請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99078| 標題: | 基於深度學習的物聯網設備容量限制服務業之碳足跡排放預測 - 以自助洗衣業為例 Deep Learning-Based Prediction of Carbon Footprint Emissions for IoT-enabled Capacitated Service Industry |
| 作者: | 鍾靖詮 Ching-Chuan Chung |
| 指導教授: | 陳靜枝 Ching-Chin Chern |
| 關鍵字: | 碳足跡,容量限制服務業,物聯網,時間序列分析,分群模型, carbon footprint,capacitated service industry,Internet of Things,time-series analysis,clustering model, |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 面對全球減碳壓力與淨零排放目標,碳足跡管理及預測議題漸趨重要;雖然製造業等領域在過去存在相關研究,但對於如餐廳、自助洗衣店等容量限制服務業,相關研究仍相對稀少,使產業難以量化自身碳足跡排放量,也使政策制定缺乏實證依據。
本研究以自助洗衣業為範例,提出一個碳足跡計算及管理與預測的框架。透過業者提供的IoT 資料,整合機台的電力、水與廢水三項主要耗用量,並提出以排放係數為基礎的碳足跡計算方式;其次,再以歷史營運紀錄訓練時間序列模型,預測未來十二個月碳足跡的趨勢;考量新店面或新機台常面臨資料不足,本研究也設計分群模型,依設備使用型態與環境條件尋找相似群組,而分開處理不同量級的資源,則可以進一步提供模型穩定度及精確度。 研究結果顯示,所建構的碳足跡時間序列模型與分群模型均具良好準確度,該框架不僅可協助自助洗衣業據此制定減排策略,也能進一步延伸至餐廳、電動車充電椿等其他容量限制服務領域,做為永續營運之參考。 Facing growing global pressure to reduce carbon emissions and achieve net-zero targets, carbon-footprint management and forecasting have become increasingly important. Although previous studies exist in sectors such as manufacturing, research on capacitated service industries—such as restaurants and self-service laundromats—remains relatively scarce, making it difficult for these industries to quantify their own carbon-footprint emissions and leaving policymakers without empirical evidence. Using the self-service laundry industry as an example, this study proposes a framework for carbon-footprint calculation, management, and forecasting. IoT data supplied by operators are used to integrate the three main resource consumptions of each machine—electricity, water, and wastewater—and an emission-factor-based method for calculating the carbon footprint is presented. Historical operational records then train a time-series model to predict carbon-footprint trends for the next twelve months. Because new stores or newly installed machines often lack sufficient data, a clustering model is designed to identify similar groups based on equipment usage patterns and environmental conditions; handling resources of different scales separately further enhances model stability and accuracy. The results show that both the time-series model and the clustering model achieve good accuracy. The framework can not only help the self-service laundry industry develop emission-reduction strategies but can also be extended to other capacitated service sectors—such as restaurants and EV charging stations—as a reference for sustainable operations. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99078 |
| DOI: | 10.6342/NTU202503664 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2030-08-04 |
| 顯示於系所單位: | 資訊管理學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 854.34 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
