Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 進修推廣部
  3. 生物科技管理碩士在職學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99062
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李財坤zh_TW
dc.contributor.advisorTsai-Kun Lien
dc.contributor.author劉思媛zh_TW
dc.contributor.authorSsu-Yuan Liuen
dc.date.accessioned2025-08-21T16:14:29Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation阿里.塔馬瑟 (2021). 專訪Flatiron Health 創辦人奈特.特納,無醫療背景 他們如何創辦癌症療法公司?.
衛生福利部食品藥物管理署 (2020). 真實世界證據支持藥品研發之基本考量.
衛生福利部食品藥物管理署 (2020). 採用電子病歷資料進行臨床研究指引.
衛生福利部食品藥物管理署 (2021). 真實世界數據—關聯性與可靠性之評估考量.
衛生福利部食品藥物管理署 (2021). 真實世界證據的研究設計—務實性臨床試驗的考量重點.
衛生福利部食品藥物管理署 (2022). "使用電子健康照護資料執行藥品流行病學安全性研究指引."
衛生福利部食品藥物管理署 (2024). "真實世界數據的研究設計-登記型研究(Registry-Based Study)的考量重點."
衛生福利部國民健康署. (n.d.). "癌症登記報告." from https://www.hpa.gov.tw/Pages/List.aspx?nodeid=119.
Adamson, B., M. Waskom, A. Blarre, J. Kelly, K. Krismer, S. Nemeth, J. Gippetti, J. Ritten, K. Harrison and G. Ho (2023). "Approach to machine learning for extraction of real-world data variables from electronic health records." Frontiers in Pharmacology 14: 1180962.
Aetion (2021). Aetion doubles lifetime funding with $110M series C for real-world data platform.
Aetion. (2025). "Real-World Evidence at Every Stage – How Aetion Powers the Drug Development Lifecycle." from https://evidence-hub.aetion.com/real-world-evidence-at-every-stage-how-aetion-powers-the-drug-development-lifecycle#:~:text=...%20evidence,regulatory%20strategy%2C%20and%20commercial%20execution.
Aetion. (n.d.). "Safeguard privacy and ensure utility with AI-driven technology." from https://aetion.com/products/generate.
Allee, V. (2000). "Reconfiguring the value network." The Journal of business strategy 21(4): 36.
AmazonWebService. (2024). "How Oncoshot Built a Federated Data Platform on AWS to Accelerate Clinical Trials." from https://aws.amazon.com/tw/blogs/apn/how-oncoshot-built-a-federated-data-platform-on-aws-to-accelerate-clinical-trials/.
Arlett, P., J. Kjaer, K. Broich and E. Cooke (2022). "Real-World Evidence in EU Medicines Regulation: Enabling Use and Establishing Value." Clin Pharmacol Ther 111(1): 21–23.
AstraZeneca (2021). AstraZeneca and Oncoshot establish strategic partnership to better streamline recruitment process for cancer clinical trials.
Bai, C. and M. T. Mardini (2024). "Advances of artificial intelligence in predicting frailty using real-world data: A scoping review." Ageing Res Rev 101: 102529.
Barnett, M. L. (2006). The keystone advantage: what the new dynamics of business ecosystems mean for strategy, innovation, and sustainability, Academy of Management Briarcliff Manor, NY 10510.
Benedum, C. M., A. Sondhi, E. Fidyk, A. B. Cohen, S. Nemeth, B. Adamson, M. Estévez and S. Bozkurt (2023). "Replication of real-world evidence in oncology using electronic health record data extracted by machine learning." Cancers 15(6): 1853.
BIOTECH, F. (2025). Artificial Intelligence and Real-World Data: Speeding Up Drug Development Like Never Before.
Birnbaum, B., N. Nussbaum, K. Seidl-Rathkopf, M. Agrawal, M. Estevez, E. Estola, J. Haimson, L. He, P. Larson and P. Richardson (2020). "Model-assisted cohort selection with bias analysis for generating large-scale cohorts from the EHR for oncology research." arXiv preprint arXiv:2001.09765.
Blake, O. (2025). IQVIA: The Undervalued Healthcare AI Powerhouse Betting on NVIDIA's Future.
Brohet, R. M., E. C. S. de Boer, J. M. Mossink, J. J. N. van der Eerden, A. Oostmeyer, L. H. W. Idzerda, J. G. Maring, G. Paardekooper, M. Beld, F. Lijffijt, J. Dille and J. W. B. de Groot (2025). "Using Real-World Data for Machine-Learning Algorithms to Predict the Treatment Response in Advanced Melanoma: A Pilot Study for Personalizing Cancer Care." JCO Clin Cancer Inform 9: e2400181.
Bryant, A. K., R. Zamora-Resendiz, X. Dai, D. Morrow, Y. Lin, K. M. Jungles, J. M. Rae, A. Tate, A. N. Pearson, R. Jiang, L. Fritsche, T. S. Lawrence, W. Zou, M. Schipper, N. Ramnath, S. Yoo, S. Crivelli and M. D. Green (2024). "Artificial intelligence to unlock real-world evidence in clinical oncology: A primer on recent advances." Cancer Med 13(12): e7253.
Buntz, B. (2025). Inside IQVIA’s quest to build a multi-agent AI ‘dream team’ to transform clinical trials.
Carlyle (2020). Carlyle Makes Strategic Growth Investment in TriNetX; Acquires Majority Stake in Leading Global Health Research Network.
Castellanos, E. H., B. K. Wittmershaus and S. Chandwani (2024). "Raising the bar for real-world data in oncology: approaches to quality across multiple dimensions." JCO Clinical Cancer Informatics 8: e2300046.
Chen, Y., J. Kreulen, M. Campbell and C. Abrams (2011). Analytics ecosystem transformation: A force for business model innovation. 2011 Annual SRII global conference, IEEE.
Chen, Z., X. Liu, W. Hogan, E. Shenkman and J. Bian (2021). "Applications of artificial intelligence in drug development using real-world data." Drug Discov Today 26(5): 1256–1264.
Chodankar, D. (2021). "Introduction to real-world evidence studies." Perspect Clin Res 12(3): 171–174.
Cohen, A. B., A. Rosic, K. Harrison, M. Richey, S. Nemeth, G. Ambwani, R. Miksad, B. Haaland and C. Jiang (2023). "A natural language processing algorithm to improve completeness of ECOG performance status in real-world data." Applied Sciences 13(10): 6209.
Concato, J. and J. Corrigan-Curay (2022). "Real-World Evidence - Where Are We Now?" N Engl J Med 386(18): 1680–1682.
Corrigan-Curay, J., L. Sacks and J. Woodcock (2018). "Real-World Evidence and Real-World Data for Evaluating Drug Safety and Effectiveness." JAMA 320(9): 867–868.
Dimitsaki, S., P. Natsiavas and M. C. Jaulent (2024). "Applying AI to Structured Real-World Data for Pharmacovigilance Purposes: Scoping Review." J Med Internet Res 26: e57824.
EMA (2023). Multi-annual AI workplan 2023-2028.
EMA (2024). Real-world evidence framework to support EU regulatory decision-making.
EMA (2024). Real-world evidence provided by EMA.
EMA (2024). Reflection paper on the use of Artificial Intelligence (AI) in the medicinal product lifecycle.
EMA (2025). NDSG workplan 2025-2028 Data and AI in medicines regulation.
EMA (2025). Reflection paper on use of real-world data in non-interventional studies to generate real-world evidence for regulatory purposes.
Estevez, M., C. M. Benedum, C. Jiang, A. B. Cohen, S. Phadke, S. Sarkar and S. Bozkurt (2022). "Considerations for the use of machine learning extracted real-world data to support evidence generation: a research-centric evaluation framework." Cancers 14(13): 3063.
Estevez, M., N. Singh, L. Dyson, B. Adamson, Q. Yuan, M. W. Hildner, E. Fidyk, O. Mbah, F. Khan and K. Seidl-Rathkopf (2025). "Ensuring Reliability of Curated EHR-Derived Data: The Validation of Accuracy for LLM/ML-Extracted Information and Data (VALID) Framework." arXiv preprint arXiv:2506.08231.
EUPATI. (2025). "Real-World Data (RWD) & Real-World Evidence (RWE)." from https://toolbox.eupati.eu/resources/patient-toolbox/real-world-data-rwd-real-world-evidence-rwe/.
FDA (2018). Framework for FDA's Real-World Evidence Program.
FDA (2022). Submitting Documents Using Real-World Data and Real-World Evidence to FDA for Drug and Biological Products.
FDA (2023). Considerations for the Use of Real-World Data and Real-World Evidence to Support Regulatory Decision-Making for Drug and Biological Products.
FDA (2023). Data Standards for Drug and Biological Product Submissions Containing Real-World Data.
FDA (2023). Real-World Data: Assessing Registries to Support Regulatory Decision-Making for Drug and Biological Products.
FDA (2024). Real-World Data: Assessing Electronic Health Records and Medical Claims Data to Support Regulatory Decision-Making for Drug and Biological Products.
FDA (2025). "Artificial Intelligence-Enabled Device Software Functions: Lifecycle Management and Marketing Submission Recommendations."
FDA (2025). Considerations for the Use of Artificial Intelligence to Support Regulatory Decision-Making for Drug and Biological Products Guidance for Industry and Other Interested Parties.
Flatiron. (n.d.). "OncoEMR®." from https://flatiron.com/oncology/oncology-ehr.
FortuneBusinessInsights. (2025). "Real World Evidence Solutions Market Size, Share & Industry Analysis, By Type (Clinical Setting Data, Claims Data, Pharmacy Data, Patient Powered Data, and Others), By Application (Pharmaceutical and Medical Device Companies, Healthcare Payers, Healthcare Providers, and Others), and Regional Forecast, 2025-2032." from https://www.fortunebusinessinsights.com/real-world-evidence-solutions-market-107676.
Gauthier, M. P., J. H. Law, L. W. Le, J. J. N. Li, S. Zahir, S. Nirmalakumar, M. Sung, C. Pettengell, S. Aviv, R. Chu, A. Sacher, G. Liu, P. Bradbury, F. A. Shepherd and N. B. Leighl (2022). "Automating Access to Real-World Evidence." JTO Clin Res Rep 3(6): 100340.
Geeksforgeeks. (n.d.). "NLP vs LLM: Understanding Key Differences." from https://www.geeksforgeeks.org/nlp/nlp-vs-llm/.
genomics, A. (2020). "行動基因與新加坡醫療新創 Oncoshot 合作促進更具策略性的臨床試驗." from https://www.actgenomics.com/zh-tw/about.
Goncearuc, A., N. Sapountzoglou, C. De Cauwer, T. Coosemans, M. Messagie and T. Crispeels (2022). "An integrative approach for business modelling: Application to the EV charging market." Journal of Business Research 143: 184–200.
Google. (n.d.). "PaaS、IaaS、SaaS 與 CaaS 有何不同?." from https://cloud.google.com/learn/paas-vs-iaas-vs-saas?hl=zh-TW.
Hale, C. (2019). Sanofi to assimilate Aetion's real-world data platform into its own.
Health, S. (2021). Syneos Health and Aetion Partner to Offer RWE Solutions to Advance Drug Development and Commercialization.
Healthcare, F. (n.d.). "About Flatiron Health US data." from https://flatiron.com/database-characterization.
Healthcare, F. (n.d.). "Who we are." from https://flatiron.com/about-us.
Huang, Y., J. Li, M. Li and R. R. Aparasu (2023). "Application of machine learning in predicting survival outcomes involving real-world data: a scoping review." BMC Med Res Methodol 23(1): 268.
Iansiti, M. and R. Levien (2004). "Strategy as ecology." Harvard business review 82(3): 68–78, 126.
ICH (2024). Pursuing Opportunities for Harmonisation in Using Real-World Data to Generate Real-World Evidence, with a focus on Effectiveness of Medicines.
IQVIA (2020). IQVIA’s Breakthrough Natural Language Processing Platform Receives 2019 Fierce Innovation Award.
IQVIA. (2023). "AI Case Study – How IQVIA Increased Target Patient Identification 15X." from https://www.iqvia.com/library/case-studies/ai-case-study-how-iqvia-increased-target-patient-identification-15x#:~:text=IQVIA’s%20AI,results%20like%20these.
IQVIA. (2023). "Closing Care Gaps using Social Determinants of Health." from https://www.iqvia.com/library/case-studies/nlp-closing-care-gaps-using-social-determinants-of-health.
IQVIA (2024). IQVIA 2024 Annual Report.
IQVIA (2024). National Anti-tumor Drug Surveillance System (NATDSS).
IQVIA (2024). Real-World Data Utilization for Innovative Drugs in Asia-Pacific Region.
IQVIA (2025). IQVIA and NVIDIA Collaborate to Transform Healthcare and Life Sciences Through Advanced Agentic AI Solutions.
IQVIA. (2025). "Leveraging Synthetic Control Arms in Clinical Trials and RWE Studies." from https://www.iqvia.com/locations/middle-east-and-africa/library/white-papers/leveraging-synthetic-control-arms-in-clinical-trials-and-rwe-studies.
IQVIA. (n.d.). "Closing Care Gaps using Social Determinants of Health." from https://www.iqvia.com/library/case-studies/nlp-closing-care-gaps-using-social-determinants-of-health.
IQVIA. (n.d.). "Improve accuracy and optimize risk adjustment coding." from https://www.iqvia.com/solutions/real-world-evidence/iqvia-nlp-platform/improve-accuracy-of-risk-adjustment-and-speed-medical-record.
IQVIA. (n.d.). "IQVIA Healthcare-grade AI®." from https://www.iqvia.com/solutions/innovative-models/artificial-intelligence-and-machine-learning#:~:text=,Assistant.
IQVIA. (n.d.). "IQVIA HUMAN DATA SCIENCE CLOUD." from https://www.iqvia.com/solutions/human-data-science-cloud.
IQVIA. (n.d.). "Your healthcare data deserves more than just a cloud.", from https://www.iqvia.com/solutions/human-data-science-cloud#InteroperableApproach.
Jreich, R., H. Zhang, Z. Meng and F. Wang (2024). "Evaluating the robustness of an AI pathfinder application on eligibility criteria in multiple myeloma trials using real-world data and historical trials." J Comp Eff Res 13(7): e230164.
Kandiah, G. and S. Gossain (1998). "Reinventing value: The new business ecosystem." Strategy & leadership 26(5): 28–33.
Keyl, J., P. Keyl, G. Montavon, R. Hosch, A. Brehmer, L. Mochmann, P. Jurmeister, G. Dernbach, M. Kim, S. Koitka, S. Bauer, N. Bechrakis, M. Forsting, D. Fuhrer-Sakel, M. Glas, V. Grunwald, B. Hadaschik, J. Haubold, K. Herrmann, S. Kasper, R. Kimmig, S. Lang, T. Rassaf, A. Roesch, D. Schadendorf, J. T. Siveke, M. Stuschke, U. Sure, M. Totzeck, A. Welt, M. Wiesweg, H. A. Baba, F. Nensa, J. Egger, K. R. Muller, M. Schuler, F. Klauschen and J. Kleesiek (2025). "Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence." Nat Cancer 6(2): 307–322.
Kim, H. S., S. Lee and J. H. Kim (2018). "Real-world Evidence versus Randomized Controlled Trial: Clinical Research Based on Electronic Medical Records." J Korean Med Sci 33(34): e213.
Knevel, R. and K. P. Liao (2023). "From real-world electronic health record data to real-world results using artificial intelligence." Ann Rheum Dis 82(3): 306–311.
Landi, H. (2025). Datavant to acquire real-world evidence company Aetion to boost its life sciences business.
Laney, D. (2001). "3D data management: Controlling data volume, velocity and variety." META group research note 6(70): 1.
Letter, T. C. (2019). How real world evidence was used to support approval of Ibrance in men.
Lin, L. W., J. Ahn, D. B. S. Bayani, K. CHAN, D. CHOIPHEL, W. ISARANUWATCHAI, S. KC, B. KEARNEY, J. LOU and A. ADLER (2021). "Use of real-world data and real-world evidence to support drug reimbursement decision-making in Asia."
Liu, Y., Z. Yu, X. Ye, J. Zhang, X. Hao, F. Gao, J. Yu and C. Zhou (2024). "Personalized venlafaxine dose prediction using artificial intelligence technology: a retrospective analysis based on real-world data." Int J Clin Pharm 46(4): 926–936.
Ludwig, R. J., M. Anson, H. Zirpel, D. Thaci, H. Olbrich, K. Bieber, K. Kridin, A. Dempfle, P. Curman, S. S. Zhao and U. Alam (2025). "A comprehensive review of methodologies and application to use the real-world data and analytics platform TriNetX." Frontiers in Pharmacology 16.
Ma, X., L. Long, S. Moon, B. J. Adamson and S. S. Baxi (2020). "Comparison of population characteristics in real-world clinical oncology databases in the US: Flatiron Health, SEER, and NPCR." Medrxiv: 2020.2003. 2016.20037143.
Martina, R., D. Jenkins, S. Bujkiewicz, P. Dequen, K. Abrams and G. W. 1 (2018). "The inclusion of real world evidence in clinical development planning." Trials 19.
McKinsey&Company (2022). Generating real-world evidence at scale using advanced analytics.
Moore, J. F. (1993). "Predators and prey: a new ecology of competition." Harvard business review 71(3): 75–86.
Moore, J. F. (1996). "The death of competition: leadership and strategy in the age of business ecosystems." (No Title).
Moosavi, A., S. Huang, M. Vahabi, B. Motamedivafa, N. Tian, R. Mahmood, P. Liu and C. L. F. Sun (2024). "Prospective Human Validation of Artificial Intelligence Interventions in Cardiology: A Scoping Review." JACC Adv 3(9): 101202.
Novotech (2022). Oncoshot and Novotech Partner to Offer Cancer Data Insights.
Oncoshot. (2022). "Oncoshot Enters Collaboration Agreement With Omico (Australian Genomic Cancer Medicine Centre)." from https://www.oncoshot.com/blog/384fbf50490844a4b56d3208f6a65757.
Oncoshot. (2023). "Revolutionising Oncology: Taipei Medical University and Oncoshot Forge a Path to Personalised Cancer Care." from https://www.oncoshot.com/blog/3f332e2714ab45f39b14ad5e24cfe0d8.
Osterwalder, A. and Y. Pigneur (2010). Business model generation: a handbook for visionaries, game changers, and challengers, John Wiley & Sons.
Pfeffer, M., M. Deneris, A. Shelley, P. Salcuni and I. Altomare (2025). "Utility of automated data transfer for cancer clinical trials and considerations for implementation." ESMO Real World Data and Digital Oncology 7: 100112.
Pfizer. (2019). "Increasing Use of Real-World Data to Help Improve Cancer Care." from https://www.pfizer.com/sites/default/files/investors/financial_reports/annual_reports/2019/our-bold-moves/win-the-digital-race-in-pharma/increasing-use-of-real-world-data-to-help-improve-cancer-care/index.html.
PrecedenceResearch (2025). Real World Data (RWD) Market Size, Share and Trends 2025 to 2034.
Proffitt, A. (2020). TriNetX Announces Real World Data Partnership, Applies Model to COVID-19.
Rong, K., J. Wu, Y. Shi and L. Guo (2015). "Nurturing business ecosystems for growth in a foreign market: Incubating, identifying and integrating stakeholders." Journal of International Management 21(4): 293–308.
Schad, F. and A. Thronicke (2022). "Real-World Evidence-Current Developments and Perspectives." Int J Environ Res Public Health 19(16).
Services, A. W. (2025). How Aetion is using generative AI and Amazon Bedrock to translate scientific intent to results.
Services, A. W. (2025). "How Aetion is using generative AI and Amazon Bedrock to unlock hidden insights about patient populations." from https://aws.amazon.com/tw/blogs/machine-learning/how-aetion-is-using-generative-ai-and-amazon-bedrock-to-unlock-hidden-insights-about-patient-populations/.
Services, A. W. (n.d.). "Oncoshot App for Hospitals ", from https://aws.amazon.com/marketplace/pp/prodview-fdjxyi7ju4kgs#:~:text=Cost%2Fmonth.
Sherman, R. E., S. A. Anderson, G. J. Dal Pan, G. W. Gray, T. Gross, N. L. Hunter, L. LaVange, D. Marinac-Dabic, P. W. Marks, M. A. Robb, J. Shuren, R. Temple, J. Woodcock, L. Q. Yue and R. M. Califf (2016). "Real-World Evidence - What Is It and What Can It Tell Us?" N Engl J Med 375(23): 2293–2297.
Silcox, C., E. Zimlichmann, K. Huber, N. Rowen, R. Saunders, M. McClellan, C. N. Kahn, 3rd, C. A. Salzberg and D. W. Bates (2024). "The potential for artificial intelligence to transform healthcare: perspectives from international health leaders." NPJ Digit Med 7(1): 88.
Smith, J. (2022). Oncoshot raises cash to speed up clinical trial enrolment with AI.
Society, A. C. (2025). "Cancer Treatment and Survivorship Facts & Figures." from https://www.cancer.org/research/cancer-facts-statistics/survivor-facts-figures.html.
Tang, M., S. A. Pearson, R. J. Simes and B. H. Chua (2023). "Harnessing Real-World Evidence to Advance Cancer Research." Curr Oncol 30(2): 1844–1859.
