Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99087
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃漢邦zh_TW
dc.contributor.advisorHan-Pang Huangen
dc.contributor.author洪柏濤zh_TW
dc.contributor.authorBo-Tao Hongen
dc.date.accessioned2025-08-21T16:20:05Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citation[1] F. Akbar, I. Taj, S.M. Usman, A.S. Imran, S. Khalid, I. Ihsan, A. Ali, and A. Yasin, "Unlocking the Potential of EEG in Alzheimer's Disease Research: Current Status and Pathways to Precision Detection," Brain Research Bulletin, vol. 223, p. 111281, 2025.
[2] M.S. Albert, S.T. DeKosky, D. Dickson, B. Dubois, H.H. Feldman, N.C. Fox, A. Gamst, D.M. Holtzman, W.J. Jagust, R.C. Petersen, P.J. Snyder, M.C. Carrillo, B. Thies, and C.H. Phelps, "The Diagnosis of Mild Cognitive Impairment Due to Alzheimer's Disease: Recommendations from the National Institute on Aging-Alzheimer's Association Workgroups on Diagnostic Guidelines for Alzheimer's Disease," Alzheimer's & Dementia, vol. 7, no. 3, pp. 270-279, 2011.
[3] M. Aljalal, M. Molinas, S.A. Aldosari, K. AlSharabi, A.M. Abdurraqeeb, and F.A. Alturki, "Mild Cognitive Impairment Detection with Optimally Selected EEG Channels Based on Variational Mode Decomposition and Supervised Machine Learning," Biomedical Signal Processing and Control, vol. 87, p. 105462, 2024.
[4] L.G. Amato, A.A. Vergani, M. Lassi, C. Fabbiani, S. Mazzeo, R. Burali, B. Nacmias, S. Sorbi, R. Mannella, and A. Grippo, "Personalized Modeling of Alzheimer's Disease Progression Estimates Neurodegeneration Severity from EEG Recordings," Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, vol. 16, no. 1, p. e12526, 2024.
[5] J. Antonio, L. Simon-Pearson, T. Goldberg, J.R. Sneed, S. Rushia, N. Kerner, H. Andrews, C. Hellegers, S. Tolbert, E. Perea, J. Petrella, M. Doraiswamy, and D. Devanand, "Cognitive Training and Neuroplasticity in Mild Cognitive Impairment (COG-IT): Protocol for a Two-Site, Blinded, Randomised, Controlled Treatment Trial," BMJ Open, vol. 9, no. 8, p. e028536, 2019.
[6] A.P. Association, Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Publishing, 2022.
[7] H. Azami, M. Mirjalili, T.K. Rajji, C.-T. Wu, A. Humeau-Heurtier, T.-P. Jung, C.-S. Wei, T.-T. Trinh, and Y.-H. Liu, "Electroencephalogram and Event-Related Potential in Mild Cognitive Impairment: Recent Developments in Signal Processing, Machine Learning, and Deep Learning," IEEE Journal of Selected Areas in Sensors, 2025.
[8] H. Azami, C. Zrenner, H. Brooks, R. Zomorrodi, D.M. Blumberger, C.E. Fischer, A. Flint, N. Herrmann, S. Kumar, and K. Lanctôt, "Beta to Theta Power Ratio in EEG Periodic Components as a Potential Biomarker in Mild Cognitive Impairment and Alzheimer’s Dementia," Alzheimer's Research & Therapy, vol. 15, no. 1, p. 133, 2023.
[9] C. Babiloni, X. Arakaki, H. Azami, K. Bennys, K. Blinowska, L. Bonanni, A. Bujan, M.C. Carrillo, A. Cichocki, and J. de Frutos‐Lucas, "Measures of Resting State EEG Rhythms for Clinical Trials in Alzheimer's Disease: Recommendations of an Expert Panel," Alzheimer's & Dementia, vol. 17, no. 9, pp. 1528-1553, 2021.
[10] C. Babiloni, C. Del Percio, R. Lizio, N. Marzano, F. Infarinato, A. Soricelli, E. Salvatore, R. Ferri, C. Bonforte, and G. Tedeschi, "Cortical Sources of Resting State Electroencephalographic Alpha Rhythms Deteriorate across Time in Subjects with Amnesic Mild Cognitive Impairment," Neurobiology of Aging, vol. 35, no. 1, pp. 130-142, 2014.
[11] M. Baker, K. Akrofi, R. Schiffer, and M.W. O’Boyle, "EEG Patterns in Mild Cognitive Impairment (MCI) Patients," The open neuroimaging journal, vol. 2, p. 52, 2008.
[12] H. Berger, "Über Das Elektrenkephalogramm Des Menschen," Archiv für Psychiatrie und Nervenkrankheiten, vol. 87, no. 1, pp. 527-570, 1929.
[13] B.E. Boser, I.M. Guyon, and V.N. Vapnik, "A Training Algorithm for Optimal Margin Classifiers," Proceedings of the fifth annual workshop on Computational learning theory, Pittsburgh, Pennsylvania, USA, [Online]. Available: https://doi.org/10.1145/130385.130401, 1992.
[14] M. Buscema, F. Vernieri, G. Massini, F. Scrascia, M. Breda, P.M. Rossini, and E. Grossi, "An Improved I-FAST System for the Diagnosis of Alzheimer's Disease from Unprocessed Electroencephalograms by Using Robust Invariant Features," Artificial intelligence in medicine, vol. 64, no. 1, pp. 59-74, 2015.
[15] J. Cabral, M.L. Kringelbach, and G. Deco, "Exploring the Network Dynamics Underlying Brain Activity During Rest," Progress in neurobiology, vol. 114, pp. 102-131, 2014.
[16] R. Cassani, M. Estarellas, R. San-Martin, F.J. Fraga, and T.H. Falk, "Systematic Review on Resting-State EEG for Alzheimer’s Disease Diagnosis and Progression Assessment," Disease Markers, vol. 2018, no. 1, p. 5174815, 2018.
[17] Y. Chen, L. Cai, R. Wang, Z. Song, B. Deng, J. Wang, and H. Yu, "DCCA Cross-Correlation Coefficients Reveals the Change of Both Synchronization and Oscillation in EEG of Alzheimer Disease Patients," Physica A: Statistical Mechanics and its Applications, vol. 490, pp. 171-184, 2018.
[18] K.-T. Chu, W.-C. Lei, M.-H. Wu, J.-L. Fuh, S.-J. Wang, I.T. French, W.-S. Chang, C.-F. Chang, N.E. Huang, and W.-K. Liang, "A Holo-Spectral EEG Analysis Provides an Early Detection of Cognitive Decline and Predicts the Progression to Alzheimer’s Disease," Frontiers in Aging Neuroscience, vol. 15, p. 1195424, 2023.
[19] National Development Council, 17 Oct. 2024, "Population Projections for the R.O.C. (Taiwan)," accessed 30 May, 2025. <https://pop-proj.ndc.gov.tw/main_en/>
[20] J. Dauwels, F. Vialatte, and A. Cichocki, "Diagnosis of Alzheimer's Disease from EEG Signals: Where Are We Standing?," Current Alzheimer Research, vol. 7, no. 6, pp. 487-505, 2010.
[21] S.I. Dimitriadis, N.A. Laskaris, M.P. Bitzidou, I. Tarnanas, and M.N. Tsolaki, "A Novel Biomarker of Amnestic MCI Based on Dynamic Cross-Frequency Coupling Patterns During Cognitive Brain Responses," Frontiers in Neuroscience, vol. 9, p. 350, 2015.
[22] Y. Ding, Y. Chu, M. Liu, Z. Ling, S. Wang, X. Li, and Y. Li, "Fully Automated Discrimination of Alzheimer’s Disease Using Resting-State Electroencephalography Signals," Quantitative Imaging in Medicine and Surgery, vol. 12, no. 2, p. 1063, 2022.
[23] H. Drucker, C.J. Burges, L. Kaufman, A. Smola, and V. Vapnik, "Support Vector Regression Machines," Advances in neural information processing systems, vol. 9, 1996.
[24] I. Echeverri-Ocampo, K. Ardila, J. Molina-Mateo, J. Padilla-Buritica, H. Carceller, E.A. Barceló-Martinez, S. Llamur, and M.d.l. Iglesia-Vaya, "EEG-Based Functional Connectivity Analysis for Cognitive Impairment Classification," Electronics, vol. 12, no. 21, p. 4432, 2023.
[25] M.M.A. Engels, C.J. Stam, W.M. van der Flier, P. Scheltens, H. de Waal, and E.C.W. van Straaten, "Declining Functional Connectivity and Changing Hub Locations in Alzheimer’s Disease: An EEG Study," BMC Neurology, vol. 15, no. 1, p. 145, 2015.
[26] S. Fathima and M. Ahmed, "Sleep Apnea Detection Using EEG: A Systematic Review of Datasets, Methods, Challenges, and Future Directions," Annals of Biomedical Engineering, vol. 53, no. 5, pp. 1043-1067, 2025.
[27] Salvatore Ferragamo S.p.A., "Enigma," accessed 28 April, 2025. <https://enigma.ferragamo.com/zh-Hans>
[28] M.F. Folstein, S.E. Folstein, and P.R. McHugh, "“Mini-Mental State”: A Practical Method for Grading the Cognitive State of Patients for the Clinician," Journal of psychiatric research, vol. 12, no. 3, pp. 189-198, 1975.
[29] C.A. Frantzidis, A.B. Vivas, A. Tsolaki, M.A. Klados, M. Tsolaki, and P.D. Bamidis, "Functional Disorganization of Small-World Brain Networks in Mild Alzheimer's Disease and Amnestic Mild Cognitive Impairment: An EEG Study Using Relative Wavelet Entropy (RWE)," Frontiers in Aging Neuroscience, vol. 6, p. 224, 2014.
[30] M. Ganguli, B. Fu, B.E. Snitz, T.F. Hughes, and C.-C.H. Chang, "Mild Cognitive Impairment," Neurology, vol. 80, no. 23, pp. 2112-2120, 2013.
[31] H. Garn, C. Coronel, M. Waser, G. Caravias, and G. Ransmayr, "Differential Diagnosis between Patients with Probable Alzheimer’s Disease, Parkinson’s Disease Dementia, or Dementia with Lewy Bodies and Frontotemporal Dementia, Behavioral Variant, Using Quantitative Electroencephalographic Features," Journal of Neural Transmission, vol. 124, no. 5, pp. 569-581, 2017.
[32] D. Geng, C. Wang, Z. Fu, Y. Zhang, K. Yang, and H. An, "Sleep EEG-Based Approach to Detect Mild Cognitive Impairment," Frontiers in Aging Neuroscience, vol. 14, p. 865558, 2022.
[33] L.R. Gianotti, G. Künig, D. Lehmann, P.L. Faber, R.D. Pascual-Marqui, K. Kochi, and U. Schreiter-Gasser, "Correlation between Disease Severity and Brain Electric Loreta Tomography in Alzheimer’s Disease," Clinical Neurophysiology, vol. 118, no. 1, pp. 186-196, 2007.
[34] S.F. Hafshejani and Z. Moaberfard, "A New Trigonometric Kernel Function for SVM," 2022.
[35] M. Hata, H. Kazui, T. Tanaka, R. Ishii, L. Canuet, R.D. Pascual-Marqui, Y. Aoki, S. Ikeda, H. Kanemoto, K. Yoshiyama, M. Iwase, and M. Takeda, "Functional Connectivity Assessed by Resting State EEG Correlates with Cognitive Decline of Alzheimer’s Disease – an Eloreta Study," Clinical Neurophysiology, vol. 127, no. 2, pp. 1269-1278, 2016.
[36] F. Hatz, M. Hardmeier, N. Benz, M. Ehrensperger, U. Gschwandtner, S. Rüegg, C. Schindler, A.U. Monsch, and P. Fuhr, "Microstate Connectivity Alterations in Patients with Early Alzheimer’s Disease," Alzheimer's Research & Therapy, vol. 7, no. 1, p. 78, 2015.
[37] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, 1994.
[38] T. Higuchi, "Approach to an Irregular Time Series on the Basis of the Fractal Theory," Physica D: Nonlinear Phenomena, vol. 31, no. 2, pp. 277-283, 1988.
[39] F.-J. Hsiao, Y.-J. Wang, S.-H. Yan, W.-T. Chen, and Y.-Y. Lin, "Altered Oscillation and Synchronization of Default-Mode Network Activity in Mild Alzheimer’s Disease Compared to Mild Cognitive Impairment: An Electrophysiological Study," PloS one, vol. 8, no. 7, p. e68792, 2013.
[40] Y.-T. Hsiao, C.-F. Tsai, C.-T. Wu, T.-T. Trinh, C.-Y. Lee, and Y.-H. Liu, "MCI Detection Using Kernel Eigen-Relative-Power Features of EEG Signals," Actuators, vol. 10, no. 7, 2021.
[41] Y.-T. Hsiao, C.-T. Wu, C.-F. Tsai, Y.-H. Liu, T.-T. Trinh, and C.-Y. Lee, "EEG-Based Classification between Individuals with Mild Cognitive Impairment and Healthy Controls Using Conformal Kernel-Based Fuzzy Support Vector Machine," International Journal of Fuzzy Systems, vol. 23, pp. 2432-2448, 2021.
[42] C.R. Jack Jr, J.S. Andrews, T.G. Beach, T. Buracchio, B. Dunn, A. Graf, O. Hansson, C. Ho, W. Jagust, E. McDade, J.L. Molinuevo, O.C. Okonkwo, L. Pani, M.S. Rafii, P. Scheltens, E. Siemers, H.M. Snyder, R. Sperling, C.E. Teunissen, and M.C. Carrillo, "Revised Criteria for Diagnosis and Staging of Alzheimer's Disease: Alzheimer's Association Workgroup," Alzheimer's & Dementia, vol. 20, no. 8, pp. 5143-5169, 2024.
[43] K.H. Jawabri and S. Sharma, "Physiology, Cerebral Cortex Functions," StatPearls [internet], 2023.
[44] J. Jeong, "EEG Dynamics in Patients with Alzheimer's Disease," Clinical neurophysiology, vol. 115, no. 7, pp. 1490-1505, 2004.
[45] Y. Jiang, X. Zhang, Z. Guo, X. Zhou, J. He, and N. Jiang, "Optimizing Electrode Configurations for EEG Mild Cognitive Impairment Detection," Scientific Reports, vol. 15, no. 1, p. 578, 2025.
[46] B. Jiao, R. Li, H. Zhou, K. Qing, H. Liu, H. Pan, Y. Lei, W. Fu, X. Wang, X. Xiao, X. Liu, Q. Yang, X. Liao, Y. Zhou, L. Fang, Y. Dong, Y. Yang, H. Jiang, S. Huang, and L. Shen, "Neural Biomarker Diagnosis and Prediction to Mild Cognitive Impairment and Alzheimer’s Disease Using EEG Technology," Alzheimer's Research & Therapy, vol. 15, no. 1, p. 32, 2023.
[47] Y. Kang, J. Escudero, D. Shin, E. Ifeachor, and V. Marmarelis, "Principal Dynamic Mode Analysis of EEG Data for Assisting the Diagnosis of Alzheimer’s Disease," IEEE Journal of Translational Engineering in Health and Medicine, vol. 3, pp. 1-10, 2015.
[48] M. Kapitány-Fövény, M. Vetró, G. Révy, D. Fabó, D. Szirmai, and G. Hullám, "EEG Based Depression Detection by Machine Learning: Does Inner or Overt Speech Condition Provide Better Biomarkers When Using Emotion Words as Experimental Cues?," Journal of Psychiatric Research, vol. 178, pp. 66-76, 2024.
[49] M. Kashefpoor, H. Rabbani, and M. Barekatain, "Automatic Diagnosis of Mild Cognitive Impairment Using Electroencephalogram Spectral Features," Journal of Medical Signals & Sensors, vol. 6, no. 1, 2016.
[50] M. Kashefpoor, H. Rabbani, and M. Barekatain, "Supervised Dictionary Learning of EEG Signals for Mild Cognitive Impairment Diagnosis," Biomedical Signal Processing and Control, vol. 53, p. 101559, 2019.
[51] O. Katayama, Y. Stern, C. Habeck, S. Lee, K. Harada, K. Makino, K. Tomida, M. Morikawa, R. Yamaguchi, and C. Nishijima, "Neurophysiological Markers in Community-Dwelling Older Adults with Mild Cognitive Impairment: An EEG Study," Alzheimer's Research & Therapy, vol. 15, no. 1, p. 217, 2023.
[52] M.J. Katz, "Fractals and the Analysis of Waveforms," Computers in Biology and Medicine, vol. 18, no. 3, pp. 145-156, 1988.
[53] S. Khatun, B.I. Morshed, and G.M. Bidelman, "A Single-Channel EEG-Based Approach to Detect Mild Cognitive Impairment Via Speech-Evoked Brain Responses," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 5, pp. 1063-1070, 2019.
[54] H. Kim and J.Y. Chung, "Pathobiolgy and Management of Alzheimer's Disease," Chonnam medical journal, vol. 57, no. 2, p. 108, 2021.
[55] L.R. Krol, "EEG Electrode Positions in the 10-10 System Using Modified Combinatorial Nomenclature, Along with the Fiducials and Associated Lobes of the Brain.," ed. Wikimedia Commons, 2020.
[56] A. Kucyi, J. Schrouff, S. Bickel, B.L. Foster, J.M. Shine, and J. Parvizi, "Intracranial Electrophysiology Reveals Reproducible Intrinsic Functional Connectivity within Human Brain Networks," Journal of Neuroscience, vol. 38, no. 17, pp. 4230-4242, 2018.
[57] A. Li, J. Li, D. Zhang, W. Wu, J. Zhao, and Y. Qiang, "Synergy through Integration of Digital Cognitive Tests and Wearable Devices for Mild Cognitive Impairment Screening," Frontiers in Human Neuroscience, vol. 17, p. 1183457, 2023.
[58] L. Lin, G. Xing, and Y. Han, "Advances in Resting State Neuroimaging of Mild Cognitive Impairment," Frontiers in Psychiatry, vol. 9, p. 671, 2018.
[59] G. Livingston, A. Sommerlad, V. Orgeta, S.G. Costafreda, J. Huntley, D. Ames, C. Ballard, S. Banerjee, A. Burns, J. Cohen-Mansfield, C. Cooper, N. Fox, L.N. Gitlin, R. Howard, H.C. Kales, E.B. Larson, K. Ritchie, K. Rockwood, E.L. Sampson, Q. Samus, L.S. Schneider, G. Selbæk, L. Teri, and N. Mukadam, "Dementia Prevention, Intervention, and Care," The Lancet, vol. 390, no. 10113, pp. 2673-2734, 2017.
[60] C. Lynch, "World Alzheimer Report 2019: Attitudes to Dementia, a Global Survey: Public Health: Engaging People in ADRD Research," Alzheimer's & Dementia, vol. 16, p. e038255, 2020.
[61] C.-C. Ma, A.-J. Liu, A.-H. Liu, X.-Y. Zhou, and S.-N. Zhou, "Electroencephalogram Global Field Synchronization Analysis: A New Method for Assessing the Progress of Cognitive Decline in Alzheimer’s Disease," Clinical EEG and Neuroscience, vol. 45, no. 2, pp. 98-103, 2014.
[62] N. Mammone, S. De Salvo, C. Ieracitano, S. Marino, A. Marra, F. Corallo, and F.C. Morabito, "A Permutation Disalignment Index-Based Complex Network Approach to Evaluate Longitudinal Changes in Brain-Electrical Connectivity," Entropy, vol. 19, no. 10, 2017.
[63] H.B. Mann and D.R. Whitney, "On a Test of Whether One of Two Random Variables Is Stochastically Larger Than the Other," The annals of mathematical statistics, pp. 50-60, 1947.
[64] D. Mantini, M.G. Perrucci, C. Del Gratta, G.L. Romani, and M. Corbetta, "Electrophysiological Signatures of Resting State Networks in the Human Brain," Proceedings of the National Academy of Sciences, vol. 104, no. 32, pp. 13170-13175, 2007.
[65] J.C. McBride, X. Zhao, N.B. Munro, C.D. Smith, G.A. Jicha, L. Hively, L.S. Broster, F.A. Schmitt, R.J. Kryscio, and Y. Jiang, "Spectral and Complexity Analysis of Scalp EEG Characteristics for Mild Cognitive Impairment and Early Alzheimer's Disease," Computer Methods and Programs in Biomedicine, vol. 114, no. 2, pp. 153-163, 2014.
[66] A.A. Mercadante and P. Tadi, Neuroanatomy, Gray Matter. StatPearls Publishing, Treasure Island (FL) (in eng), 2025.
[67] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.R. Mullers, "Fisher Discriminant Analysis with Kernels," Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), pp. 41-48, 1999.
[68] A.J. Mitchell and M. Shiri-Feshki, "Rate of Progression of Mild Cognitive Impairment to Dementia – Meta-Analysis of 41 Robust Inception Cohort Studies," Acta Psychiatrica Scandinavica, vol. 119, no. 4, pp. 252-265, 2009.
[69] P. Monllor, A. Cervera-Ferri, M.-A. Lloret, D. Esteve, B. Lopez, J.-L. Leon, and A. Lloret, "Electroencephalography as a Non-Invasive Biomarker of Alzheimer's Disease: A Forgotten Candidate to Substitute CSF Molecules?," Int J Mol Sci, vol. 22, no. 19, p. 10889, 2021.
[70] D.V. Moretti, G.B. Frisoni, C. Fracassi, M. Pievani, C. Geroldi, G. Binetti, P.M. Rossini, and O. Zanetti, "MCI Patients’ EEGs Show Group Differences between Those Who Progress and Those Who Do Not Progress to AD," Neurobiology of Aging, vol. 32, no. 4, pp. 563-571, 2011.
[71] D.V. Moretti, A. Prestia, C. Fracassi, G. Binetti, O. Zanetti, and G.B. Frisoni, "Specific EEG Changes Associated with Atrophy of Hippocampus in Subjects with Mild Cognitive Impairment and Alzheimer's Disease," International Journal of Alzheimer’s Disease, vol. 2012, no. 1, p. 253153, 2012.
[72] C.S. Musaeus, K. Engedal, P. Høgh, V. Jelic, M. Mørup, M. Naik, A.-R. Oeksengaard, J. Snaedal, L.-O. Wahlund, G. Waldemar, and B.B. Andersen, "EEG Theta Power Is an Early Marker of Cognitive Decline in Dementia Due to Alzheimer’s Disease," Journal of Alzheimer’s Disease, vol. 64, no. 4, pp. 1359-1371, 2018.
[73] Z.S. Nasreddine, N.A. Phillips, V. Bédirian, S. Charbonneau, V. Whitehead, I. Collin, J.L. Cummings, and H. Chertkow, "The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment," Journal of the American Geriatrics Society, vol. 53, no. 4, pp. 695-699, 2005.
[74] J.J. Newson and T.C. Thiagarajan, "EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies," Frontiers in Human Neuroscience, vol. 12, p. 521, 2019.
[75] T. Ngandu, J. Lehtisalo, A. Solomon, E. Levälahti, S. Ahtiluoto, R. Antikainen, L. Bäckman, T. Hänninen, A. Jula, T. Laatikainen, J. Lindström, F. Mangialasche, T. Paajanen, S. Pajala, M. Peltonen, R. Rauramaa, A. Stigsdotter-Neely, T. Strandberg, J. Tuomilehto, H. Soininen, and M. Kivipelto, "A 2 Year Multidomain Intervention of Diet, Exercise, Cognitive Training, and Vascular Risk Monitoring Versus Control to Prevent Cognitive Decline in at-Risk Elderly People (FINGER): A Randomised Controlled Trial," The Lancet, vol. 385, no. 9984, pp. 2255-2263, 2015.
[76] World Health Organization, 1 Oct. 2024, "Ageing and Health," accessed 30 May, 2025. <https://www.who.int/news-room/fact-sheets/detail/ageing-and-health>
[77] World Health Organization, 31 March. 2025, "Dementia," accessed 30 May, 2025. <https://www.who.int/news-room/fact-sheets/detail/dementia>
[78] H. Pallathadka, Z.R. Gardanova, A.R. Al-Tameemi, A.M.B. Al-Dhalimy, E.H. Kadhum, and A.H. Redhee, "Investigating Cortical Complexity in Mixed Dementia through Nonlinear Dynamic Analyses: A Resting-State EEG Study," Iranian Journal of Psychiatry, vol. 19, no. 3, p. 327, 2024.
[79] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg, "Scikit-Learn: Machine Learning in Python," the Journal of machine Learning research, vol. 12, pp. 2825-2830, 2011.
[80] R.C. Petersen, G.E. Smith, S.C. Waring, R.J. Ivnik, E.G. Tangalos, and E. Kokmen, "Mild Cognitive Impairment: Clinical Characterization and Outcome," Archives of Neurology, vol. 56, no. 3, pp. 303-308, 1999.
[81] S.M. Pincus, "Approximate Entropy as a Measure of System Complexity," Proceedings of the National Academy of Sciences, vol. 88, no. 6, pp. 2297-2301, 1991.
[82] L. Pion-Tonachini, K. Kreutz-Delgado, and S. Makeig, "ICLabel: An Automated Electroencephalographic Independent Component Classifier, Dataset, and Website," NeuroImage, vol. 198, pp. 181-197, 2019.
[83] D. Puri, S. Nalbalwar, A. Nandgaonkar, J. Rajput, and A. Wagh, "Identification of Alzheimer's Disease Using Novel Dual Decomposition Technique and Machine Learning Algorithms from EEG Signals," International Journal on Advanced Science, Engineering & Information Technology, vol. 13, no. 2, 2023.
[84] B. Ratner, "The Correlation Coefficient: Its Values Range between+ 1/− 1, or Do They?," Journal of targeting, measurement and analysis for marketing, vol. 17, no. 2, pp. 139-142, 2009.
[85] J.S. Richman and J.R. Moorman, "Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy," American Journal of Physiology-Heart and Circulatory Physiology, vol. 278, no. 6, pp. H2039-H2049, 2000.
[86] J.H. Roh, M.H. Park, D. Ko, K.-W. Park, D.-H. Lee, C. Han, S.A. Jo, K.-S. Yang, and K.-Y. Jung, "Region and Frequency Specific Changes of Spectral Power in Alzheimer’s Disease and Mild Cognitive Impairment," Clinical Neurophysiology, vol. 122, no. 11, pp. 2169-2176, 2011.
[87] P.M. Rossini, R. Di Iorio, F. Vecchio, M. Anfossi, C. Babiloni, M. Bozzali, A.C. Bruni, S.F. Cappa, J. Escudero, and F.J. Fraga, "Early Diagnosis of Alzheimer’s Disease: The Role of Biomarkers Including Advanced EEG Signal Analysis. Report from the IFCN-Sponsored Panel of Experts," Clinical Neurophysiology, vol. 131, no. 6, pp. 1287-1310, 2020.
[88] S.J. Ruiz-Gómez, C. Gómez, J. Poza, G.C. Gutiérrez-Tobal, M.A. Tola-Arribas, M. Cano, and R. Hornero, "Automated Multiclass Classification of Spontaneous EEG Activity in Alzheimer’s Disease and Mild Cognitive Impairment," Entropy, vol. 20, no. 1, 2018.
[89] S.-A. Sadegh-Zadeh, E. Fakhri, M. Bahrami, E. Bagheri, R. Khamsehashari, M. Noroozian, and A.M. Hajiyavand, "An Approach toward Artificial Intelligence Alzheimer’s Disease Diagnosis Using Brain Signals," diagnostics, vol. 13, no. 3, p. 477, 2023.
[90] A. Safayari and H. Bolhasani, "Depression Diagnosis by Deep Learning Using EEG Signals: A Systematic Review," Medicine in Novel Technology and Devices, vol. 12, p. 100102, 2021.
[91] A. Said and H. Göker, "Spectral Analysis and Bi-LSTM Deep Network-Based Approach in Detection of Mild Cognitive Impairment from Electroencephalography Signals," Cognitive Neurodynamics, vol. 18, no. 2, pp. 597-614, 2024.
[92] S. Sanei and J.A. Chambers, EEG Signal Processing. John Wiley & Sons, 2013.
[93] M. Şeker, Y. Özbek, G. Yener, and M.S. Özerdem, "Complexity of EEG Dynamics for Early Diagnosis of Alzheimer's Disease Using Permutation Entropy Neuromarker," Computer Methods and Programs in Biomedicine, vol. 206, p. 106116, 2021.
[94] K.K. Shyu, S.C. Huang, L.H. Lee, and P.L. Lee, "Less Parameterization Inception-Based End to End CNN Model for EEG Seizure Detection," IEEE Access, vol. 11, pp. 49172-49182, 2023.
[95] C.J. Stam, G. Nolte, and A. Daffertshofer, "Phase Lag Index: Assessment of Functional Connectivity from Multi Channel EEG and MEG with Diminished Bias from Common Sources," Human Brain Mapping, vol. 28, no. 11, pp. 1178-1193, 2007.
[96] E.M. Strijbis, Y.S. Timar, D.N. Schoonhoven, I.M. Nauta, S.D. Kulik, L.R. de Ruiter, M.M. Schoonheim, A. Hillebrand, and C.J. Stam, "State Changes During Resting-State (Magneto) Encephalographic Studies: The Effect of Drowsiness on Spectral, Connectivity, and Network Analyses," Frontiers in Neuroscience, vol. 16, p. 782474, 2022.
[97] C.-F. Tsai, W.-J. Lee, S.-J. Wang, B.-C. Shia, Z. Nasreddine, and J.-L. Fuh, "Psychometrics of the Montreal Cognitive Assessment (MoCA) and Its Subscales: Validation of the Taiwanese Version of the MoCA and an Item Response Theory Analysis," International psychogeriatrics, vol. 24, no. 4, pp. 651-658, 2012.
[98] J. Van Deursen, E. Vuurman, F. Verhey, V. van Kranen-Mastenbroek, and W. Riedel, "Increased EEG Gamma Band Activity in Alzheimer’s Disease and Mild Cognitive Impairment," Journal of neural transmission, vol. 115, pp. 1301-1311, 2008.
[99] F. Vecchio, F. Miraglia, F. Piludu, G. Granata, R. Romanello, M. Caulo, V. Onofrj, P. Bramanti, C. Colosimo, and P.M. Rossini, "“Small World” Architecture in Brain Connectivity and Hippocampal Volume in Alzheimer’s Disease: A Study Via Graph Theory from EEG Data," Brain imaging and behavior, vol. 11, pp. 473-485, 2017.
[100] C.F. Vega and J. Noel, "Parameters Analyzed of Higuchi's Fractal Dimension for EEG Brain Signals," 2015 Signal Processing Symposium (SPSympo), pp. 1-5, 2015.
[101] X. Wang, Y. Wang, D. Liu, Y. Wang, and Z. Wang, "Automated Recognition of Epilepsy from EEG Signals Using a Combining Space–Time Algorithm of CNN-LSTM," Scientific Reports, vol. 13, no. 1, p. 14876, 2023.
[102] J.A. Wanliss, R. Hernandez; Wanliss, G.; Gordon, S., "Optimization of the Higuchi Method," International Journal of Research -GRANTHAALAYAH, vol. 9, no. 11, pp. 202-213, 2021.
[103] J.A. Wanliss and G.E. Wanliss, "Efficient Calculation of Fractal Properties Via the Higuchi Method," Nonlinear Dynamics, vol. 109, no. 4, pp. 2893-2904, 2022.
[104] M. Waser, H. Garn, R. Schmidt, T. Benke, P. Dal-Bianco, G. Ransmayr, H. Schmidt, S. Seiler, G. Sanin, F. Mayer, G. Caravias, D. Grossegger, W. Frühwirt, and M. Deistler, "Quantifying Synchrony Patterns in the EEG of Alzheimer’s Patients with Linear and Non-Linear Connectivity Markers," Journal of Neural Transmission, vol. 123, no. 3, pp. 297-316, 2016.
[105] World Health Organization, International Classification of Diseases for Mortality and Morbidity Statistics: World Health Organization, 2025. [Online]. Available: https://icd.who.int.
[106] G. Yogarajan, N. Alsubaie, G. Rajasekaran, T. Revathi, M.S. Alqahtani, M. Abbas, M.M. Alshahrani, and B.O. Soufiene, "EEG-Based Epileptic Seizure Detection Using Binary Dragonfly Algorithm and Deep Neural Network," Scientific Reports, vol. 13, no. 1, p. 17710, 2023.
[107] N. Youssef, S. Xiao, M. Liu, H. Lian, R. Li, X. Chen, W. Zhang, X. Zheng, Y. Li, and Y. Li, "Functional Brain Networks in Mild Cognitive Impairment Based on Resting Electroencephalography Signals," Frontiers in Computational Neuroscience, vol. 15, p. 698386, 2021.
[108] 台灣失智症協會, Aug. 2024, "台灣失智症人口推估," accessed 30 May, 2025. <http://www.tada2002.org.tw/About/IsntDementia#bn2>
[109] 衛生福利部, 21 Mar. 2024, "衛生福利部公布最新臺灣社區失智症流行病學調查結果," accessed 30 May, 2025. <https://www.mohw.gov.tw/cp-6653-78102-1.html>
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99087-
dc.description.abstract隨著全球高齡化人口的比例逐漸上升,許多國家已經進入高齡化社會。失智症(Dementia),這種由腦部異常退化所引起且常見於老年人的症候群,已成為社會中的重大議題。阿茲海默症(Alzheimer’s Disease, AD)佔據所有失智症成因的七成左右,其為神經退化性疾病的一種。輕度認知障礙(Mild Cognitive Impairment, MCI)通常被視為阿茲海默症的前兆,處於正常衰老與失智症之間的過渡期。如果能夠早期檢測,將有助於進行即時干預,不僅能改善患者的生活品質,還可能有效延緩病情的進展。本研究從桃園社區收集了40位受測者,基於樣本數量與共病情況的考量,我們使用臺灣版的蒙特利爾認知評估量表(Montreal Cognitive Assessment, MoCA)將其分為認知功能障礙組(20位,Cognitive Impairment, CI)與無認知功能障礙組(20位,Cognitive Normal, CN)。本研究將使用受測者在休息狀態下所收集的腦電圖(Electroencephalography, EEG)數據,訓練一個有效區分認知功能障礙組與無認知功能障礙組的檢測系統。
本研究從腦電圖中擷取五種特徵,分別是Katz碎形維度(Katz Fractal Dimension, KFD)、Higuchi碎形維度(Higuchi Fractal Dimension, HFD)、樣本熵(Sample Entropy, SE)、相對功率(Relative Power, RP)與相位延遲指數(Phase Lag Index, PLI)。將此五種特徵利用費雪準則進行排序,支持向量機(Support Vector Machine, SVM)調參過程所使用之驗證方法為留一個體驗證(Leave One Participant Out Cross Validation, LOPO-CV),接下來使用支持向量機搭配加一特徵法(Add One Feature In, AOFI)篩選出最好的特徵集。Katz碎形維度、Higuchi碎形維度與樣本熵表現最差,其平均分類率落於六成到七成之間。相對功率為表現第二好之特徵,其平均分類率落於七成到八成之間。表現最好之特徵為相位延遲指數,其最好的平均分類率達到88.88%。接著,將各種特徵表現最好的特徵集作為輸入,並將其餵入支持向量回歸(Support Vector Regression, SVR),以建立與臺灣版蒙特利爾認知評估量表分數之間的回歸模型。所訓練之回歸模型可能因樣本數不足或數據之間不夠平均,導致其表現不慎理想。總結來說,本研究結果顯示,利用基於休息狀態腦電圖的相位延遲指數特徵,對於區分認知功能障礙組與無認知功能障礙組的檢測效果相當理想;然而,回歸模型仍需進一步的探討與改進。
zh_TW
dc.description.abstractAs the global population continues to age, many countries have entered aging societies. Dementia, a syndrome caused by abnormal changes in the brain and commonly observed in the older adults, has become a major public health issue. Alzheimer's Disease (AD), a neurodegenerative condition, is responsible for around 70% of dementia diagnoses. Mild Cognitive Impairment (MCI) is viewed as an early stage of Alzheimer's Disease (AD), serving as a bridge between typical aging and dementia. Early detection of MCI can enable timely intervention and treatment, which not only improves the patient’s quality of life but may also effectively delay disease progression. This study recruited 40 participants from communities in the Taoyuan area. Considering the sample size and potential comorbidities, participants were categorized using the Taiwanese version of the Montreal Cognitive Assessment (MoCA) into two groups: 20 individuals with cognitive impairment (Cognitive Impairment, CI) and 20 individuals without cognitive impairment (Cognitive Normal, CN). This study utilizes Electroencephalography (EEG) data collected from participants in a resting state to train a detection system capable of effectively distinguishing between the CI group and the CN group.
Five types of EEG features were extracted in this study: Katz Fractal Dimension (KFD), Higuchi Fractal Dimension (HFD), Sample Entropy (SE), Relative Power (RP), and Phase Lag Index (PLI). These features were ranked using the Fisher Criterion. The Support Vector Machine (SVM) model was validated using the Leave One Participant Out Cross Validation (LOPO-CV) approach. Subsequently, the Add One Feature In (AOFI) method was applied in conjunction with SVM to identify the best feature subset. Among the features, KFD, HFD, and SE yielded the lowest classification performance, with average classification accuracies ranging from 60% to 70%. RP ranked second in performance, with accuracies between 70% and 80%. The best-performing feature was the PLI, achieving a maximum average classification accuracy of 88.88%. Then, the best feature subsets of each feature type were used as inputs to the Support Vector Regression (SVR) model to explore their regression relationships with the Taiwan version of the MoCA scores. However, due to the small sample size and potential data imbalance, the regression model’s performance was not ideal. In summary, this study demonstrates that PLI features derived from resting-state EEG data are effective in distinguishing between cognitively impaired and healthy individuals. Nevertheless, the regression model requires further investigation to improve its reliability.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:20:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:20:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
摘要 iv
Abstract vi
Contents viii
List of Tables xii
List of Figures xiv
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Contributions 9
1.3 Organization of the Dissertation 11
Chapter 2 Literature Review 13
2.1 Feature Extraction Methods for EEG Neural Markers 14
2.2 Machine Learning for EEG Classification 18
2.3 Cognitive Assessments and EEG Feature Associations 19
2.4 Summary 20
Chapter 3 Research Methods and Theories 23
3.1 Feature Extraction 24
3.1.1 Katz Fractal Dimension (KFD) 24
3.1.2 Higuchi Fractal Dimension (HFD) 27
3.1.3 Sample Entropy (SE) 29
3.1.4 Relative Power (RP) 32
3.1.5 Phase Lag Index (PLI) 33
3.2 Feature Ranking 34
3.2.1 Fisher’s Criterion 35
3.3 Feature Selection 37
3.3.1 Add One Feature in (AOFI) 37
3.4 Machine Learning 38
3.4.1 Support Vector Machine (SVM) 38
3.4.2 Support Vector Regression (SVR) 45
3.5 Cross Validation Method 47
3.5.1 K-Fold Cross Validation 48
3.5.2 Leave One Participant Out Cross Validation (LOPO-CV) 49
3.6 Evaluation Metrics 49
3.6.1 Confusion Matrix 49
3.6.2 R2 Score 51
3.7 Statistical Analysis 52
Chapter 4 Experiment Design 53
4.1 Introduction to EEG System 53
4.1.1 Hardware 53
4.1.2 Software 56
4.2 Experimental Architecture 57
4.2.1 Demographics 57
4.2.2 Montreal Cognitive Assessment (MoCA) 60
4.2.3 Experimental Procedure 63
4.2.4 Data Acquisition Procedure 65
4.2.5 EEG Preprocessing 66
Chapter 5 Experimental Results and Discussion: Classification Results 69
5.1 Classification Results of Different Features 71
5.1.1 Classification Results Using KFD Features 71
5.1.2 Classification Results Using HFD Features 73
5.1.3 Classification Results Using SE Features 75
5.1.4 Classification Results Using RP Features 77
5.1.5 Classification Results Using PLI Features 79
5.2 Summary 82
Chapter 6 Experimental Results and Discussion: Statistical and Regression Analysis 83
6.1 Analysis of Best Feature Combinations 84
6.1.1 Analysis of the Best Feature Combination of KFD 84
6.1.2 Analysis of the Best Feature Combination of HFD 86
6.1.3 Analysis of the Best Feature Combination of SE 88
6.1.4 Analysis of the Best Feature Combination of RP 89
6.1.5 Analysis of the Best Feature Combination of PLI 91
6.2 Association Between PLI Features and MoCA-T Scores 99
6.3 SVR of MoCA-T Based on Each Feature Type 104
6.4 Summary 107
Chapter 7 Conclusions and Future Work 109
7.1 Conclusions 109
7.2 Future Work 110
References 111
Biography 119
-
dc.language.isoen-
dc.subject腦電圖zh_TW
dc.subject失智症zh_TW
dc.subject機器學習zh_TW
dc.subject認知功能障礙zh_TW
dc.subject相位延遲指數zh_TW
dc.subjectCognitive Impairmenten
dc.subjectElectroencephalography (EEG)en
dc.subjectDementiaen
dc.subjectMachine Learningen
dc.subjectPhase Lag Index (PLI)en
dc.title基於機器學習與休息腦波訊號之認知評估研究zh_TW
dc.titleResearch on Cognitive Assessment Based on Machine Learning and Resting-State EEGen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉益宏;程藴菁;李柏磊zh_TW
dc.contributor.oralexamcommitteeYi-Hung Liu;Yen-Ching Chen;Po-Lei Leeen
dc.subject.keyword腦電圖,失智症,機器學習,認知功能障礙,相位延遲指數,zh_TW
dc.subject.keywordElectroencephalography (EEG),Dementia,Machine Learning,Cognitive Impairment,Phase Lag Index (PLI),en
dc.relation.page119-
dc.identifier.doi10.6342/NTU202502203-
dc.rights.note未授權-
dc.date.accepted2025-08-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved