technol. Mag., vol. 13, no. 3, pp. 72–80, 2018.
[30] G. Berardinelli, N. H. Mahmood, I. Rodriguez Larrad, and P. E. Mogensen, “Beyond 5G wireless IRT for Industry 4.0: Design principles and spectrum aspects,” in Proc. IEEE Global Communications Conf. Workshops, 2018.
[31] V. Petrov, T. Kurner and I. Hosako, "IEEE 802.15.3d: First Standardization Efforts for Sub-Terahertz Band Communications toward 6G," in IEEE Communications Magazine, vol. 58, no. 11, pp. 28-33, November 2020.
[32] M. S. Gupta, "Power gain in feedback amplifiers, a classic revisited," in IEEE Transactions on Microwave Theory and Techniques, vol. 40, no. 5, pp. 864-879, May 1992.
[33] H. Bameri and O. Momeni, "A High-Gain mm-Wave Amplifier Design: An Analytical Approach to Power Gain Boosting," in IEEE Journal of Solid-State Circuits, vol. 52, no. 2, pp. 357-370, Feb. 2017.
[34] A. Singhakowinta and A. Boothroyd, "Gain capability of two-port amplifiers", Int. J. Electron., vol. 21, no. 6, pp. 549-560, 1966.
[35] Z. Wang and P. Heydari, "A Study of Operating Condition and Design Methods to Achieve the Upper Limit of Power Gain in Amplifiers at Near- $f_{max}$ Frequencies," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 2, pp. 261-271, Feb. 2017.
[36] D. -W. Park, D. R. Utomo, B. H. Lam, J. -P. Hong and S. -G. Lee, "A 280-/300-GHz Three-Stage Amplifiers in 65-nm CMOS With 12-/9-dB Gain and 1.6/1.4% PAE While Dissipating 17.9 mW," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 79-81, Jan. 2018.
[37] D. -W. Park, D. R. Utomo, B. H. Lam, S. -G. Lee and J. -P. Hong, "A 230–260-GHz Wideband and High-Gain Amplifier in 65-nm CMOS Based on Dual-Peak Gmax -Core," in IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1613-1623, June 2019.
[38] L. N. Dworsky, Modern Transmission Line Theory and Applications, New York, NY, USA:Wiley, 1979.
[39] I. Sarkas et al., "Silicon-based radar and imaging sensors operating above 120 GHz," 2012 19th International Conference on Microwaves, Radar & Wireless Communications, Warsaw, Poland, 2012, pp. 91-96.
[40] L. -J. Huang, C. -C. Chiong, Y. -S. Wang, H. Wang, T. -W. Huang and C. -C. Chien, "A D-band Low-Noise Amplifier in 28-nm CMOS Technology for Radio Astronomy Applications," 2023 18th European Microwave Integrated Circuits Conference (EuMIC), Berlin, Germany, 2023, pp. 369-372.
[41] T. -H. Wu, S. -C. Tseng, C. -C. Meng and G. -W. Huang, "GaInP/GaAs HBT Sub-Harmonic Gilbert Mixers Using Stacked-LO and Leveled-LO Topologies," in IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp. 880-889, May 2007.
[42] M. Goldfarb, E. Balboni and J. Cavey, "Even harmonic double-balanced active mixer for use in direct conversion receivers," in IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1762-1766, Oct. 2003.
[43] S. Lee et al., "9.5 An 80Gb/s 300GHz-Band Single-Chip CMOS Transceiver," 2019 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 170-172.
[44] I. Abdo et al., "A 300GHz Wireless Transceiver in 65nm CMOS for IEEE802.15.3d Using Push-Push Subharmonic Mixer," 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020, pp. 623-626.
[45] S. Kang, S. V. Thyagarajan and A. M. Niknejad, "A 240 GHz Fully Integrated Wideband QPSK Transmitter in 65 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 50, no. 10, pp. 2256-2267, Oct. 2015.
[46] H. -R. Jeon, B. -H. Yun, H. -K. Lee, S. -G. Lee and K. -S. Choi, "A 250-GHz Wideband Direct-Conversion CMOS Receiver Adopting Baseband Equalized Low-Loss Resistive Passive Mixer," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 10, pp. 3852-3856, Oct. 2023.
[47] H. Hamada et al., "300-GHz 120-Gb/s Wireless Transceiver with High-Output-Power and High-Gain Power Amplifier Based on 80-nm InP-HEMT Technology," 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS), Nashville, TN, USA, 2019, pp. 1-4.
[48] P. -H. Tsai, Y. -H. Lin, J. -L. Kuo, Z. -M. Tsai and H. Wang, "Broadband Balanced Frequency Doublers With Fundamental Rejection Enhancement Using a Novel Compensated Marchand Balun," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 1913-1923, May 2013.
[49] Y. -C. Wu, Y. -J. Hwang, C. -C. Chiong, B. -Z. Lu and H. Wang, "An Innovative Joint-Injection Mixer With Broadband If and RF for Advanced Heterodyne Receivers of Millimeter-Wave Astronomy," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 12, pp. 5408-5422, Dec. 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99103-
dc.description.abstract本論文講述了太赫茲頻段中低雜訊放大器與次諧波混頻器的設計與實現,並以此分為兩大部分,首先第一部分介紹了一種在D頻段具有極高增益的低雜訊放大器,其由40奈米CMOS製程所實現四級的Gmax-core放大器。傳統上,構建Gmax-core具有無限多種組合方式,通常使用三種線性、無損及互易的元件所組成嵌入網路,然而本論文提出了一種使用變壓器所構成的Y嵌入網路,能夠改良傳統上只能使用單一偏壓的侷限性,將閘極與漏極分開偏壓,這種方法不僅降低了功耗,也實現了更高的增益與更低的雜訊指數。測量結果表示其在143.5 GHz達到峰值增益27.74 dB,3 dB帶寬為7 GHz,雜訊指數約為9 dB。
第二部分設計了兩種300 GHz可上/下變頻的次諧波混頻器,皆為使用65奈米CMOS製程,藉由挑選不同的電路架構,能使電晶體的電阻值產生LO的周期性變化,最後經由並聯電晶體來產生LO的二倍頻再與IF/RF端進行上/下變頻。其模擬結果表明其轉換增益分別為-16.4 dB與-20.4 dB,皆無使用DC pad,不僅大幅縮小晶片面積,並實現了零功耗。
zh_TW
dc.description.abstractThis paper discusses the design and implementation of low-noise amplifiers and sub-harmonic mixers in the sub-terahertz and terahertz frequency bands, dividing the content into two main sections.
Firstly, the initial part introduces a low-noise amplifier with extremely high gain in the D-band, composed of a four-stage Gmax-core amplifier realized in a 40-nm CMOS process. Traditionally, constructing the Gmax-core offers infinitely many combinations, typically achieved using a network composed of three linear, lossless, and reciprocal elements. However, this paper proposes a Y-embedded network constructed with transformers, which improves upon the limitations of traditional single-bias configurations. By biasing the gate and drain separately, this method not only reduces power consumption but also achieves higher gain and lower noise figure. Measurement results demonstrate a peak gain of 27.74 dB at 143.5 GHz, with a 3 dB bandwidth of 7 GHz and a noise figure of approximately 9 dB.
In the second part, two sub-harmonic mixers with tunable frequency up to 300 GHz are designed, both utilizing a 65-nm CMOS process. By selecting different circuit architectures, the resistance value of the transistors can be varied periodically to generate LO frequency. Finally, the LO doubling is achieved by parallel transistors, enabling up/down frequency conversion with IF/RF ports. Simulation results show conversion gains of -16.4 dB and -20.4 dB respectively, without using DC pads, leading to significant reduction in chip area and zero power consumption.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:23:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:23:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目次 v
圖次 ix
表次 xvi
Chapter 1 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 150 GHz 低雜訊放大器 2
1.2.2 300 GHz混頻器 3
1.3 論文貢獻 6
1.4 章節概要 6
Chapter 2 應用於150 GHz之高增益低雜訊放大器 7
2.1 簡介 7
2.2 Gmax-core 原理與介紹 8
2.2.1 Gma / Gms / U / Gmax 8
2.2.2 Gmax-core滿足條件 10
2.2.3 增益平面 11
2.2.4 Y和Z嵌入網路 13
2.3 電路架構 17
2.4 電路設計與流程 18
2.4.1 偏壓選擇 18
2.4.2 電晶體尺寸選擇 22
2.4.3 電晶體走線影響 25
2.4.4 Gmax-core 設計 26
2.4.5 變壓器設計 28
2.4.6 穩定度 31
2.4.7 Bypass電路 33
2.4.8 電路佈局與Post-sim結果 35
2.5 量測與結果 39
2.5.1 S參數量測 39
2.5.2 OP1dB量測 42
2.5.3 NF量測 43
2.6 問題與討論 46
Chapter 3 300 GHz之次諧波混頻器 47
3.1 簡介 47
3.2 次諧波換頻器原理與介紹 48
3.2.1 疊接式次諧波換頻器 48
3.2.2 並列式次諧波換頻器 49
3.2.3 電路設計規格 51
3.3 串接式開關SHM電路架構 52
3.4 串接式開關SHM電路設計與流程 54
3.4.1 LO馬遜巴倫設計 54
3.4.2 偏壓與電晶體尺寸選擇 57
3.4.3 電晶體走線 61
3.4.4 匹配網路 63
3.4.5 串接式SHM Post-sim結果 66
3.4.6 串接式SHM電路佈局 70
3.5 串接式開關SHM量測與結果 71
3.5.1 串接式下變頻之轉換增益模擬與量測 71
3.5.2 串接式上變頻之轉換增益模擬與量測 76
3.6 並接式開關SHM電路架構 81
3.7 並接式開關SHM電路設計與流程 82
3.7.1 並接式電路設計 82
3.7.2 並接式SHM Post-sim結果 84
3.7.3 並接式SHM電路佈局 87
3.8 並接式開關SHM量測與結果 88
3.8.1 並接式下變頻之轉換增益模擬與量測 89
3.8.2 並接式上變頻之轉換增益模擬與量測 92
3.9 問題與討論 95
Chapter 4 結論 97
REFERENCE 98
-
dc.language.isozh_TW-
dc.subject亞太赫茲zh_TW
dc.subject次諧波混頻器zh_TW
dc.subjectGmax-corezh_TW
dc.subject太赫茲zh_TW
dc.subject變壓器zh_TW
dc.subjectCMOSzh_TW
dc.subject低雜訊放大器zh_TW
dc.subjectGmax-coreen
dc.subjectTerahertzen
dc.subjectSub-harmonic mixeren
dc.subjectLow-noise amplifieren
dc.subjectTransformersen
dc.subjectCMOSen
dc.subjectSub-terahertzen
dc.title150 GHz低雜訊放大器與300 GHz次諧波混頻器之設計zh_TW
dc.titleDesign of a 150 GHz Low-Noise Amplifier and 300 GHz Sub-Harmonic Mixersen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡政翰;林坤佑zh_TW
dc.contributor.oralexamcommitteeJeng-Han Tsai;Kun-You Linen
dc.subject.keyword太赫茲,亞太赫茲,CMOS,變壓器,低雜訊放大器,次諧波混頻器,Gmax-core,zh_TW
dc.subject.keywordTerahertz,Sub-terahertz,CMOS,Transformers,Low-noise amplifier,Sub-harmonic mixer,Gmax-core,en
dc.relation.page104-
dc.identifier.doi10.6342/NTU202503352-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-05-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf7.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved