Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 智慧醫療與健康資訊碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99065
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃韻如zh_TW
dc.contributor.advisorRuby Yun-Ju Huangen
dc.contributor.author黎章勝zh_TW
dc.contributor.authorLe Truong Thangen
dc.date.accessioned2025-08-21T16:15:08Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation[1] T. Arora, S. Mullangi, E. S. Vadakekut, and M. R. Lekkala, “Epithelial Ovarian Cancer,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2025. Accessed: May 30, 2025. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK567760/
[2] M.-K. Hong and D.-C. Ding, “Early Diagnosis of Ovarian Cancer: A Comprehensive Review of the Advances, Challenges, and Future Directions,” Diagnostics, vol. 15, no. 4, Art. no. 4, Jan. 2025, doi: 10.3390/diagnostics15040406.
[3] D. Jelovac and D. K. Armstrong, “Recent Progress in the Diagnosis and Treatment of Ovarian Cancer,” CA. Cancer J. Clin., vol. 61, no. 3, pp. 183–203, 2011, doi: 10.3322/caac.20113.
[4] Y.-F. Wei et al., “Worldwide patterns and trends in ovarian cancer incidence by histological subtype: a population-based analysis from 1988 to 2017,” eClinicalMedicine, vol. 79, Jan. 2025, doi: 10.1016/j.eclinm.2024.102983.
[5] L. Qian et al., “Proteomic landscape of epithelial ovarian cancer,” Nat. Commun., vol. 15, p. 6462, Jul. 2024, doi: 10.1038/s41467-024-50786-z.
[6] C. Zhu et al., “Updates of Pathogenesis, Diagnostic and Therapeutic Perspectives for Ovarian Clear Cell Carcinoma,” J. Cancer, vol. 12, no. 8, pp. 2295–2316, 2021, doi: 10.7150/jca.53395.
[7] A. W. Lee, E. E. Navajas, and L. Liu, “Clear differences in ovarian cancer incidence and trends by ethnicity among Asian Americans,” Cancer Epidemiol., vol. 61, pp. 142–149, Aug. 2019, doi: 10.1016/j.canep.2019.06.005.
[8] Y. Sun and G. Liu, “Endometriosis-associated Ovarian Clear Cell Carcinoma: A Special Entity?,” J. Cancer, vol. 12, no. 22, pp. 6773–6786, Sep. 2021, doi: 10.7150/jca.61107.
[9] A. Sveen et al., “Evolutionary mode and timing of dissemination of high-grade serous carcinomas,” JCI Insight, vol. 9, no. 3, p. e170423, doi: 10.1172/jci.insight.170423.
[10] C. A. Shu et al., “Ovarian Clear Cell Carcinoma, Outcomes by Stage: The MSK Experience,” Gynecol. Oncol., vol. 139, no. 2, pp. 236–241, Nov. 2015, doi: 10.1016/j.ygyno.2015.09.016.
[11] S. Ye et al., “Integrative genomic and transcriptomic analysis reveals immune subtypes and prognostic markers in ovarian clear cell carcinoma,” Br. J. Cancer, vol. 126, no. 8, Art. no. 8, May 2022, doi: 10.1038/s41416-022-01705-w.
[12] D. Guo et al., “Exploring the cellular and molecular differences between ovarian clear cell carcinoma and high-grade serous carcinoma using single-cell RNA sequencing and GEO gene expression signatures,” Cell Biosci., vol. 13, p. 139, Jul. 2023, doi: 10.1186/s13578-023-01087-3.
[13] S. C. Steinbuch, A.-M. Lüß, S. Eltrop, M. Götte, and L. Kiesel, “Endometriosis-Associated Ovarian Cancer: From Molecular Pathologies to Clinical Relevance,” Int. J. Mol. Sci., vol. 25, no. 8, p. 4306, Apr. 2024, doi: 10.3390/ijms25084306.
[14] M. S. Anglesio et al., “Multifocal endometriotic lesions associated with cancer are clonal and carry a high mutation burden,” J. Pathol., vol. 236, no. 2, pp. 201–209, Jun. 2015, doi: 10.1002/path.4516.
[15] M. J. Worley et al., “Molecular changes in endometriosis-associated ovarian clear cell carcinoma,” Eur. J. Cancer, vol. 51, no. 13, pp. 1831–1842, Sep. 2015, doi: 10.1016/j.ejca.2015.05.011.
[16] T. Iwabuchi, C. Yoshimoto, H. Shigetomi, and H. Kobayashi, “Oxidative Stress and Antioxidant Defense in Endometriosis and Its Malignant Transformation,” Oxid. Med. Cell. Longev., vol. 2015, p. 848595, 2015, doi: 10.1155/2015/848595.
[17] F. Chen, M. Zhu, and W. Li, “Advances in research on malignant transformation of endometriosis-associated ovarian cancer,” Front. Oncol., vol. 14, p. 1475231, Oct. 2024, doi: 10.3389/fonc.2024.1475231.
[18] L. Duska, L. Garrett, M. Henretta, J. Ferriss, L. Lee, and N. Horowitz, “When ‘never-events’ occur despite adherence to clinical guidelines: The case of venous thromboembolism in clear cell cancer of the ovary compared with other epithelial histologic subtypes,” Gynecol. Oncol., vol. 116, pp. 374–7, Nov. 2009, doi: 10.1016/j.ygyno.2009.10.069.
[19] J. Breen, K. Allen, K. Zucker, L. Godson, N. M. Orsi, and N. Ravikumar, “A comprehensive evaluation of histopathology foundation models for ovarian cancer subtype classification,” Npj Precis. Oncol., vol. 9, no. 1, pp. 1–12, Jan. 2025, doi: 10.1038/s41698-025-00799-8.
[20] S. Xia et al., “Genetic and therapeutic heterogeneity shape the baseline and longitudinal immune ecosystem of ovarian clear cell carcinoma,” J. Immunother. Cancer, vol. 12, no. 11, p. e010069, Nov. 2024, doi: 10.1136/jitc-2024-010069.
[21] P. Blustein, S. Werner, S. Sham, A. Febles, H. Katz, and J. Villella, “Right middle cerebral artery stroke secondary to ovarian clear cell carcinoma in a 35-year-old: A case report,” Case Rep. Womens Health, vol. 37, p. e00485, Feb. 2023, doi: 10.1016/j.crwh.2023.e00485.
[22] T.-A. Georgescu et al., “Glycogen-rich clear cell carcinoma of the breast with solid papillary pattern: Two cases with heterogeneous clinicopathological features,” Exp. Ther. Med., vol. 21, no. 5, p. 524, May 2021, doi: 10.3892/etm.2021.9956.
[23] “USCAP 2018 Abstracts: Gynecologic and Obstetric Pathology (1127–1316),” Mod. Pathol., vol. 31, pp. 404a–4469, Mar. 2018, doi: 10.1038/modpathol.2018.11.
[24] R. I. Cameron and W. G. McCluggage, “Extensive psammomatous calcification of the uterus and cervix associated with a uterine serous carcinoma,” J. Clin. Pathol., vol. 57, no. 8, pp. 888–890, Aug. 2004, doi: 10.1136/jcp.2004.017004.
[25] I. Romero, S. Leskelä, B. P. Mies, A. P. Velasco, and J. Palacios, “Morphological and molecular heterogeneity of epithelial ovarian cancer: Therapeutic implications,” Eur. J. Cancer Suppl., vol. 15, pp. 1–15, Aug. 2020, doi: 10.1016/j.ejcsup.2020.02.001.
[26] Z.-X. Hu et al., “Endometrial clear cell carcinoma invading the right oviduct with a cooccurring ipsilateral oviduct adenomatoid tumor: A case report,” World J. Clin. Oncol., vol. 11, no. 12, pp. 1076–1083, Dec. 2020, doi: 10.5306/wjco.v11.i12.1076.
[27] J. X. Ji, Y. K. Wang, D. R. Cochrane, and D. G. Huntsman, “Clear cell carcinomas of the ovary and kidney: clarity through genomics,” J. Pathol., vol. 244, no. 5, pp. 550–564, 2018, doi: 10.1002/path.5037.
[28] J. Selves, E. Long-Mira, M.-C. Mathieu, P. Rochaix, and M. Ilié, “Immunohistochemistry for Diagnosis of Metastatic Carcinomas of Unknown Primary Site,” Cancers, vol. 10, no. 4, p. 108, Apr. 2018, doi: 10.3390/cancers10040108.
[29] B. Ju et al., “Morphologic and Immunohistochemical Study of Clear Cell Carcinoma of the Uterine Endometrium and Cervix in Comparison to Ovarian Clear Cell Carcinoma,” Int. J. Gynecol. Pathol., vol. 37, no. 4, p. 388, Jul. 2018, doi: 10.1097/PGP.0000000000000430.
[30] O. Fadare, S. James, M. M. Desouki, and D. Khabele, “Coordinate patterns of estrogen receptor, progesterone receptor, and Wilms tumor 1 expression in the histopathologic distinction of ovarian from endometrial serous adenocarcinomas,” Ann. Diagn. Pathol., vol. 17, no. 5, pp. 430–433, Oct. 2013, doi: 10.1016/j.anndiagpath.2013.04.011.
[31] Y. Amano et al., “Metabolic alterations caused by HNF1β expression in ovarian clear cell carcinoma contribute to cell survival,” Oncotarget, vol. 6, no. 28, pp. 26002–26017, Jul. 2015, doi: 10.18632/oncotarget.4692.
[32] R. Vang, I.-M. Shih, and R. J. Kurman, “OVARIAN LOW-GRADE AND HIGH-GRADE SEROUS CARCINOMA: Pathogenesis, Clinicopathologic and Molecular Biologic Features, and Diagnostic Problems,” Adv. Anat. Pathol., vol. 16, no. 5, pp. 267–282, Sep. 2009, doi: 10.1097/PAP.0b013e3181b4fffa.
[33] A. Mota, S. S Oltra, and G. Moreno-Bueno, “Insight updating of the molecular hallmarks in ovarian carcinoma,” EJC Suppl., vol. 15, pp. 16–26, Aug. 2020, doi: 10.1016/j.ejcsup.2019.11.001.
[34] A. Bakr et al., “ARID1A regulates DNA repair through chromatin organization and its deficiency triggers DNA damage-mediated anti-tumor immune response,” Nucleic Acids Res., vol. 52, no. 10, pp. 5698–5719, Jun. 2024, doi: 10.1093/nar/gkae233.
[35] S. Blümli et al., “Acute depletion of the ARID1A subunit of SWI/SNF complexes reveals distinct pathways for activation and repression of transcription,” Cell Rep., vol. 37, no. 5, p. 109943, Nov. 2021, doi: 10.1016/j.celrep.2021.109943.
[36] R. L. Chandler et al., “Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling,” Nat. Commun., vol. 6, p. 6118, Jan. 2015, doi: 10.1038/ncomms7118.
[37] T. S. Driva, C. Schatz, and J. Haybaeck, “Endometriosis-Associated Ovarian Carcinomas: How PI3K/AKT/mTOR Pathway Affects Their Pathogenesis,” Biomolecules, vol. 13, no. 8, p. 1253, Aug. 2023, doi: 10.3390/biom13081253.
[38] K. Oda, J. Hamanishi, K. Matsuo, and K. Hasegawa, “Genomics to immunotherapy of ovarian clear cell carcinoma: Unique opportunities for management,” Gynecol. Oncol., vol. 151, no. 2, pp. 381–389, Nov. 2018, doi: 10.1016/j.ygyno.2018.09.001.
[39] R. Vang, D. A. Levine, R. A. Soslow, C. Zaloudek, I.-M. Shih, and R. J. Kurman, “Molecular Alterations of TP53 are a Defining Feature of Ovarian High-Grade Serous Carcinoma: A Rereview of Cases Lacking TP53 Mutations in The Cancer Genome Atlas Ovarian Study,” Int. J. Gynecol. Pathol. Off. J. Int. Soc. Gynecol. Pathol., vol. 35, no. 1, pp. 48–55, Jan. 2016, doi: 10.1097/PGP.0000000000000207.
[40] A. Morikawa et al., “Somatic copy number alterations have prognostic impact in patients with ovarian clear cell carcinoma,” Oncol. Rep., vol. 40, no. 1, pp. 309–318, Jul. 2018, doi: 10.3892/or.2018.6419.
[41] X. H. Yeo et al., “The effect of inhibition of receptor tyrosine kinase AXL on DNA damage response in ovarian cancer,” Commun. Biol., vol. 6, no. 1, pp. 1–15, Jun. 2023, doi: 10.1038/s42003-023-05045-0.
[42] T. Z. Tan et al., “Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer,” EMBO Mol. Med., vol. 5, no. 7, pp. 1051–1066, Jul. 2013, doi: 10.1002/emmm.201201823.
[43] T. Z. Tan et al., “Analysis of gene expression signatures identifies prognostic and functionally distinct ovarian clear cell carcinoma subtypes,” eBioMedicine, vol. 50, pp. 203–210, Dec. 2019, doi: 10.1016/j.ebiom.2019.11.017.
[44] K. Bixel et al., “Targeting STAT3 by HO3867 induces apoptosis in ovarian clear cell carcinoma,” Int. J. Cancer, vol. 141, no. 9, pp. 1856–1866, 2017, doi: 10.1002/ijc.30847.
[45] S. Abelson, Y. Shamai, L. Berger, R. Shouval, K. Skorecki, and M. Tzukerman, “Intratumoral Heterogeneity in the Self-Renewal and Tumorigenic Differentiation of Ovarian Cancer,” STEM CELLS, vol. 30, no. 3, pp. 415–424, 2012, doi: 10.1002/stem.1029.
[46] S. Abelson, Y. Shamai, L. Berger, K. Skorecki, and M. Tzukerman, “Niche-Dependent Gene Expression Profile of Intratumoral Heterogeneous Ovarian Cancer Stem Cell Populations,” PLOS ONE, vol. 8, no. 12, p. e83651, Dec. 2013, doi: 10.1371/journal.pone.0083651.
[47] G. R. Bhat et al., “Cancer cell plasticity: from cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance,” Cancer Metastasis Rev., vol. 43, no. 1, pp. 197–228, 2024, doi: 10.1007/s10555-024-10172-z.
[48] A. Rao, D. Barkley, G. S. França, and I. Yanai, “Exploring tissue architecture using spatial transcriptomics,” Nature, vol. 596, no. 7871, Art. no. 7871, Aug. 2021, doi: 10.1038/s41586-021-03634-9.
[49] Y. Mori et al., “Targeting PDGF signaling of cancer-associated fibroblasts blocks feedback activation of HIF-1α and tumor progression of clear cell ovarian cancer,” Cell Rep. Med., vol. 5, no. 5, p. 101532, May 2024, doi: 10.1016/j.xcrm.2024.101532.
[50] Y.-T. Tai et al., “Spatial profiling of ovarian clear cell carcinoma reveals immune-hot features,” Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc, p. 100630, Oct. 2024, doi: 10.1016/j.modpat.2024.100630.
[51] J. N. Wu and C. W. M. Roberts, “ARID1A mutations in cancer: another epigenetic tumor suppressor?,” Cancer Discov., vol. 3, no. 1, pp. 35–43, Jan. 2013, doi: 10.1158/2159-8290.CD-12-0361.
[52] P.-P. Liu et al., “Abnormal chromatin remodeling caused by ARID1A deletion leads to malformation of the dentate gyrus,” Cell Death Differ., vol. 30, Aug. 2023, doi: 10.1038/s41418-023-01199-w.
[53] T.-T. Huang et al., “Targeting the PI3K/mTOR Pathway Augments CHK1 Inhibitor-Induced Replication Stress and Antitumor Activity in High-Grade Serous Ovarian Cancer,” Cancer Res., vol. 80, no. 23, pp. 5380–5392, Dec. 2020, doi: 10.1158/0008-5472.CAN-20-1439.
[54] Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for transcriptomics,” Nat. Rev. Genet., vol. 10, no. 1, pp. 57–63, Jan. 2009, doi: 10.1038/nrg2484.
[55] Z. Liu and S.-Y. Song, “Genomic and Transcriptomic Approaches Advance the Diagnosis and Prognosis of Neurodegenerative Diseases,” Genes, vol. 16, no. 2, p. 135, Jan. 2025, doi: 10.3390/genes16020135.
[56] K. R. Kukurba and S. B. Montgomery, “RNA Sequencing and Analysis,” Cold Spring Harb. Protoc., vol. 2015, no. 11, pp. 951–969, Apr. 2015, doi: 10.1101/pdb.top084970.
[57] A. Oshlack, M. D. Robinson, and M. D. Young, “From RNA-seq reads to differential expression results,” Genome Biol., vol. 11, no. 12, p. 220, Dec. 2010, doi: 10.1186/gb-2010-11-12-220.
[58] M. Dong et al., “SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references,” Brief. Bioinform., vol. 22, no. 1, pp. 416–427, Jan. 2020, doi: 10.1093/bib/bbz166.
[59] M. S. Ke, B. Elshenawy, H. Sheldon, A. Arora, and F. Buffa, “Single cell RNA‐sequencing: A powerful yet still challenging technology to study cellular heterogeneity,” BioEssays, vol. 44, p. 2200084, Sep. 2022, doi: 10.1002/bies.202200084.
[60] X. Wang, Y. He, Q. Zhang, X. Ren, and Z. Zhang, “Direct Comparative Analyses of 10X Genomics Chromium and Smart-seq2,” Genomics Proteomics Bioinformatics, vol. 19, no. 2, pp. 253–266, Apr. 2021, doi: 10.1016/j.gpb.2020.02.005.
[61] J. Lim, C. Park, M. Kim, H. Kim, J. Kim, and D.-S. Lee, “Advances in single-cell omics and multiomics for high-resolution molecular profiling,” Exp. Mol. Med., vol. 56, no. 3, pp. 515–526, Mar. 2024, doi: 10.1038/s12276-024-01186-2.
[62] G. Sun et al., “Single-cell RNA sequencing in cancer: Applications, advances, and emerging challenges,” Mol. Ther. Oncolytics, vol. 21, pp. 183–206, May 2021, doi: 10.1016/j.omto.2021.04.001.
[63] S. K. Longo, M. G. Guo, A. L. Ji, and P. A. Khavari, “Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics,” Nat. Rev. Genet., vol. 22, no. 10, pp. 627–644, Oct. 2021, doi: 10.1038/s41576-021-00370-8.
[64] R. Zhou, G. Yang, Y. Zhang, and Y. Wang, “Spatial transcriptomics in development and disease,” Mol. Biomed., vol. 4, p. 32, Oct. 2023, doi: 10.1186/s43556-023-00144-0.
[65] P. L. Ståhl et al., “Visualization and analysis of gene expression in tissue sections by spatial transcriptomics,” Science, vol. 353, no. 6294, pp. 78–82, Jul. 2016, doi: 10.1126/science.aaf2403.
[66] X. Li and C.-Y. Wang, “From bulk, single-cell to spatial RNA sequencing,” Int. J. Oral Sci., vol. 13, p. 36, Nov. 2021, doi: 10.1038/s41368-021-00146-0.
[67] L. Huo, J. Jiao Li, L. Chen, Z. Yu, G. Hutvagner, and J. Li, “Single-cell multi-omics sequencing: application trends, COVID-19, data analysis issues and prospects,” Brief. Bioinform., p. bbab229, Jun. 2021, doi: 10.1093/bib/bbab229.
[68] M. Cheng et al., “Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges,” J. Genet. Genomics, vol. 50, no. 9, pp. 625–640, Sep. 2023, doi: 10.1016/j.jgg.2023.03.011.
[69] C.-S. Cho et al., “Microscopic examination of spatial transcriptome using Seq-Scope,” Cell, vol. 184, no. 13, pp. 3559-3572.e22, Jun. 2021, doi: 10.1016/j.cell.2021.05.010.
[70] W. Shi et al., “Next-Generation Sequencing-Based Spatial Transcriptomics: A Perspective from Barcoding Chemistry,” JACS Au, vol. 4, no. 5, pp. 1723–1743, May 2024, doi: 10.1021/jacsau.4c00118.
[71] J. Park et al., “Spatial omics technologies at multimodal and single cell/subcellular level,” Genome Biol., vol. 23, p. 256, Dec. 2022, doi: 10.1186/s13059-022-02824-6.
[72] J. R. Moffitt and X. Zhuang, “RNA Imaging with Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH),” Methods Enzymol., vol. 572, pp. 1–49, 2016, doi: 10.1016/bs.mie.2016.03.020.
[73] S. G. Rodriques et al., “Slide-seq: A Scalable Technology for Measuring Genome-Wide Expression at High Spatial Resolution,” Science, vol. 363, no. 6434, pp. 1463–1467, Mar. 2019, doi: 10.1126/science.aaw1219.
[74] S. Poovathingal et al., “Nova-ST: Nano-patterned ultra-dense platform for spatial transcriptomics,” Cell Rep. Methods, vol. 4, no. 8, p. 100831, Aug. 2024, doi: 10.1016/j.crmeth.2024.100831.
[75] S. Huang et al., “Spatial transcriptomics: a new frontier in cancer research,” Clin. Cancer Bull., vol. 3, no. 1, p. 13, Jun. 2024, doi: 10.1007/s44272-024-00018-8.
[76] L. Zhang et al., “Clinical and translational values of spatial transcriptomics,” Signal Transduct. Target. Ther., vol. 7, no. 1, pp. 1–17, Apr. 2022, doi: 10.1038/s41392-022-00960-w.
[77] D. Haviv et al., “The covariance environment defines cellular niches for spatial inference,” Nat. Biotechnol., vol. 43, no. 2, pp. 269–280, Feb. 2025, doi: 10.1038/s41587-024-02193-4.
[78] M. G. Jones et al., “Spatiotemporal lineage tracing reveals the dynamic spatial architecture of tumor growth and metastasis,” BioRxiv Prepr. Serv. Biol., p. 2024.10.21.619529, Oct. 2024, doi: 10.1101/2024.10.21.619529.
[79] Q. Liang, L. S. Soto, C. Haymaker, and K. Chen, “Interpretable Spatial Gradient Analysis for Spatial Transcriptomics Data,” bioRxiv, p. 2024.03.19.585725, Mar. 2024, doi: 10.1101/2024.03.19.585725.
[80] Q. Li, X. Zhang, and R. Ke, “Spatial Transcriptomics for Tumor Heterogeneity Analysis,” Front. Genet., vol. 13, Jul. 2022, doi: 10.3389/fgene.2022.906158.
[81] J. Jiang et al., “METI: deep profiling of tumor ecosystems by integrating cell morphology and spatial transcriptomics,” Nat. Commun., vol. 15, no. 1, p. 7312, Aug. 2024, doi: 10.1038/s41467-024-51708-9.
[82] L. Han et al., “Single-cell spatial transcriptomic atlas of the whole mouse brain,” Neuron, vol. 0, no. 0, Mar. 2025, doi: 10.1016/j.neuron.2025.02.015.
[83] L. Zhang et al., “Analysis of tumor-infiltrating exhausted T cells highlights IL-6 and PD1 blockade as a combined immunotherapy strategy for non-small cell lung cancer,” Front. Immunol., vol. 16, p. 1486329, 2025, doi: 10.3389/fimmu.2025.1486329.
[84] X. Wang et al., “Spatially resolved atlas of breast cancer uncovers intercellular machinery of venular niche governing lymphocyte extravasation,” Nat. Commun., vol. 16, no. 1, p. 3348, Apr. 2025, doi: 10.1038/s41467-025-58511-0.
[85] N. Müller-Bötticher, S. Sahay, R. Eils, and N. Ishaque, “SpatialLeiden: spatially aware Leiden clustering,” Genome Biol., vol. 26, no. 1, p. 24, Feb. 2025, doi: 10.1186/s13059-025-03489-7.
[86] E. Zhao et al., “Spatial transcriptomics at subspot resolution with BayesSpace,” Nat. Biotechnol., vol. 39, no. 11, pp. 1375–1384, Nov. 2021, doi: 10.1038/s41587-021-00935-2.
[87] J. Hu et al., “SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network,” Nat. Methods, vol. 18, no. 11, pp. 1342–1351, Nov. 2021, doi: 10.1038/s41592-021-01255-8.
[88] D. Pham et al., “Robust mapping of spatiotemporal trajectories and cell–cell interactions in healthy and diseased tissues,” Nat. Commun., vol. 14, no. 1, p. 7739, Nov. 2023, doi: 10.1038/s41467-023-43120-6.
[89] D. M. Cable et al., “Robust decomposition of cell type mixtures in spatial transcriptomics,” Nat. Biotechnol., vol. 40, no. 4, pp. 517–526, Apr. 2022, doi: 10.1038/s41587-021-00830-w.
[90] M. Elosua-Bayes, P. Nieto, E. Mereu, I. Gut, and H. Heyn, “SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes,” Nucleic Acids Res., vol. 49, no. 9, p. e50, May 2021, doi: 10.1093/nar/gkab043.
[91] V. Kleshchevnikov et al., “Cell2location maps fine-grained cell types in spatial transcriptomics,” Nat. Biotechnol., vol. 40, no. 5, pp. 661–671, May 2022, doi: 10.1038/s41587-021-01139-4.
[92] T. Biancalani et al., “Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram,” Nat. Methods, vol. 18, no. 11, pp. 1352–1362, Nov. 2021, doi: 10.1038/s41592-021-01264-7.
[93] G. Palla et al., “Squidpy: a scalable framework for spatial omics analysis,” Nat. Methods, vol. 19, no. 2, pp. 171–178, Feb. 2022, doi: 10.1038/s41592-021-01358-2.
[94] R. Dries et al., “Giotto: a toolbox for integrative analysis and visualization of spatial expression data,” Genome Biol., vol. 22, no. 1, p. 78, Mar. 2021, doi: 10.1186/s13059-021-02286-2.
[95] S. Jin et al., “Inference and analysis of cell-cell communication using CellChat,” Nat. Commun., vol. 12, no. 1, p. 1088, Feb. 2021, doi: 10.1038/s41467-021-21246-9.
[96] Z. Cang and Q. Nie, “Inferring spatial and signaling relationships between cells from single cell transcriptomic data,” Nat. Commun., vol. 11, no. 1, p. 2084, Apr. 2020, doi: 10.1038/s41467-020-15968-5.
[97] H. Ren, B. L. Walker, Z. Cang, and Q. Nie, “Identifying multicellular spatiotemporal organization of cells with SpaceFlow,” Nat. Commun., vol. 13, no. 1, p. 4076, Jul. 2022, doi: 10.1038/s41467-022-31739-w.
[98] P. Weiler, M. Lange, M. Klein, D. Pe’er, and F. Theis, “CellRank 2: unified fate mapping in multiview single-cell data,” Nat. Methods, vol. 21, no. 7, pp. 1196–1205, Jul. 2024, doi: 10.1038/s41592-024-02303-9.
[99] Y.-C. Fu, S.-B. Liang, M. Luo, and X.-P. Wang, “Intratumoral heterogeneity and drug resistance in cancer,” Cancer Cell Int., vol. 25, no. 1, p. 103, Mar. 2025, doi: 10.1186/s12935-025-03734-w.
[100] N. R. Parker et al., “Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma,” Sci. Rep., vol. 6, p. 22477, Mar. 2016, doi: 10.1038/srep22477.
[101] A. Marusyk, M. Janiszewska, and K. Polyak, “Intratumor heterogeneity: the Rosetta stone of therapy resistance,” Cancer Cell, vol. 37, no. 4, pp. 471–484, Apr. 2020, doi: 10.1016/j.ccell.2020.03.007.
[102] M. Sibai et al., “The spatial landscape of cancer hallmarks reveals patterns of tumor ecological dynamics and drug sensitivity,” Cell Rep., vol. 44, no. 2, p. 115229, Feb. 2025, doi: 10.1016/j.celrep.2024.115229.
[103] A. C. Greenwald et al., “Integrative spatial analysis reveals a multi-layered organization of glioblastoma,” Cell, vol. 187, no. 10, pp. 2485-2501.e26, May 2024, doi: 10.1016/j.cell.2024.03.029.
[104] Y. Takano et al., “Spatially resolved gene expression profiling of tumor microenvironment reveals key steps of lung adenocarcinoma development,” Nat. Commun., vol. 15, no. 1, p. 10637, Dec. 2024, doi: 10.1038/s41467-024-54671-7.
[105] B. Wu, B. Zhang, B. Li, H. Wu, and M. Jiang, “Cold and hot tumors: from molecular mechanisms to targeted therapy,” Signal Transduct. Target. Ther., vol. 9, no. 1, pp. 1–65, Oct. 2024, doi: 10.1038/s41392-024-01979-x.
[106] Z. Yuan et al., “Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments,” Mol. Cancer, vol. 22, p. 48, Mar. 2023, doi: 10.1186/s12943-023-01744-8.
[107] S. Jing, H. Wang, P. Lin, J. Yuan, Z. Tang, and H. Li, “Quantifying and interpreting biologically meaningful spatial signatures within tumor microenvironments,” NPJ Precis. Oncol., vol. 9, p. 68, Mar. 2025, doi: 10.1038/s41698-025-00857-1.
[108] J. J. D. Moffet et al., “Spatial architecture of high-grade glioma reveals tumor heterogeneity within distinct domains,” Neuro-Oncol. Adv., vol. 5, no. 1, p. vdad142, Nov. 2023, doi: 10.1093/noajnl/vdad142.
[109] C. Chen et al., “Single‐cell and spatial transcriptomics reveal POSTN + cancer‐associated fibroblasts correlated with immune suppression and tumour progression in non‐small cell lung cancer,” Clin. Transl. Med., vol. 13, no. 12, p. e1515, Dec. 2023, doi: 10.1002/ctm2.1515.
[110] X. Chu, Y. Tian, and C. Lv, “Decoding the spatiotemporal heterogeneity of tumor-associated macrophages,” Mol. Cancer, vol. 23, no. 1, p. 150, Jul. 2024, doi: 10.1186/s12943-024-02064-1.
[111] Y. Jin et al., “Advances in spatial transcriptomics and its applications in cancer research,” Mol. Cancer, vol. 23, p. 129, Jun. 2024, doi: 10.1186/s12943-024-02040-9.
[112] Y. Liu et al., “Conserved spatial subtypes and cellular neighborhoods of cancer-associated fibroblasts revealed by single-cell spatial multi-omics,” Cancer Cell, vol. 43, no. 5, pp. 905-924.e6, May 2025, doi: 10.1016/j.ccell.2025.03.004.
[113] Y. Wang et al., “Spatial transcriptomics: Technologies, applications and experimental considerations,” Genomics, vol. 115, no. 5, p. 110671, Sep. 2023, doi: 10.1016/j.ygeno.2023.110671.
[114] X. Liu et al., “Spatial multi-omics: deciphering technological landscape of integration of multi-omics and its applications,” J. Hematol. Oncol.J Hematol Oncol, vol. 17, no. 1, p. 72, Aug. 2024, doi: 10.1186/s13045-024-01596-9.
[115] C. Y. Yeh et al., “Mapping spatial organization and genetic cell-state regulators to target immune evasion in ovarian cancer,” Nat. Immunol., pp. 1–16, Aug. 2024, doi: 10.1038/s41590-024-01943-5.
[116] E. Denisenko et al., “Spatial transcriptomics reveals discrete tumour microenvironments and autocrine loops within ovarian cancer subclones,” Nat. Commun., vol. 15, no. 1, p. 2860, Apr. 2024, doi: 10.1038/s41467-024-47271-y.
[117] V.-G. I et al., “Ovarian cancer mutational processes drive site-specific immune evasion,” Nature, vol. 612, no. 7941, Dec. 2022, doi: 10.1038/s41586-022-05496-1.
[118] S. Hänzelmann, R. Castelo, and J. Guinney, “GSVA: gene set variation analysis for microarray and RNA-Seq data,” BMC Bioinformatics, vol. 14, no. 1, p. 7, Jan. 2013, doi: 10.1186/1471-2105-14-7.
[119] C. J, S. Gk, and C. Y, “Unraveling the timeline of gene expression: A pseudotemporal trajectory analysis of single-cell RNA sequencing data,” F1000Research, vol. 12, Nov. 2023, doi: 10.12688/f1000research.134078.2.
[120] H. Y et al., “Integrated analysis of multimodal single-cell data,” Cell, vol. 184, no. 13, Jun. 2021, doi: 10.1016/j.cell.2021.04.048.
[121] Y. Hao et al., “Dictionary learning for integrative, multimodal and scalable single-cell analysis,” Nat. Biotechnol., vol. 42, no. 2, pp. 293–304, Feb. 2024, doi: 10.1038/s41587-023-01767-y.
[122] T. Tz et al., “Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients,” EMBO Mol. Med., vol. 6, no. 10, Oct. 2014, doi: 10.15252/emmm.201404208.
[123] S. S. Pinho, I. Alves, J. Gaifem, and G. A. Rabinovich, “Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and infection,” Cell. Mol. Immunol., vol. 20, no. 10, pp. 1101–1113, Oct. 2023, doi: 10.1038/s41423-023-01074-1.
[124] S. Kim et al., “Correlation of fragmented pattern of tumor mass captured by artificial intelligence (AI)-powered whole-slide image (WSI) analysis with biased fibroblast expansion over tumor growth and distinct mutational signatures.,” J. Clin. Oncol., vol. 41, no. 16_suppl, pp. e14657–e14657, Jun. 2023, doi: 10.1200/JCO.2023.41.16_suppl.e14657.
[125] S. Turajlic et al., “Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal,” Cell, vol. 173, no. 3, pp. 595-610.e11, Apr. 2018, doi: 10.1016/j.cell.2018.03.043.
[126] S. Turajlic et al., “Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal,” Cell, vol. 173, no. 3, pp. 581-594.e12, Apr. 2018, doi: 10.1016/j.cell.2018.03.057.
[127] Y. Zhao et al., “Selection of metastasis competent subclones in the tumour interior,” Nat. Ecol. Evol., vol. 5, no. 7, pp. 1033–1045, Jul. 2021, doi: 10.1038/s41559-021-01456-6.
[128] E. N. Arner and J. C. Rathmell, “Metabolic programming and immune suppression in the tumor microenvironment,” Cancer Cell, vol. 41, no. 3, pp. 421–433, Mar. 2023, doi: 10.1016/j.ccell.2023.01.009.
[129] X. Sun and Q. Yu, “Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment,” Acta Pharmacol. Sin., vol. 36, no. 10, pp. 1219–1227, Oct. 2015, doi: 10.1038/aps.2015.92.
[130] M. A. Hussein, K. Valinezhad, E. Adel, and G. Munirathinam, “MALAT-1 Is a Key Regulator of Epithelial-Mesenchymal Transition in Cancer: A Potential Therapeutic Target for Metastasis,” Cancers, vol. 16, no. 1, p. 234, Jan. 2024, doi: 10.3390/cancers16010234.
[131] Y.-J. Hsiao et al., “SPANXA suppresses EMT by inhibiting c-JUN/SNAI2 signaling in lung adenocarcinoma,” Oncotarget, vol. 7, no. 28, pp. 44417–44429, Jul. 2016, doi: 10.18632/oncotarget.10088.
[132] N. Sullivan et al., “Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells,” Oncogene, vol. 28, no. 33, pp. 2940–2947, Aug. 2009, doi: 10.1038/onc.2009.180.
[133] G. Y, B. I, W. H, Z. W, R. Jm, and Z. Xh, “Metastasis Organotropism: Redefining the Congenial Soil,” Dev. Cell, vol. 49, no. 3, May 2019, doi: 10.1016/j.devcel.2019.04.012.
[134] M. E et al., “The Significance of SPP1 in Lung Cancers and Its Impact as a Marker for Protumor Tumor-Associated Macrophages,” Cancers, vol. 15, no. 8, Apr. 2023, doi: 10.3390/cancers15082250.
[135] C. He et al., “Single-Cell Transcriptomic Analysis Revealed a Critical Role of SPP1/CD44-Mediated Crosstalk Between Macrophages and Cancer Cells in Glioma,” Front. Cell Dev. Biol., vol. 9, p. 779319, 2021, doi: 10.3389/fcell.2021.779319.
[136] S. Viswanadhapalli, K. V. Dileep, K. Y. J. Zhang, H. B. Nair, and R. K. Vadlamudi, “Targeting LIF/LIFR signaling in cancer,” Genes Dis., vol. 9, no. 4, pp. 973–980, Jul. 2022, doi: 10.1016/j.gendis.2021.04.003.
[137] K. E. de Visser and J. A. Joyce, “The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth,” Cancer Cell, vol. 41, no. 3, pp. 374–403, Mar. 2023, doi: 10.1016/j.ccell.2023.02.016.
[138] Y. Ren et al., “Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas,” Nat. Commun., vol. 14, no. 1, p. 1028, Feb. 2023, doi: 10.1038/s41467-023-36707-6.
[139] C. Scheel et al., “Paracrine and Autocrine Signals Induce and Maintain Mesenchymal and Stem Cell States in the Breast,” Cell, vol. 145, no. 6, pp. 926–940, Jun. 2011, doi: 10.1016/j.cell.2011.04.029.
[140] C. E. Blanchard et al., “Signaling dynamics in coexisting monoclonal cell subpopulations unveil mechanisms of resistance to anti-cancer compounds,” Cell Commun. Signal. CCS, vol. 22, p. 377, Jul. 2024, doi: 10.1186/s12964-024-01742-3.
[141] S. Naffar-Abu Amara et al., “Transient commensal clonal interactions can drive tumor metastasis,” Nat. Commun., vol. 11, no. 1, p. 5799, Nov. 2020, doi: 10.1038/s41467-020-19584-1.
[142] L.-K. Chan, Y.-M. Tsui, D. W.-H. Ho, and I. O.-L. Ng, “Cellular heterogeneity and plasticity in liver cancer,” Semin. Cancer Biol., vol. 82, pp. 134–149, Jul. 2022, doi: 10.1016/j.semcancer.2021.02.015.
[143] M. Greaves and C. C. Maley, “CLONAL EVOLUTION IN CANCER,” Nature, vol. 481, no. 7381, pp. 306–313, Jan. 2012, doi: 10.1038/nature10762.
[144] Z. Hu, Z. Li, Z. Ma, and C. Curtis, “Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases,” Nat. Genet., vol. 52, no. 7, p. 701, May 2020, doi: 10.1038/s41588-020-0628-z.
[145] K. Sprouffske et al., “Genetic heterogeneity and clonal evolution during metastasis in breast cancer patient-derived tumor xenograft models,” Comput. Struct. Biotechnol. J., vol. 18, pp. 323–331, Jan. 2020, doi: 10.1016/j.csbj.2020.01.008.
[146] M. R. Zanotelli, J. Zhang, and C. A. Reinhart-King, “Mechanoresponsive metabolism in cancer cell migration and metastasis,” Cell Metab., vol. 33, no. 7, pp. 1307–1321, Jul. 2021, doi: 10.1016/j.cmet.2021.04.002.
[147] Z. Xiao and E. Puré, “The fibroinflammatory response in cancer,” Nat. Rev. Cancer, vol. 25, no. 6, pp. 399–425, Jun. 2025, doi: 10.1038/s41568-025-00798-8.
[148] Z. Wang et al., “Metastasis-associated fibroblasts: an emerging target for metastatic cancer,” Biomark. Res., vol. 9, no. 1, p. 47, Jun. 2021, doi: 10.1186/s40364-021-00305-9.
[149] Z. Gong et al., “Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment,” Immunity, vol. 55, no. 8, pp. 1483-1500.e9, Aug. 2022, doi: 10.1016/j.immuni.2022.07.001.
[150] G. D. Sepich-Poore, C. Guccione, L. Laplane, T. Pradeu, K. Curtius, and R. Knight, “Cancer’s second genome: Microbial cancer diagnostics and redefining clonal evolution as a multispecies process,” BioEssays News Rev. Mol. Cell. Dev. Biol., vol. 44, no. 5, p. e2100252, May 2022, doi: 10.1002/bies.202100252.
[151] S. Zhang et al., “Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets,” Signal Transduct. Target. Ther., vol. 9, no. 1, pp. 1–36, Jun. 2024, doi: 10.1038/s41392-024-01848-7.
[152] J. Oh et al., “Spatial analysis identifies DC niches as predictors of pembrolizumab therapy in head and neck squamous cell cancer,” Cell Rep. Med., vol. 6, no. 5, p. 102100, May 2025, doi: 10.1016/j.xcrm.2025.102100.
[153] E. R. Sommer, G. C. Napoli, C. H. Chau, D. K. Price, and W. D. Figg, “Targeting the metastatic niche: Single-cell lineage tracing in prime time,” iScience, vol. 26, no. 3, p. 106174, Feb. 2023, doi: 10.1016/j.isci.2023.106174.
[154] Y. Qu, S. Li, H. Luo, J. Li, T. Wang, and X. Han, “The crucial role of SPP1 in osteoporosis, osteoarthritis, and cancer,” Pharm. Sci. Adv., vol. 3, p. 100074, Dec. 2025, doi: 10.1016/j.pscia.2025.100074.
[155] W. Gao et al., “SPP1 is a prognostic related biomarker and correlated with tumor-infiltrating immune cells in ovarian cancer,” BMC Cancer, vol. 22, no. 1, p. 1367, Dec. 2022, doi: 10.1186/s12885-022-10485-8.
[156] R. Mora Barthelmess, B. Stijlemans, and J. A. Van Ginderachter, “Hallmarks of Cancer Affected by the MIF Cytokine Family,” Cancers, vol. 15, no. 2, p. 395, Jan. 2023, doi: 10.3390/cancers15020395.
[157] H. Mahaki et al., “Targeting VEGF signaling for tumor microenvironment remodeling and metastasis inhibition: Therapeutic strategies and insights,” Biomed. Pharmacother., vol. 186, p. 118023, May 2025, doi: 10.1016/j.biopha.2025.118023.
[158] J. A. Siddiqui et al., “Pathophysiological role of Growth Differentiation factor (GDF15) in Obesity, Cancer, and Cachexia,” Cytokine Growth Factor Rev., vol. 64, pp. 71–83, Apr. 2022, doi: 10.1016/j.cytogfr.2021.11.002.
[159] M. Xu, Y. Wang, R. Xia, Y. Wei, and X. Wei, “Role of the CCL2‐CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting,” Cell Prolif., vol. 54, no. 10, p. e13115, Aug. 2021, doi: 10.1111/cpr.13115.
[160] A. B. Baba et al., “Transforming Growth Factor-Beta (TGF-β) Signaling in Cancer-A Betrayal Within,” Front. Pharmacol., vol. 13, Feb. 2022, doi: 10.3389/fphar.2022.791272.
[161] P. Pandey, F. Khan, T. K. Upadhyay, M. Seungjoon, M. N. Park, and B. Kim, “New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies,” Biomed. Pharmacother., vol. 161, p. 114491, May 2023, doi: 10.1016/j.biopha.2023.114491.
[162] Q. Xu et al., “Multiple cancer cell types release LIF and Gal3 to hijack neural signals,” Cell Res., vol. 34, no. 5, pp. 345–354, May 2024, doi: 10.1038/s41422-024-00946-z.
[163] T. Zhan, N. Rindtorff, and M. Boutros, “Wnt signaling in cancer,” Oncogene, vol. 36, no. 11, pp. 1461–1473, Mar. 2017, doi: 10.1038/onc.2016.304.
[164] P. Yu and Y.-X. Fu, “Targeting tumors with LIGHT to generate metastasis-clearing immunity,” Cytokine Growth Factor Rev., vol. 19, no. 3–4, pp. 285–294, 2008, doi: 10.1016/j.cytogfr.2008.04.004.
[165] T. Hein, P. H. Krammer, and H. Weyd, “Molecular analysis of Annexin expression in cancer,” BMC Cancer, vol. 22, no. 1, p. 994, Sep. 2022, doi: 10.1186/s12885-022-10075-8.
[166] S. Purohit et al., “AXL/GAS6 signaling governs differentiation of tumor-associated macrophages in breast cancer,” Exp. Cell Res., vol. 444, no. 1, p. 114324, Jan. 2025, doi: 10.1016/j.yexcr.2024.114324.
[167] L. Kruk, A. Braun, E. Cosset, T. Gudermann, and E. Mammadova-Bach, “Galectin functions in cancer-associated inflammation and thrombosis,” Front. Cardiovasc. Med., vol. 10, p. 1052959, Feb. 2023, doi: 10.3389/fcvm.2023.1052959.
[168] H. Huang, A. Bhat, G. Woodnutt, and R. Lappe, “Targeting the ANGPT–TIE2 pathway in malignancy,” Nat. Rev. Cancer, vol. 10, no. 8, pp. 575–585, Aug. 2010, doi: 10.1038/nrc2894.
[169] Q. Shang, P. Zhang, X. Lei, L. Du, and B. Qu, “Insights into CSF-1/CSF-1R signaling: the role of macrophage in radiotherapy,” Front. Immunol., vol. 16, p. 1530890, Feb. 2025, doi: 10.3389/fimmu.2025.1530890.
[170] B. Huang, X. Lang, and X. Li, “The role of IL-6/JAK2/STAT3 signaling pathway in cancers,” Front. Oncol., vol. 12, Dec. 2022, doi: 10.3389/fonc.2022.1023177.
[171] S. M. Manohar, “At the Crossroads of TNF α Signaling and Cancer,” Curr. Mol. Pharmacol., vol. 17, no. 1, p. e060923220758, 2024, doi: 10.2174/1874467217666230908111754.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99065-
dc.description.abstract背景:
晚期卵巢透明細胞癌(OCCC)具有廣泛的轉移特性及複雜的細胞異質性。推動轉移的癌細胞亞群之空間組織與克隆演化過程目前仍不清楚。
方法:
本研究使用 CosMx SMI 1K 面板,對第 IV 期 OCCC 病患的三個福馬林固定石蠟包埋(FFPE)腫瘤樣本進行單細胞空間分析,分別來自卵巢、腹膜及結腸轉移部位。此外,我們也使用來自 4 位 OCCC 病患的 6 個 Visium 樣本作為獨立驗證隊列進行佐證。
結果:
共鑑定出 25 種單細胞類型,其中包含 9 種癌細胞亞群(標記為 a–i)。其中,癌細胞 f 在所有轉移部位中均可穩定觀察到,且根據軌跡分析推測為其他亞群的祖先克隆。癌細胞 f 的間質性分數顯著高於其他亞群(P < 0.001),並表現出形成微環境的趨勢。CellChat 分析顯示癌細胞 f 存在自分泌訊號活動,分別在腹膜與結腸部位富集 SPP1 與 LIFR 訊號通路。值得注意的是,轉移腫瘤呈現克隆瓶頸效應,僅有部分癌細胞亞群維持主導性的訊號活性與微環境適應能力。此現象伴隨纖維母細胞亞型的富集,以及在侵襲前緣中細胞互動動態從癌細胞-癌細胞轉為癌細胞-纖維母細胞的訊號交流,凸顯出支持轉移適應的空間性區隔溝通程式。
結論:
空間轉錄體學揭示出具有間質特徵與自分泌訊號活性的祖先癌細胞亞群,該亞群驅動轉移進程,並與 OCCC 預後不良相關。區域特異性的細胞通訊網絡與纖維母細胞重編程為調節微環境可塑性與侵襲行為的關鍵因子。
zh_TW
dc.description.abstractBackground: Advanced ovarian clear cell carcinoma (OCCC) is characterized by extensive metastasis and complex cellular heterogeneity. The spatial organization and clonal evolution of cancer subpopulations driving metastasis remain poorly understood.
Methods: The CosMx SMI 1K panel was used to profile the cellular landscape from three FFPE tumor samples of ovarian, peritoneal, and colonic metastatic sites in stage IV OCCC. Furthermore, validation was performed using 6 Visium samples from 4 OCCC patients as anindependent cohort.
Results: A total of 25 single-cell types were identified, including 9 cancer cells (labelled a-i). Among them, the cancer f was consistently present across all metastatic sites and was inferred by trajectory analysis as the ancestral clone from which other subclones emerged. Cancer f cells exhibited a higher mesenchymal score compared to other cancer clones (P < 0.001) and showed niche-forming tendencies. CellChat analysis indicated autocrine signaling activities in cancer f cells, with SPP1 and LIFR pathways enriched in the peritoneal and colonic sites, respectively. Notably, metastatic tumors exhibited a clonal bottleneck effect, where only a subset of cancer clones maintained dominant signaling activity and niche adaptability. This was accompanied by enrichment of different fibroblast subtypes and a shift in interaction dynamics from cancer cancer to cancer-fibroblast signaling at invasion fronts, highlighting spatially compartmentalized communication programs that support metastatic adaptation.
Conclusions: Spatial transcriptomics revealed an ancestral cancer subclone with mesenchymal features and autocrine signalling that drives metastatic progression and correlates with poor survival outcomes in OCCC. Region-specific communication networks and fibroblast reprogramming were key modulators of niche plasticity and invasion.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:15:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:15:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement i
Abstract iii
Abbreviations table x
List of Figures xiii
List of Tables xvi
Chapter 1: Introduction 1
1.1 Ovarian clear cell carcinoma (OCCC) 1
1.1.1 Introduction and pathogenesis of OCCC 1
1.1.2 Histopathological and molecular features of OCCC 3
1.2. Spatial transcriptomics (ST) 6
1.2.1 Overview of transcriptomic technologies 6
1.2.2 Principles and evolution of spatial transcriptomics 8
1.2.3 Single-cell spatial transcriptomic (sc-ST) 11
1.2.4 Core computational algorithms and pipelines in spatial transcriptomics 12
Chapter 2: Literature review 18
2.1. Spatial transcriptomics in cancer study 18
2.1.1 Spatial transcriptomics reveals heterogeneity landscapes in cancer 18
2.1.2 Spatial transcriptomics in ovarian cancer and ovarian clear cell carcinoma 20
2.2. Research objectives 23
Chapter 3: Materials and Methods 24
3.1. Research framework 24
3.2. Data collection 24
3.2.1 NanoString CosMx SMI analysis 24
3.2.2 10x Genomics cytAssist Visium spatial gene expression analysis 25
3.3 Bioinformatics methods 25
3.3.1 CosMx data analysis 25
3.3.2 Visium data analysis 28
3.3.3 Statistical analysis 29
Chapter 4: Results 31
4.1 Single-cell landscape of OCCC by CosMx SMI revealed organ-specific populations 31
4.2 Cell type composition across different geospatial locations underscored the spatial heterogeneity of OCCC 32
4.3 Geospatial localization of OCCC cancer cell clones showed unique trajectory patterns 35
4.4 Cancer cell f with an intermediate EMT state was the plausible founder clone 37
4.5 Cancer f cells resided in specific neighborhood niche of the tumors 38
4.6 Microenvironmental interactions of OCCC cancer f cells across primary and metastatic sites 39
4.7 Clonal signaling heterogeneity and spatial rewiring across primary and metastatic tumor niches 40
4. 8 Spatial rewiring of fibroblast-cell interactions across tumor sites and regions 45
4.9 Spatial and functional reprogramming of cancer-stroma-immune interactions from ovary to colon reveals a progressive shift toward microenvironment 46
4.10 Spatial co-occurrence analysis supported cell-cell interaction pattern in tumor microenvironment 52
4. 11 Validation for the niche distribution of cancer cells by using Visium data 56
Chapter 5: Discussion 58
Chapter 6. Conclusion 66
Reference 122
Supplementary 133
-
dc.language.isoen-
dc.subject卵巢透明細胞癌zh_TW
dc.subject空間多重影像技術zh_TW
dc.subject單細胞空間轉錄體學zh_TW
dc.subject異質性全景圖zh_TW
dc.subjectCosMx SMIen
dc.subjectheterogeneity landscapeen
dc.subjectovarian clear cell carcinomaen
dc.subjectsingle cell spatial transcriptomicsen
dc.title卵巢明細胞癌的異質性圖譜由單細胞空間轉錄體學揭示zh_TW
dc.titleHeterogeneity Landscape of Ovarian Clear Cell Carcinoma Revealed by Single-Cell Spatial Transcriptomicsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee魏凌鴻;許家郎zh_TW
dc.contributor.oralexamcommitteeLIN-HUNG WEI;Chia-Lang Hsuen
dc.subject.keyword卵巢透明細胞癌,空間多重影像技術,單細胞空間轉錄體學,異質性全景圖,zh_TW
dc.subject.keywordovarian clear cell carcinoma,CosMx SMI,single cell spatial transcriptomics,heterogeneity landscape,en
dc.relation.page151-
dc.identifier.doi10.6342/NTU202502988-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college共同教育中心-
dc.contributor.author-dept智慧醫療與健康資訊碩士學位學程-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:智慧醫療與健康資訊碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf93.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved