Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99093
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖國偉zh_TW
dc.contributor.advisorKuo-Wei Liaoen
dc.contributor.author闕毓庭zh_TW
dc.contributor.authorYu-Ting Chuehen
dc.date.accessioned2025-08-21T16:21:32Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation水利技師公會. (2007). 水利工程相關應用軟體簡介. 水利會訊, 10, 120-123.
水利署臺北分局(2022)。111年度臺北分局集水區治理規劃導入NbS調適策略研究及防砂設施減碳綠能加值計畫。經濟部水利署。
李政璋. (2019). 墾丁國家公園陸蟹生態與分類探討.
林冠余. (2024). 磺溪流域洪水治理自然解方可行性評估. 國立臺灣大學生物環境系統工程學系學位論文, 1-99.
林庭任. (2023). 3Di應用於坡地農塘減洪效率之可行性研究 [碩士論文, 逢甲大學].
洪煒甯, 邱渝方, 陳弘恩, 梁閔智, 廖雯慧, 李霽修, ... & 陳樹群. (2024). 南投種瓜坑溪還溪於野之自然解方. 中華水土保持學報, 55(3), 107-121.
陳伸安. (2006). 二維水理棲地模式運用於南崁溪生態規劃之研究. 中央大學土木工程學系學位論文, 1-95.
經濟部水利署. (2019). 河川原生魚種及棲地適合度曲線調查與資料庫建置.
經濟部水利署水利規劃試驗所. (2012). 台美合作案之技術引進及應用研究 [成果報告].
經濟部水利署第七河川局. (2010). 「易淹水地區水患治理計畫」屏東縣管河川港口溪水系規劃報告.
農業部農村發展及水土保持署台南分署. (2023). 112年度調適策略推動計畫-港口溪集水區.
農業部農村發展及水土保持署台南分署. (2024). 113年度調適策略推動計畫-港口溪集水區.
顏啟峯、張國楨(2015)。基隆河土地覆蓋時空變遷分析:以第二次截彎取直計畫範圍內為例。地理研究,(62),71-90。
劉烘昌等. (2009). 墾丁國家公園陸蟹資源調查與經營管理計畫.
魏楷倫. (2024). 集水區水砂災害分析與調適策略研擬-以港口溪集水區為例. 國立臺灣大學生物環境系統工程學系學位論文, 1-94.
Abban, B., Lai, Y., & Politano, M. Application of SRH-2D to Predict Post-Fire Water and Sediment Delivery from a Watershed.
Ahn, W., Shim, T., Kim, Z., Ki, S. J., An, K. G., & Jung, J. (2023). Life-history habitat suitability modelling of a potential invasive alien species, smallmouth bass (Micropterus dolomieu), in South Korea. Ecological Indicators, 154, 110507.
Akter, A., & Tanim, A. H. (2019). An assessment of ecological habitat suitability in a tidal stream using River 2D model. J. Civil. Eng.(IEB), 47, 23-29.
Angela, C.-S., Emmanuelle; Dalton, James; Edwards, Stephen; Hessenberger,, Daisy; Maginnis, S. M., Simone; McElwee, Pam; Murti, Radhika; Nelson, Cara; Ruiz, Verónica;, & Siikamäki, J. V., Liette. (2020). Guidance for Using the IUCN Global Standard for Nature-Based Solutions. A user-friendly framework for the verification, design and scaling up of Nature-based Solutions. First edition. Gland, Switzerland: IUCN. International Union for Conservation of Nature (IUCN).
Bovee, K. D. (1986). Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology [Report](FWS/OBS-86/7). U. Fish & S. Wildlife. https://pubs.usgs.gov/publication/70121265
Brunner, G. W. (2016). HEC-RAS River Analysis System: 2D Modeling User’s Manual Version 5.0. U.S. Army Corps of Engineers, Hydrologic Engineering Center.
Calligaris, C., Boniello, M. A., & Zini, L. (2008). Debris flow modelling in Julian Alps using FLO-2D. WIT Transactions on Engineering Sciences, 60, 81-88.
Dahm, R., Hsu, C.-T., Lien, H.-C., Chang, C.-H., & Prinsen, G. (2014). Next generation flood modelling using 3Di: A case study in Taiwan. DSD international conference,
Ding, X.-Y. H., W.-J.; Liu, F.; Yang, X. (2023). Risk assessment of debris flow disaster in mountainous area of northern Yunnan province based on FLO-2D under the influence of extreme rainfall. Frontiers in Environmental Science, 11, Article 1252206. https://doi.org/10.3389/fenvs.2023.1252206
Downs, P. W., & Kondolf, G. M. (2011). River Restoration: Managing the Uncertainty in Restoring Physical Habitat.Springer.https://doi.org/https://doi.org/10.1007/978-90-481-9265-6
Erena, S. H., Worku, H., & De Paola, F. (2018). Flood hazard mapping using FLO-2D and local management strategies of Dire Dawa city, Ethiopia. Journal of Hydrology: Regional Studies, 19, 224-239.
European Parliament and Council. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. European Environment Agency. https://www.eea.europa.eu/policy-documents/directive-2000-60-ec-of
Farooq, M., Shafique, M., & Khattak, M. S. (2019). Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM). Natural Hazards, 97, 477-492.
Gard, M. (2009). Comparison of spawning habitat predictions of PHABSIM and River2D models. International journal of river basin management, 7(1), 55-71.
HEC. (2021). HEC-RAS River Analysis System, Version 6.0: User's Manual. H. E. Center. https://www.hec.usace.army.mil/software/hec-ras/
IUCN. (2016). Nature-based Solutions to address global societal challenges. International Union for Conservation of Nature.
IUCN. (2020). Global Standard for Nature-based Solutions: A user-friendly framework for the verification, design and scaling up of NbS. IUCN.
Jia, Y., & Wang, S. S. (2001). CCHE2D: Two-dimensional hydrodynamic and sediment transport model for unsteady open channel flows over loose bed. National Center for Computational Hydroscience and Engineering, Technical Report No. NCCHE-TR-2001-1.
Jowett, I. G. (1997). Instream flow methods: a comparison of approaches. Regulated Rivers: Research & Management: An International Journal Devoted to River Research and Management, 13(2), 115-127.
Jowett, I. G., Payne, T. R., & Milhous, R. T. (2008). Instream habitat models and their application in environmental flows. River Research and Applications, 24(6), 755-769.
Lee, S. K., Dang, T. A., & Le, V. T. (2019). Assessment of river morphological change for Co Chien Estuary applying the CCHE2D model. Journal of the Indian Society of Remote Sensing, 47, 1623-1632.
Lomulder, R. (2004). Appropriate modelling: Application of Sobek 1D2D for dike break and overtopping at the Elbe. Universiteit Twente.
Merufınıa, E., Sanı, S. J., & Nourı, S. (2015). Evaluation of Hydrodynamic and Sediment Transport equations and Parameter Sensitivity Analysis Using the SRH_2D Model. Cumhuriyet Üniversitesi Fen Edebiyat Fakültesi Fen Bilimleri Dergisi, 36(3), 2143-2152.
Morello, E., Mahmoud,I.,Colaninno,N.,(eds.). (2020). Catalogue of Nature-based solutions for urban regeneration,Energy&Urban Planning Workshop,School of Architecture Urban Planning Construction Engineering,Politecnico di Milano.
Nakamura, F., Watanabe, Y., Negishi, J., Akasaka, T., Yabuhara, Y., Terui, A., Yamanaka, S., & Konno, M. (2020). Restoration of the shifting mosaic of floodplain forests under a flow regime altered by a dam. Ecological engineering, 157, 105974.
Nassar, M. (2011). Multi-parametric sensitivity analysis of CCHE2D for channel flow simulations in Nile River. Journal of hydro-environment research, 5(3), 187-195.
O’Brien, J. S. (2004). FLO-2D Users Manual Version 2004.10 (V. 2004.10, Ed.). FLO-2D Software Inc.
Ongdas, N., Akiyanova, F., Karakulov, Y., Muratbayeva, A., & Zinabdin, N. (2020). Application of HEC-RAS (2D) for flood hazard maps generation for Yesil (Ishim) river in Kazakhstan. Water, 12(10), 2672.
Prinsen, G., & Becker, B. (2011). Application of SOBEK hydraulic surface water models in the Netherlands Hydrological Modelling Instrument. Irrigation and drainage, 60, 35-41.
Quirogaa, V. M., Kurea, S., Udoa, K., & Manoa, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25-33.
Rijke, J., van Herk, S., Zevenbergen, C., & Ashley, R. (2012). Room for the River: delivering integrated river basin management in the Netherlands. International journal of river basin management, 10(4), 369-382.
Roff, D. A. (2002). Life history evolution.
Saikia, P., Beane, G., Garriga, R. G., Avello, P., Ellis, L., Fisher, S., Leten, J., Ruiz-Apilánez, I., Shouler, M., & Ward, R. (2022). City Water Resilience Framework: A governance based planning tool to enhance urban water resilience. Sustainable Cities and Society, 77, 103497.
Salmasi, F., Ayaseh, A., Dalir, A. H., & Arvanaghi, H. (2020). Flow pattern study in Beshar River and its two straight and meander reaches using CCHE2D model. Applied Water Science, 10(1), 1-15.
Schneider, E. (2010). Floodplain Restoration of Large European Rivers, with Examples from the Rhine and the Danube. In M. Eiseltová (Ed.), Restoration of Lakes, Streams, Floodplains, and Bogs in Europe: Principles and Case Studies (pp. 185-223). Springer Netherlands. https://doi.org/10.1007/978-90-481-9265-6_11
Smets, M., Baeyens, H., Liekens, I., Pauwels, M., Verdoodt, M., & De Smedt, P. (2023). The Blue Belt Program: River Restoration and Flood Protection with Nature-based Solutions. In N. K. Kabisch, H.; Stadler, J.; Bonn, A. (Ed.), Nature-based Solutions for Resilient and Biodiverse Landscapes (pp. 113–125). Federal Agency for Nature Conservation (BfN).
Speet, F. (2014). Improving decision quality in urban storm water management projects by using the 3DI system (Master's thesis, University of Twente).
Stalnaker, C. B. (1995). The instream flow incremental methodology: a primer for IFIM (Vol. 29). US Department of the Interior, National Biological Service.
Tennant, D. L. (1976). Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1(4), 6-10.
Thakur, B., Parajuli, R., Kalra, A., & Ahmad, S. (2018). Exploring CCHE2D and its sediment modelling capabilities. World Environmental and Water Resources Congress 2018,
Wildlife Service. Division of Ecological Services, Western Energy, & Land Use Team. (1980). Habitat Evaluation Procedures (HEP). Division of Ecological Services, US Fish and Wildlife Service, Department of the Interior.
Wu, W. (2008). Computational River Dynamics. CRC Press.
WWF. (2009). Floodplain restoration: improving water security and resilience to climate change.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99093-
dc.description.abstract台灣溪流多為坡陡湍急的河道,為了有效抑制河床下切與侵蝕,傳統上多採用固床工等工程手法來進行治水防災。然而,這類剛性結構雖有助於土地安全,卻可能對河川生態造成干擾。為了在防災與生態保育之間取得平衡,現今逐漸導入自然解方(Nature-based Solutions, NbS)來改善傳統工程手法,以兼顧土地安全與生態永續。
為進一步探討自然解方在河川整治上的成效,以港口溪為案例進行分析。港口溪同樣具有坡陡湍急的特性,且長期受到侵蝕與下切影響,對周邊土地安全構成威脅。為評估不同降雨情境下河道的變化,本研究運用HEC-RAS水理數值模擬軟體,針對基流量及2年、10年、25年、50年與100年重現期洪水進行模擬分析。透過模擬結果,將比較整治前後河道在不同重現期洪水下的水位變化、流速分佈及可能的溢淹範圍,以評估自然解方對河道穩定性及防災效益的影響,並為未來類似河川治理提供參考依據。
本研究針對豐富生態資源港口溪整治前後的環境變化進行分析,評估自然解方在河川治理中的應用成效。透過HEC-RAS模擬不同重現期洪水情境下的水理變化,進一步結合生物棲息地指標(Habitat Suitability Index, HSI)進行生態面向之評估,結合NbS全球28項指標進行評分,從生態系統健康、水文功能、土地安全與社會效益等面向,全面檢視整治措施對河道環境的影響。根據評分結果,提出具體的後續改善建議,以進一步提升防災效能與生態保育成果。本研究藉此驗證自然解方的可行性與成效,為未來類似河川整治提供參考依據。
zh_TW
dc.description.abstractTaiwan's rivers are mostly characterized by steep gradients and rapid flows. To effectively prevent riverbed incision and erosion, traditional engineering approaches such as grade control structures have long been adopted for flood prevention and river management. However, while these rigid structures contribute to land safety, they can also disrupt riverine ecosystems. In pursuit of a balance between disaster prevention and ecological conservation, Nature-based Solutions (NbS) are increasingly being introduced to improve conventional engineering practices, aiming to achieve both land security and ecological sustainability.
To further explore the effectiveness of NbS in river restoration, this study takes the Gangkou Creek as a case study. Gangkou Creek similarly exhibits steep and swift-flowing characteristics and has long been affected by erosion and incision, posing threats to surrounding land safety. To assess river channel responses under various rainfall scenarios, this study employs the HEC-RAS hydraulic modeling software to simulate baseflow conditions as well as flood events corresponding to return periods of 2, 10, 25, 50, and 100 years. The simulation results are used to compare pre- and post-restoration changes in water levels, velocity distributions, and potential inundation extents under different flood return periods. This enables an evaluation of the impact of NbS on channel stability and disaster mitigation, providing valuable reference for similar future river management efforts.
Focusing on the ecologically rich Gangkou Creek, this study analyzes environmental changes before and after river restoration to assess the effectiveness of NbS in river management. By simulating hydraulic conditions under various flood scenarios using HEC-RAS and integrating the Habitat Suitability Index (HSI) for ecological assessment, the study further incorporates the 28 global NbS indicators to perform a comprehensive evaluation. These indicators cover ecosystem health, hydrological functions, land safety, and social benefits. Based on the assessment results, the study proposes specific recommendations for further improvement, aiming to enhance disaster resilience and ecological conservation outcomes. Through this approach, the feasibility and effectiveness of NbS are verified, offering a reference for future river restoration projects.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:21:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:21:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目次 iv
圖次 vii
表次 xi
第一章 前言 1
1.1 研究動機與目的 1
1.2 研究流程 2
1.3 論文架構 4
第二章 文獻回顧 5
2.1 自然解方 5
2.1.1 定義 5
2.1.2 NbS概念原則及7大社會挑戰 6
2.2 港口溪集水區水砂災害 9
2.3 國內外整治案例 12
2.3.1 國內整治案例 12
2.3.2 國外整治案例 13
2.4 二維水理模式比較 15
第三章 研究方法 25
3.1 NbS導入流程 25
3.2 NbS效益評估方法 27
3.3 統整利害關係人之意見 28
3.4 數值模式HEC-RAS 38
3.4.1 模式簡介 38
3.4.2 建模流程 41
3.5 生物棲息地指標 55
3.6 自我評估工具(Self-Assessment Tools) 59
第四章 結果與分析 63
4.1 HEC-RAS模式驗證 63
4.1.1 淹水潛勢區域 63
4.1.2 流量歷線 65
4.1.3 水位及流速 67
4.2 HEC-RAS定床模擬 68
4.2.1 模擬結果 68
4.2.2 調適策略 71
4.3 HEC-RAS動床模擬 84
4.3.1 泰安橋上下游河段 85
4.3.2 福摩沙橋上下游河段 90
4.4 生物棲息地指標評分 95
4.4.1 大吻鰕虎 95
4.4.2 高屏馬口鱲 99
4.5 自我評估工具 102
第五章 結論與建議 106
5.1 結論 106
5.2 建議 106
參考資料 108
-
dc.language.isozh_TW-
dc.subjectHEC-RAS 2Dzh_TW
dc.subject數值模擬zh_TW
dc.subject生物棲息地指標zh_TW
dc.subject自然解方zh_TW
dc.subject洪水管理zh_TW
dc.subjectFlood risk managementen
dc.subjectHabitat Suitability Indexen
dc.subjectHEC-RAS 2Den
dc.subjectNumerical simulationen
dc.subjectNature-based Solutionsen
dc.title以數值模擬評估自然解方在河道防災與 生態保育效益——以港口溪為例zh_TW
dc.titleEvaluating Nature-based Solutions in River Disaster Prevention and Ecological Conservation Using Numerical Simulation— A Case Study of Gangkou Creeken
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee范正成;游晟暐zh_TW
dc.contributor.oralexamcommitteeJen-Chen Fan;Cheng-Wei Yuen
dc.subject.keyword數值模擬,HEC-RAS 2D,洪水管理,自然解方,生物棲息地指標,zh_TW
dc.subject.keywordNumerical simulation,HEC-RAS 2D,Flood risk management,Nature-based Solutions,Habitat Suitability Index,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202502745-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-31-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf16.85 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved