Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99067
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁建均zh_TW
dc.contributor.advisorJian-Jiun Dingen
dc.contributor.author黃筱筑zh_TW
dc.contributor.authorHsiao-Chu Huangen
dc.date.accessioned2025-08-21T16:15:39Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citation[1] Environmental Information Center, “Sandstorms and The Globalization of Pollution” (in Chinese), Jun. 17, 2005. [Online]. Available: https://e-info.org.tw/node/3423 [Accessed: May 25, 2025].
[2] G. X. Gao, H. C. Lai, Y. Q. Liu, L. J. Wang and Z. H. Jia, “Sandstorm Image Enhancement Based On YUV Space,” Optik, vol. 226, p.165659, 2021, doi:10.1016/j.ijleo.2020.165659.
[3] A. H. Alsaeedi, S. M. Hadi, and Y. Alazzawi, “Fast Dust Sand Image Enhancement Based on Color Correction and New Membership Function,” arXiv preprint arXiv:2307.15230, 2023. [Online]. Available: https://arxiv.org/abs/2307.15230 [Accessed: May 25, 2025].
[4] Z. Shi, Y. Feng, M. Zhao, E. Zhang and L. He, “Let You See in Sand Dust Weather: A Method Based on Halo-Reduced Dark Channel Prior Dehazing for Sand-Dust Image Enhancement,” in IEEE Access, vol. 7, pp. 116722-116733, 2019, doi:10.1109//ACCESS.2019.2936444.
[5] Z. Shi, Y. Feng, M. Zhao, E. Zhang and L. He, “Normalized Gamma Transformation-Based Contrast-Limited Adaptive Histogram Equalization with Colour Correction for Sand-Dust Image Enhancement,” IET Image Process., vol. 14, no. 5, pp. 747-756, 2020, doi:10.1049//iet-ipr.2019.0992.
[6] H. S. Lee, “Efficient Sandstorm Image Enhancement Using the Normalized Eigenvalue and Adaptive Dark Channel Prior,” Technologies, vol. 9, no. 4, p. 101, 2021, doi: 10.3390/technologies9040101.
[7] B. Wang, B. Wei, Z. Kang, L. Hu and C. Li, “Fast Color Balance and Multi-Path Fusion for Sandstorm Image Enhancement,” Signal, Image and Video Processing, vol. 15, pp. 637–644, 2021, doi: 10.1007/s11760-020-01786-1.
[8] X. Fu, Y. Huang, D. Zeng, X. -P. Zhang and X. Ding, "A fusion-based enhancing approach for single sandstorm image," 2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP), Jakarta, Indonesia, 2014, pp. 1-5, doi: 10.1109/MMSP.2014.6958791.
[9] K. He, J. Sun, X. Tang, “Single Image Haze Removal Using Dark Channel Prior,” CVPR, 2009.
[10] Z. Mahmood, N. Muhammad, N. Bibi, Y. M. Malik, and N. Ahmed, “Human visual enhancement using Multi Scale Retinex,” Informatics in Medicine Unlocked, vol. 13, pp. 9–20, 2018, doi: 10.1016/j.imu.2018.09.001.
[11] S. M. Pizer, R. E. Johnston, J. P. Ericksen, B. C. Yankaskas, and K. E. Muller, “Contrast-limited adaptive histogram equalization: speed and effectiveness,” in Proc. 1st Conf. on Visualization in Biomedical Computing, Atlanta, GA, USA, 1990, pp. 337–345, doi: 10.1109/VBC.1990.109340.
[12] MathWorks, “Gamma correction,” MathWorks – Image Processing Toolbox, [Online]. Available: https://www.mathworks.com/help/images/gamma-correction.html [Accessed: May 25, 2025].
[13] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 2013, doi: 10.1109/TPAMI.2012.213.
[14] Pexels, “White and brown house,” Pexels.com, [Online]. Available: https://www.pexels.com/photo/white-and-brown-house-208321/ [Accessed: May 25, 2025].
[15] Pexels, “Gray asphalt road,” Pexels.com, [Online]. Available: https://www.pexels.com/photo/gray-asphalt-road-240528/ [Accessed: Jun. 8, 2025].
[16] Pexels, “Autumn HD wallpaper,” Pexels.com, [Online]. Available: https://www.pexels.com/photo/autumn-hd-wallpaper-589808/[Accessed: May 25, 2025].
[17] Pexels, “Scenic view of city during evening,” Pexels.com, [Online]. Available: https://www.pexels.com/photo/scenic-view-of-city-during-evening-1538177/[Accessed: May 25, 2025].
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99067-
dc.description.abstract隨著全球氣候變遷加劇,世界各地極端氣候現象發生的頻率與強度皆有所增加,其中本文的研究主角—沙塵暴也是其中具有代表性的氣候現象之一,對於智慧監控系統、智慧交通系統及各類的戶外電腦視覺應用皆造成嚴重影響。在沙塵暴環境下,大量的沙塵粒子會吸收光線並散射光線,導致影像中顏色偏差、清晰度下降及細節模糊等問題,這些影像品質的劣化,會影響電腦視覺系統在各種應用場景下的準確性與穩定性。
目前對於沙塵暴影像的增強方法主要可分為色偏校正與細節增強兩個方向。前者多以不同色彩空間的轉換與統計方法進行顏色補償與調整,後者則著重於提升影像對比度與去霧處理。
本研究提出了一種基於天空區域偵測的沙塵暴影像增強方法。該方法綜合了色偏校正、對比度增強、天空區域偵測、分割及除霧技術,以達到提升影像品質的目的。實驗結果顯示,本方法不僅能有效提升影像的清晰度與對比度,同時能保持影像的自然性與真實感。相比於傳統的除霧方法與單一的色偏校正方法,我們的方法具有更好的適應性與穩定性,適用於不同場景與不同程度沙塵影像的增強。
總結來說,本研究提出了一個具有高適應性及穩定性的影像增強方法,能在各種沙塵環境下大幅改善影像品質。未來我們將著重於提升方法的計算效率與處理速度,並嘗試將本方法應用於更多的實際應用場景中,如智能交通、無人機監控、以及自動駕駛系統等。
zh_TW
dc.description.abstractAs global climate change intensifies, extreme weather events have become increasingly more often and stronger. Among these phenomena, sandstorms—a central focus of this study—stand out as a representative phenomenon that impact intelligent surveillance systems, smart transportation networks, and many outdoor computer vision applications seriously. In sandstorm conditions, a lot of dust particles absorb and scatter light, resulting in color distortion, clarity reduced, and blurred details in images. These problems make image quality worse and affect the accuracy and stability of vision-based systems in many applications.
Current methods for enhancing sandstorm images mainly divide into two categories: color correction and detail enhancement. Color correction usually use different color space transformation to adjust and recover the color. On the other hand, detail enhancement focuses on improving image contrast and removing haze.
This study proposes a sandstorm image enhancement method based on sky region detection. The method combines color correction, contrast enhancement, sky detection and dehazing technique to improve the sandstorm image quality. The experiment shows that our method not only improves the clarity and contrast, but also keep the image natural and real. Compare with only using dehazing or only color correction, our method is more stable and suitable for different kinds of sandstorm images.
In conclusion, this study presents a method that is stable and adaptive, and can enhance the image quality under sandstorm condition effectively. In the future, we will try to make it faster and more efficient, and hope to use it in real applications, such as smart transportation, drone surveillance, and autonomous driving system.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:15:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:15:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
Chapter 2 Related Works 4
2.1 Characteristics of Sandstorm Images and Problem Analysis 4
2.2 Color Correction Techniques for Sandstorm Images 4
2.2.1 YUV Color Space Method 5
2.2.2 Lab Color Space Method 5
2.2.3 Color Balance Based on Eigenvalue Normalization 6
2.2.4 Statistical Strategy and Adaptive Color Correction 6
2.2.5 Fast Color Balance Techniques 7
2.3 Image Enhancement and Dehazing Techniques 7
2.3.1 Contrast Limited Adaptive Histogram Equalization (CLAHE) 8
2.3.2 Normalized Gamma Correction (NGC) 8
2.3.3 Multi-Scale Retinex (MSR) 9
2.3.4 Retinex Enhancement with Improved Guided Filter 9
2.3.5 Dark Channel Prior (DCP) and Improved Techniques 10
2.3.6 Image Fusion Methods 11
2.4 Analysis of Advantages and Limitations of Existing Techniques 13
2.5 Summary 16
Chapter 3 Proposed Method 18
3.1 Overview of the Proposed Method and Experimental Setup 18
3.2 Lab-based Color Correction 22
3.3 Contrast Enhancement Using CLAHE and NGC 23
3.3.1 Normalized Gamma Correction (NGC) 23
3.3.2 Contrast-Limited Adaptive Histogram Equalization (CLAHE) 24
3.4 Sky Region Detection and Segmentation 25
3.4.1 Edge Detection for Sky Region 25
3.4.2 Smooth Region Detection and Color Filtering 27
3.4.3 Post-Processing of Sky Region 28
3.5 Adaptive Dark Channel Prior (ADCP) Dehazing 29
3.6 Image Merging and Final Output 31
3.7 System Flowchart and Method Overview 33
3.8 Summary of Subjective Visual Evaluation 36
3.9 Comprehensive Discussion and System Performance Analysis 39
Chapter 4 Conclusion and Future Work 42
4.1 Research Conclusion 42
4.2 Research Contributions 43
4.3 Future Research Directions 44
REFERENCE 46
-
dc.language.isoen-
dc.subject沙塵暴影像zh_TW
dc.subject影像增強zh_TW
dc.subject天空偵測zh_TW
dc.subject色偏校正zh_TW
dc.subject除霧技術zh_TW
dc.subject適應性暗通道先驗zh_TW
dc.subject對比度增強zh_TW
dc.subjectImage Enhancementen
dc.subjectContrast Enhancementen
dc.subjectAdaptive Dark Channel Prioren
dc.subjectDehazeden
dc.subjectColor Correctionen
dc.subjectSky Detectionen
dc.subjectSandstorm Imageen
dc.title基於天空偵測與可適性色彩補償之沙塵影像還原研究zh_TW
dc.titleSandstorm Image Reconstruction via Adaptive Color Compensation and Sky Detectionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee盧奕璋;簡鳳村;歐陽良昱zh_TW
dc.contributor.oralexamcommitteeYi-Chang Lu;Feng-Tsun Chien;Liang-Yu Ou Yangen
dc.subject.keyword沙塵暴影像,影像增強,天空偵測,色偏校正,除霧技術,適應性暗通道先驗,對比度增強,zh_TW
dc.subject.keywordSandstorm Image,Image Enhancement,Sky Detection,Color Correction,Dehazed,Adaptive Dark Channel Prior,Contrast Enhancement,en
dc.relation.page48-
dc.identifier.doi10.6342/NTU202503081-
dc.rights.note未授權-
dc.date.accepted2025-08-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved