請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99058完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍 | zh_TW |
| dc.contributor.advisor | Sheng-Lung Huang | en |
| dc.contributor.author | 蕭暐翰 | zh_TW |
| dc.contributor.author | Wei-Han Hsiao | en |
| dc.date.accessioned | 2025-08-21T16:13:36Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-31 | - |
| dc.identifier.citation | [1] V. M. Kodach, D. J. Faber, and T. G. van Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281, 4975–4981 (2008).
[2] T. I. Yang, H. T. Liu, S. C. Wang, K. H. Chuang, T. C. Chou, and S. L. Huang, “Formation of ceramic and crystal claddings for a Ti:sapphire crystalline fiber core,” Opt. Mater. Express 10, 1215–1225 (2020). [3] RefractiveIndex.INFO, “Sellmeier coefficients for Al₂O₃ (Sapphire)—Malitson,” http://refractiveindex.info/?shelf=main&book=Al2O3&page=Malitson-o . [4] E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Material, Manufacturing, Applications (Springer, New York, 2009). [5] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al₂O₃,” J. Opt. Soc. Am. B 3, 125–133 (1986). [6] T. Danger, K. Petermann, and G. Huber, “Polarized and time resolved measurements of excited state absorption and stimulated emission in Ti:YAlO₃ and Ti:Al₂O₃,” Appl. Phys. B 57, 309–317 (1993). [7] P. Albers, E. Stark, and G. Huber, “Continuous wave laser operation and quantum efficiency of titanium doped sapphire,” J. Opt. Soc. Am. B 3, 134–139 (1986). [8] T. I. Yang, “The Study of Near Infrared Broadband Single Mode Crystal Fiber Light Sources,” Ph.D. thesis, National Taiwan University (2021). [9] R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth 79, 669–678 (1986). [10] S. C. Wang, “Development and Applications of Glass clad Ti:Al₂O₃ Crystal Fiber,” Ph.D. thesis, National Taiwan University (2016). [11] J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron. 30, 2612–2619 (1994). [12] D. Y. Jheng, K. Y. Hsu, Y. C. Liang, and S. L. Huang, “Broadly tunable and low threshold Cr⁴⁺:YAG crystal fiber laser,” IEEE J. Sel. Top. Quantum Electron. 21, 0900608 (2015). [13] P. Albers, E. Stark, and G. Huber, “Continuous wave laser operation and quantum efficiency of titanium doped sapphire,” J. Opt. Soc. Am. B 3, 134–139 (1986). [14] A. Sennaroglu, “Broadly tunable Cr⁴⁺ doped solid state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287–388 (2002). [15] S. C. Wang, T. I. Yang, D. Y. Jheng, C. Y. Hsu, T. T. Yang, T. S. Ho, and S. L. Huang, “Broadband and high brightness light source: glass clad Ti:sapphire crystal fiber,” Opt. Lett. 40, 5594–5597 (2015). [16] A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser deposition,” Opt. Lett. 22, 1556–1558 (1997). [17] M. Pollnau, R. P. Salathé, T. Bhutta, D. P. Shepherd, and R. W. Eason, “Continuous wave broadband emitter based on a transition metal ion doped waveguide,” Opt. Lett. 26, 283–285 (2001). [18] A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. B 75, 15–19 (2002). [19] L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, and J. S. Wilkinson, “Diffused Ti:sapphire channel waveguide lasers,” J. Opt. Soc. Am. B 21, 1452–1456 (2004). [20] C. Grivas, D. P. Shepherd, T. C. May Smith, and R. W. Eason, “Single transverse mode Ti:sapphire rib waveguide laser,” Opt. Express 13, 210–216 (2005). [21] C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room temperature continuous wave operation of Ti:sapphire buried channel waveguide lasers fabricated via proton implantation,” Opt. Lett. 31, 3450–3452 (2006). [22] C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett. 37, 4630–4632 (2012). [23] Newport, “10RG1800 500 1 plane ruled reflection grating, 1800 grooves/mm, 500 nm blaze,” https://www.newport.com/p/10RG1800-500-1. [24] Grating Lab, “Master efficiency curve for plane ruled grating 53 *-351R, 600 grooves/mm, 800 nm blaze,” https://www.gratinglab.com/Products/Product_Tables/Efficiency/Efficiency.aspx?catalog=53-*-351R. [25] Newport, “33009FL01 360R plane ruled reflection grating, 1200 g/mm, 750 nm blaze,” https://www.newport.com/p/33009FL01-360R. [26] IDEX Health & Science, “Legacy Semrock optical filter products,” https://www.idex-hs.com/legacy-semrock-optical-filter-products. [27] IDEX Health & Science, “Semrock filter LPD02 633RU 25,” https://www.idex-hs.com/store/product-detail/lpd02_633ru_25/fl-008056. [28] Newport, “5721 A H aspheric lens,” https://www.newport.com/p/5721-A-H. [29] Newport, “5721 B H aspheric lens,” https://www.newport.com/p/5721-B-H. [30] Y. C. Lin and S. L. Huang, “Study of ultra broadband Ti:sapphire crystal fiber based wavelength swept laser,” Ph.D. thesis, National Taiwan University (2022). [31] C. K. Wang and S. L. Huang, “Design and setup of intravascular optical coherence tomography with a Ti:sapphire crystal fiber based wavelength swept laser,” M.S. thesis, National Taiwan University (2021). [32] B. Johnson, W. Atia, D. C. Flanders, M. Kuznetsov, B. D. Goldberg, N. Kemp, and P. Whitney, “SNR of swept SLEDs and swept lasers for OCT,” Opt. Express 24, 11174–11186 (2016). [33] M. Tawfieq, A. K. Hansen, O. B. Jensen, D. Marti, B. Sumpf, and P. E. Andersen, “Intensity noise transfer through a diode pumped titanium sapphire laser system,” IEEE J. Quantum Electron. 54, 1700209 (2018). [34] M. T. Jamal, A. K. Hansen, M. Tawfieq, P. E. Andersen, and O. B. Jensen, “Influence of pump beam shaping and noise on performance of a direct diode pumped ultrafast Ti:sapphire laser,” Opt. Express 28, 31754–31762 (2020). [35] D. V. Sutyrin, N. Poli, N. Beverini, and G. M. Tino, “Carrier envelope offset frequency noise analysis in Ti:sapphire frequency combs,” Opt. Eng. 53, 122603 (2014). [36] S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Pulsed source and swept source spectral domain optical coherence tomography with reduced motion artifacts,” Opt. Express 12, 5614–5624 (2004). [37] K. Gürel, V. J. Wittwer, S. Hakobyan, S. Schilt, and T. Südmeyer, “Carrier envelope offset frequency detection and stabilization of a diode pumped mode locked Ti:sapphire laser,” Opt. Lett. 42, 1035–1038 (2017). [38] W. C. Hu and S. L. Huang, “Image quality improvement of intravascular swept source optical coherence tomography,” M.S. thesis, National Taiwan University (2022). [39] D. L. Marks, P. S. Carney, and S. A. Boppart, “Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images,” J. Biomed. Opt. 9, 1207–1215 (2004). [40] J. Gong, B. Liu, Y. L. Kim, Y. Liu, X. Li, and V. Backman, “Optimal spectral reshaping for resolution improvement in optical coherence tomography,” Opt. Express 14, 5909–5915 (2006). [41] Thorlabs, “GVS001 - 1D Galvo System, Silver-Coated Mirror, PSU Not Include” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3770&pn=GVS001 . [42] R. A. Leitgeb and B. Baumann, “Multimodal optical medical imaging concepts based on optical coherence tomography,” Front. Phys. 6, 114 (2018). [43] A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett. 28, 1921–1923 (2003). [44] W. Drexler, “Ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004). [45] R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002). [46] Y. Wang, Y. Liang, and K. Xu, “Signal processing for sidelobe suppression in optical coherence tomography images,” J. Opt. Soc. Am. A 27, 415–421 (2010). [47] AlazarTech, “ATS9371 – 12 bit, 1 GS/s PCI digitizer, PC Oscilloscope PC Scope Card and Systems.” https://www.alazartech.com/en/product/ats9371/4/ . [48] Thorlabs, “INT MZI 850 integrated Mach–Zehnder interferometer,” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2913&pn=INT-MZI-850 . | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99058 | - |
| dc.description.abstract | 光學同調斷層掃描術(Optical coherence tomography; OCT)因其非侵入、高解析度及即時成像特性,在眼科、皮膚及其他生醫領域中應用日益廣泛。為達成視網膜等組織的微細結構觀測,OCT系統若能實現2–3 μm的超高軸向解析度,這等級的解析度將使得先前只能透過病理切片觀察的視網膜內部與角膜內部結構,得以在活體中進行可視化成像,提升診斷與研究價值。
對於眼科成像而言,為避免在眼內介質中的吸收作用,光源具有800 nm的工作波段是必要的。實驗室先前開發掃頻範圍擴及683至933 nm的超寬頻掃頻式摻鈦藍寶石晶體光纖雷射,有望可達1.8 μm的細胞等級解析度。然而,頻譜非高斯分布的光源將會透過旁瓣 (Side-lobe)產生鬼影(Ghost)而侷限點擴散函數(Point spread function)的分辨率。 本研究致力於以此寬頻掃頻雷射為基礎,實際建立超高解析度掃頻式同調斷層掃描術(SS-OCT)。輔以數位訊號處理流程,並加入頻譜塑形(Spectral shaping),著重於可能影響訊號分辨率的問題做處理,以減少鬼影訊號對解析度之影響。 本論文所架設的掃頻雷射可調波長範圍可達至少204 nm,模擬預期軸向解析度將會有2.69 μm的半高寬。研究中選用高斯函數作為頻譜塑形目標,並透過包絡線分析即時修正干涉條紋,使其趨近高斯分布。此方法亦進一步延伸應用於背景訊號扣除之建立。最終,本研究成功將淺層區域的畫素串音抑制約 50 dB,並達成 2.27 μm 的軸向解析度,符合 2–3 μm 超高解析度之目標。然而,因多模干涉與掃頻光源穩定性不足,深層訊號解析度仍受頻譜起伏與洩漏效應限制。 未來,若實驗室成功開發單模摻鈦藍寶石晶體光纖應用於日後的掃頻式光學同調斷層掃描。可有望改進掃頻雷射的頻譜輸出,並以本論文的頻譜塑形之為基礎做優化,將可實現全深度均一高解析的生醫光學影像系統,為後續OCT臨床應用及組織診斷提供基礎。 | zh_TW |
| dc.description.abstract | Optical coherence tomography (OCT), characterized by its non-invasive, high-resolution, and real-time imaging capabilities, has become increasingly utilized in ophthalmology, dermatology, and other biomedical fields. Achieving an ultrahigh axial resolution of approximately 2–3 μm enables clear visualization of delicate structures within biological tissues, such as retinal and corneal layers, which previously required histological examination. This advancement significantly enhances the diagnostic and research value through in-vivo visualization.
For ophthalmic imaging, it is essential that the light source operates near the 800 nm wavelength region to avoid absorption within ocular media. Our laboratory previously developed an ultra-broadband swept-source Ti:sapphire crystal fiber laser, that came with a tuning range from 683 nm to 933 nm, which promises cellular-level resolution down to approximately 1.8 μm. However, the non-Gaussian spectral shape of the source may induce ghost through side-lobe artifacts, limiting the image resolution. This study aims to establish an ultrahigh-resolution swept-source optical coherence tomography (SS-OCT) system based on the setup of this broadband swept laser. By integrating digital signal processing and spectral shaping techniques, we specifically address the issues that influence signal resolution and mitigate ghost signals to enhance imaging quality. The swept-source developed in this thesis exhibits a wavelength tuning range of at least 204 nm, with simulated results predicting an axial resolution of 2.69 μm (FWHM). A Gaussian function was selected as the target function for spectral shaping, and a real-time fringe correction was performed using envelope detection to approximate a Gaussian spectral profile. This method was further extended for use in background signal subtraction. As the results, pixel crosstalk in shallow regions was successfully suppressed by approximately 50 dB, achieving an axial resolution of 2.27 μm and thus fulfilling the goal of 2–3 μm ultrahigh-resolution. However, due to multimode interference within laser cavity and instability in the output, the resolution of deeper signals remained limited by spectral fluctuations and leakage effects. In the future, if a single-mode Ti:sapphire crystal fiber is successfully developed for SS-OCT systems, we expect to significantly improve the stability of the spectral output. Based on the spectral shaping methodology established in this thesis, further optimization could enable uniformly high-resolution optical imaging across all depths, laying a solid foundation for refined clinical OCT applications and detailed tissue diagnostics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:13:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:13:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 I
中文摘要 II 英文摘要 III 目次 IV 圖次 VI 表次 XIII 第一章 文獻回顧及研究動機 1 第二章 掃頻式摻鈦藍寶石晶體光纖雷射 4 2.1 摻鈦藍寶石晶體光纖 4 2.1.1 摻鈦藍寶石晶體特性 4 2.1.2 晶體光纖製作流程 11 2.1.3 晶體光纖之光學特性 20 2.2 掃頻式摻鈦藍寶石晶體光纖雷射 25 2.2.1 波長可調元件 25 2.2.2 雷射架設與相關光學元件 28 第三章 掃頻式光學同調斷層掃描術(SS-OCT) 35 3.1 光學同調斷層掃描之基本理論 35 3.2 掃頻式光學同調斷層掃描 38 3.2.1 軸向解析度(Axial resolution) 39 3.2.2 靈敏度滑落(Sensitivity roll-off) 40 3.2.3 軸向畫素串音(Axial pixel crosstalk) 41 3.2.4 訊噪比(Signal to noise ratio) 45 3.3 系統架設 47 3.3.1 光學偵測器 48 3.3.2 掃頻雷射訊號處理設備 49 第四章 掃頻式摻鈦藍寶石晶體光纖雷射特性與分析 55 4.1 掃頻雷射的輸出特性 55 4.2 掃頻速率及驅動波形對掃描頻譜之影響 61 4.3 瞬時線寬之量測與分析 66 第五章 SS-OCT掃頻式光學同調斷層掃描術 68 5.1 SS-OCT的架構 68 5.1.1 SS-OCT的多次平均以及取樣參數設定 68 5.1.2 雙平面鏡SS-OCT系統的頻譜變化分析 75 5.1.3 系統訊噪比之分析探討 80 5.2 訊號處理和鬼影抑制 84 5.2.1 軟體K-domain校正與線性化 84 5.2.2 頻譜塑型對鬼影的改善 88 5.2.3 三角波訊號驅動對輸出頻譜影響 95 5.3 後續方向 97 5.3.1 背景訊號的濾除 97 5.3.2 處理成效的侷限與改進策略 99 第六章 結論與未來展望 101 參考文獻 103 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 摻鈦藍寶石晶體 | zh_TW |
| dc.subject | 寬頻可調雷射 | zh_TW |
| dc.subject | 掃頻式光學同調斷層掃描術 | zh_TW |
| dc.subject | 鬼影訊號 | zh_TW |
| dc.subject | Ti:sapphire crystal | en |
| dc.subject | Broadband tunable laser | en |
| dc.subject | Swept-source optical coherence tomography | en |
| dc.subject | Ghost image | en |
| dc.title | 以掃頻式摻鈦藍寶石雷射為光源輔以頻譜塑型建立 超高解析度OCT系統 | zh_TW |
| dc.title | Development and analysis of ultrahigh-resolution OCT system using Ti:sapphire swept laser assisted by spectral shaping | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李翔傑;李穎玟 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiang-Chieh Lee;Yin-Wen Lee | en |
| dc.subject.keyword | 摻鈦藍寶石晶體,寬頻可調雷射,掃頻式光學同調斷層掃描術,鬼影訊號, | zh_TW |
| dc.subject.keyword | Ti:sapphire crystal,Broadband tunable laser,Swept-source optical coherence tomography,Ghost image, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202502925 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 10.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