Taylor, P. (2024). Does Roche have buyer's remorse for Flatiron takeover?
Thakur, S. (2023). "Real-World Evidence Studies in Oncology Therapeutics: Hope or Hype?" Indian J Surg Oncol 14(4): 829–835.
Thomas, L. D. and A. Leiponen (2016). "Big data commercialization." IEEE Engineering Management Review 44(2): 74–90.
Topaloglu, U. and M. B. Palchuk (2018). "Using a Federated Network of Real-World Data to Optimize Clinical Trials Operations." JCO Clin Cancer Inform 2: 1–10.
TriNetX (2022). TriNetX Acquires European Regulatory-Grade Real-World Evidence Leader OncologyInformationService and CancerDataNet.
TriNetX (2022). TriNetX Acquires Pharmacovigilance Leader Advera Health Analytics.
TriNetX (2023). TriNetX Recognized on the 2023 Fortune Impact 20 List for Pioneering Advancements in Clinical Trial Diversity.
TriNetX. (2025). "TriNetX and Fujitsu Launch Joint Venture to Increase Japanese Patients’ Access to Life-Changing Medicines." from https://trinetx.com/press-releases/trinetx-fujitsu-joint-venture-increase-japanes-patients-access-to-life-changing-medicines/#:~:text=The%20new%20entity%20will%20integrate,trials%20and%20precision%20medicine%20initiatives.
TriNetX. (n.d.). "The Future Prescription." from https://trinetx.com/real-world-resources/the-future-prescription/.
Wiener, M., C. Saunders and M. Marabelli (2020). "Big-data business models: A critical literature review and multiperspective research framework." Journal of Information Technology 35(1): 66–91.
Wikipedia. (n.d.). "Data as a service." from https://en.wikipedia.org/wiki/Data_as_a_service.
Wilson, B. E. and C. M. Booth (2024). "Real-world data: bridging the gap between clinical trials and practice." EClinicalMedicine 78: 102915.
Yin, R. K. (2017). Case study research and applications: Design and methods, Sage publications.
Zhang, Q., A. Gossai, S. Monroe, N. C. Nussbaum and C. M. Parrinello (2021). "Validation analysis of a composite real‐world mortality endpoint for patients with cancer in the United States." Health services research 56(6): 1281–1287.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99062-
dc.description.abstract隨著醫療科技進步與資料數位化普及,真實世界數據(Real-World Data;RWD)在藥品開發、上市後監測與臨床決策中的應用價值日益受到重視。相較於傳統隨機對照試驗,RWD更貼近實際臨床場域與多樣化病患族群。然而,RWD本身具有異質性高及結構不一的特性,使其在轉化為真實世界證據(Real-World Evidence;RWE)的過程中面臨多重挑戰。人工智慧(Artificial Intelligence;AI)技術被視為加速此轉化的關鍵工具,尤其在資料清理、萃取、整合與預測分析等環節具潛力。然而,AI如何賦能RWD於生技醫藥產業,進而塑造可持續的商業模式與價值共創機制,仍缺乏系統性探討。
本研究採取質性研究方法,透過多重個案分析與專家訪談,剖析AI技術在RWE商業化過程中的角色與運作邏輯。案例研究選取五家具代表性的醫療科技企業—IQVIA、Flatiron Health、Aetion、TriNetX與Oncoshot,涵蓋不同規模、區域與技術特性。資料來源包含官方網站、年報、商業報導與學術文獻。分析面向包括商業模式共通性與異質性、資料處理策略、AI應用比較及生態系角色定位。另納入來自產業的專家觀點,補充實務場域對AI應用、資料治理與跨部門合作的觀察。
研究結果顯示,AI在RWD商業化過程中不僅是技術輔助工具,更深刻影響企業的資料治理架構與跨域合作。成功企業普遍具備以下特徵:(1)清晰定位資料處理面向,建立差異化競爭優勢;(2)問題導向與價值共創,聚焦產業痛點並與生態夥伴共創價值;(3)以合規為優先的AI演進,並採分階段導入策略;(4)多元目標客群開拓,延伸服務對象涵蓋藥廠、醫院、政府與學研機構;(5)多元創新與營收模式,結合資料授權、平台訂閱與解決方案等模組化設計;(6)具備整合生態系與平台主導潛力,逐步由利基型服務商轉為協作推動者。
綜合而言,AI已成為推動RWD價值鏈升級的系統性力量。對台灣而言,未來可從資料互通性標準起步,結合策略導向設計,建構具在地適應性的AI-RWD商業生態系。
zh_TW
dc.description.abstractWith the advancement of medical technology and data digitization, Real-World Data(RWD)has become increasingly valuable in drug development, post-marketing surveillance, and clinical decision-making. Compared to randomized controlled trials, RWD better reflects real-world settings and diverse patient groups. However, its heterogeneity and lack of standardization pose challenges in transforming RWD into Real-World Evidence(RWE). AI is seen as a key enabler, especially in data cleaning and analysis. Yet, how AI supports sustainable business models in the RWE biopharmaceutical industry remains underexplored.
This study uses a qualitative approach, combining multiple case studies and expert interviews to examine how AI drives RWE commercialization. Five companies—IQVIA, Flatiron Health, Aetion, TriNetX, and Oncoshot—were selected to reflect diverse sizes, regions, and technologies. Data sources include websites, reports, industry news, and academic literature. The analysis focuses on business models, data strategies, AI applications, and ecosystem roles. Expert insights complement observations on data governance and cross-sector collaboration.
Findings show that AI not only serves as a technical tool but also shapes data infrastructure and collaboration mechanisms. Success factors include: (1) clear positioning of data capabilities; (2) problem-driven value creation with ecosystem partners; (3) compliance-first, phased AI deployment; (4) diversified customer targets; (5) flexible revenue models including data licensing and modular services; and (6) potential to evolve into ecosystem orchestrators.
In conclusion, AI is a systemic force advancing the RWD value chain. For Taiwan, building interoperability standards and strategic collaboration will be key to developing a locally adaptive AI-RWD ecosystem.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:14:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:14:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與問題 2
1.3 研究範圍與定義 3
第二章 文獻回顧 7
2.1 真實世界證據的概念與應用 7
2.2 人工智慧在真實世界數據中的角色 13
2.3 商業模式 15
2.4 商業生態系統 21
2.5 醫藥法規針對AI在RWE中的應用規範 23
2.6 台灣真實世界數據資料庫來源 25
第三章 研究方法 27
3.1 研究架構與流程 27
3.2 質性研究方法 28
3.3 案例選擇標準 29
3.4 資料搜集方法 31
3.5 專家訪談對象 32
3.6 資料分析方法 33
第四章 案例分析 35
4.1. IQVIA 35
4.2. Flatiron Health 45
4.3. Aetion 55
4.4. TriNetX 62
4.5. Oncoshot 72
第五章 案例綜合分析 80
5.1. 商業模式共通性與異質性 80
5.2. 數據來源、處理及AI應用比較 86
5.3. 生態系角色分析 90
5.4. 專家觀點回饋整合 97
第六章 結論與建議 100
6.1. 研究結論 100
6.2. 針對台灣生態系的策略建議 102
6.3. 研究限制 103
6.4. 未來研究方向 104
參考文獻 106
-
dc.language.isozh_TW-
dc.subject真實世界證據zh_TW
dc.subject真實世界數據zh_TW
dc.subject生技醫藥產業zh_TW
dc.subject商業模式zh_TW
dc.subject人工智慧zh_TW
dc.subjectArtificial Intelligenceen
dc.subjectBusiness Modelen
dc.subjectBiopharmaceutical Industryen
dc.subjectReal-World Evidenceen
dc.subjectReal-World Dataen
dc.title以人工智慧推動藥品真實世界數據之商業模式:生技醫藥產業案例分析zh_TW
dc.titleBusiness Models of Real-World Evidence Enabled by Artificial Intelligence: Case Studies Analysis of the Biopharmaceutical Industryen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee胡凱焜;潘令妍zh_TW
dc.contributor.oralexamcommitteeKae-Kuen Hu;Ling-Yen Panen
dc.subject.keyword真實世界數據,真實世界證據,人工智慧,商業模式,生技醫藥產業,zh_TW
dc.subject.keywordReal-World Data,Real-World Evidence,Artificial Intelligence,Business Model,Biopharmaceutical Industry,en
dc.relation.page114-
dc.identifier.doi10.6342/NTU202503195-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college進修推廣學院-
dc.contributor.author-dept生物科技管理碩士在職學位學程-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:生物科技管理碩士在職學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf4.81 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved