請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99043完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃斯衍 | zh_TW |
| dc.contributor.advisor | Ssu-Yen Huang | en |
| dc.contributor.author | 李念宇 | zh_TW |
| dc.contributor.author | Nien-Yu Li | en |
| dc.date.accessioned | 2025-08-21T16:10:03Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews, 6(2):021318, 06 2019.
Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel I.-J. Wang, Simon Gustavsson, and William D. Oliver. Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics, 11(Volume 11, 2020):369–395, 2020. Rajeev Acharya, Dmitry A. Abanin, Laleh Aghababaie-Beni, Igor Aleiner, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Nikita Astrakhantsev, Juan Atalaya, Ryan Babbush, Dave Bacon, Brian Ballard, Joseph C. Bardin, Johannes Bausch, Andreas Bengtsson, Alexander Bilmes, Sam Blackwell, Sergio Boixo, Gina Bortoli, Alexandre Bourassa, Jenna Bovaird, Leon Brill, Michael Broughton, David A. Browne, Brett Buchea, Bob B. Buckley, David A. Buell, Tim Burger, Brian Burkett, Nicholas Bushnell, Anthony Cabrera, Juan Campero, Hung-Shen Chang, Yu Chen, Zijun Chen, Ben Chiaro, Desmond Chik, Charina Chou, Jahan Claes, Agnetta Y. Cleland, Josh Cogan, Roberto Collins, Paul Conner, William Courtney, Alexander L. Crook, Ben Curtin, Sayan Das, Alex Davies, Laura De Lorenzo, Dripto M. Debroy, Sean Demura, Michel Devoret, Agustin Di Paolo, Paul Donohoe, Ilya Drozdov, Andrew Dunsworth, Clint Earle, Thomas Edlich, Alec Eickbusch, Aviv Moshe Elbag, Mahmoud Elzouka, Catherine Erickson, LLara Faoro, Edward Farhi, Vinicius S. Ferreira, Leslie Flores Burgos, Ebrahim Forati, Austin G. Fowler, Brooks Foxen, Suhas Ganjam, Gonzalo Garcia, Robert Gasca, Élie Genois, William Giang, Craig Gidney, Dar Gilboa, Raja Gosula, Alejandro Grajales Dau, Dietrich Graumann, Alex Greene, Jonathan A. Gross, Steve Habegger, John Hall, Michael C. Hamilton, Monica Hansen, Matthew P. Harrigan, Sean D. Harrington, Francisco J. H. Heras, Stephen Heslin, Paula Heu, Oscar Higgott, Gordon Hill, Jeremy Hilton, George Holland, Sabrina Hong, Hsin-Yuan Huang, Ashley Huff, William J. Huggins, Lev B. Ioffe, Sergei V. Isakov, Justin Iveland, Evan Jeffrey, Zhang Jiang, Cody Jones, Stephen Jordan, Chaitali Joshi, Pavol Juhas, Dvir Kafri, Hui Kang, Amir H. Karamlou, Kostyantyn Kechedzhi, Julian Kelly, Trupti Khaire, Tanuj Khattar, Mostafa Khezri, Seon Kim, Paul V. Klimov, Andrey R. Klots, Bryce Kobrin, Pushmeet Kohli, Alexander N. Korotkov, Fedor Kostritsa, Robin Kothari, Borislav Kozlovskii, John Mark Kreikebbaum, Vladislav D. Kurilovich, Nathan Lacroix, David Landhuis, Tiano Lange-Dei, Brandon W. Langley, Pavel Laptev, Kim-Ming Lau, Loïck Le Guevel, Justin Ledford, Joonho Lee, Kenny Lee, Yuri D. Lensky, Shannon Leon, Brian J. Lester, Wing Yan Li, Yin Li, Alexander T. Lill, Wayne Liu, William P. Livingston, Aditya Locharla, Erik Lucero, Daniel Lundahl, Aaron Lunt, Sid Madhuk, Fionn D. Malone, Ashley Maloney, Salvatore Mandrà, James Manyika, Leigh S. Martin, Orion Martin, Steven Martin, Cameron Maxfield, Jarrod R. McClean, Matt McEwen, Seneca Meeks, Anthony Megrant, Xiao Mi, Kevin C. Miao, Amanda Mieszala, Reza Molavi, Sebastian Molina, Shirin Montazeri, Alexis Morvan, Ramis Movassagh, Wojciech Mruczkiewicz, Ofer Naaman, Matthew Neeley, Charles Neill, Ani Nersisyan, Hartmut Neven, Michael Newman, Jiun How Ng, Anthony Nguyen, Murray Nguyen, Chia-Hung Ni, Murphy Yuezhen Niu, Thomas E. O’Brien, William D. Oliver, Alex Opremcak, Kristoffer Ottosson, Andre Petukhov, Alex Pizzuto, John Platt, Rebeecca Potter, Orion Pritchard, Leonid P. Pryadko, Chris Quintana, Ganesh Ramachandran, Matthew J. Reagor, John Redding, David M. Rhodes, Gabrielle Roberts, Eliott Rosenberg, Emma Rosenfeld, Pedram Roushan, Nicholas C. Rubin, Negar Saei, Daniel Sank, Kannan Sankaragomathi, Kevin J. Satzinger, Henry F. Schurkus, Christopher Schuster, Andrew W. Senior, Michael J. Shearn, Aaron Shorter, Noah Shutty, Vladimir Shvarts, Shraddha Singh, Volodymyr Sivak, Jindra Skruzny, Spencer Small, Vadim Smelyanskiy, W. Clarke Smith, Rolando D. Somma, Sofia Springer, George Sterling, Doug Strain, Jordan Suchard, Aaron Szasz, Alex Sztein, Douglas Thor, Alfredo Torres, M. Mert Torunbalci, Abeer Vaishnav, Justin Vargas, Sergey Vdovichev, Guifre Vidal, Benjamin Villalonga, Catherine Vollgraff Heidweiller, Steven Waltman, Shannon X. Wang, Brayden Ware, Kate Weber, Travis Weidel, Theodore White, Kristi Wong, Bryan W. K. Woo, Cheng Xing, Z. Jamie Yao, Ping Yeh, Bicheng Ying, Juhwan Yoo, Noureldin Yosri, Grayson Younng, Adam Zalcman, Yaxing Zhang, Ningfeng Zhu, Nicholas Zobrist, Google Quantum AI, and Collaborators. Quantum error correction below the surface code threshold. Nature, 638(8052):920–926, Feb 2025. David C. McKay, Sarah Sheldon, John A. Smolin, Jerry M. Chow, and Jay M. Gambetta. Three-qubit randomized benchmarking. Phys. Rev. Lett., 122:200502, May 2019. Ruixia Wang, Peng Zhao, Yirong Jin, and Haifeng Yu. Control and mitigation of microwave crosstalk effect with superconducting qubits. Applied Physics Letters, 121(15):152602, 10 2022. Haisheng Yan, Shoukuan Zhao, Zhongcheng Xiang, Ziting Wang, Zhaohua Yang, Kai Xu, Ye Tian, Haifeng Yu, Dongning Zheng, Heng Fan, and Shiping Zhao. Calibration and cancellation of microwave crosstalk in superconducting circuits. Chinese Physics B, 32(9):094203, sep 2023. Xiao-Yan Yang, Hai-Feng Zhang, Lei Du, Hao-Ran Tao, Liang-Liang Guo, Tian-Le Wang, Zhi-Long Jia, Wei-Cheng Kong, Zhao-Yun Chen, Peng Duan, and Guo-Ping Guo. Fast, universal scheme for calibrating microwave crosstalk in superconducting circuits. Applied Physics Letters, 125(4):044001, 07 2024. Yu Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, A. Megrant, J. Y. Mutus, P. J. J. O’Malley, C. M. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Michael R. Geller, A. N. Cleland, and John M. Martinis. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett., 113:220502, Nov 2014. Fei Yan, Philip Krantz, Youngkyu Sung, Morten Kjaergaard, Daniel L. Campbell, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys. Rev. Appl., 10:054062, Nov 2018. Youngkyu Sung, Leon Ding, Jochen Braumüller, Antti Vepsäläinen, Bharath Kannan, Morten Kjaergaard, Ami Greene, Gabriel O. Samach, Chris McNally, David Kim, Alexander Melville, Bethany M. Niedzielski, Mollie E. Schwartz, Jonilyn L. Yoder, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. Realization of high-fidelity cz and zz-free iswap gates with a tunable coupler. Phys. Rev. X, 11:021058, Jun 2021. Peng Zhao, Dong Lan, Peng Xu, Guangming Xue, Mace Blank, Xinsheng Tan, Haifeng Yu, and Yang Yu. Suppression of static zz interaction in an all-transmon quantum processor. Phys. Rev. Appl., 16:024037, Aug 2021. Jared B. Hertzberg, Eric J. Zhang, Sami Rosenblatt, Easwar Magesan, John A. Smolin, Jeng-Bang Yau, Vivekananda P. Adiga, Martin Sandberg, Markus Brink, Jerry M. Chow, and Jason S. Orcutt. Laser-annealing josephson junctions for yielding scaled-up superconducting quantum processors. npj Quantum Information, 7(1):129, Aug 2021. Alexis Morvan, Larry Chen, Jeffrey M. Larson, David I. Santiago, and Irfan Siddiqi. Optimizing frequency allocation for fixed-frequency superconducting quantum processors. Phys. Rev. Res., 4:023079, Apr 2022. Yongshan Ding, Pranav Gokhale, Sophia Fuhui Lin, Richard Rines, Thomas Propson, and Frederic T. Chong. Systematic Crosstalk Mitigation for Superconducting Qubits via Frequency-Aware Compilation . In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 201–214, Los Alamitos, CA, USA, October 2020. IEEE Computer Society. C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya, R. Barends, B. Burkett, Y. Chen, Z. Chen, A. Fowler, B. Foxen, M. Giustina, R. Graff, E. Jeffrey, T. Huang, J. Kelly, P. Klimov, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, H. Neven, and J. M. Martinis. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science, 360(6385):195–199, 2018. Cora N. Barrett, Amir H. Karamlou, Sarah E. Muschinske, Ilan T. Rosen, Jochen Braumüller, Rabindra Das, David K. Kim, Bethany M. Niedzielski, Meghan Schuldt, Kyle Serniak, Mollie E. Schwartz, Jonilyn L. Yoder, Terry P. Orlando, Simon Gustavsson, Jeffrey A. Grover, and William D. Oliver. Learning-based calibration of flux crosstalk in transmon qubit arrays. Phys. Rev. Appl., 20:024070, Aug 2023. X Dai, R Trappen, R Yang, S M Disseler, J I Basham, J Gibson, A J Melville, B M Niedzielski, R Das, D K Kim, J L Yoder, S J Weber, C F Hirjibehedin, D A Lidar, and A Lupascu. Optimizing for periodicity: a model-independent approach to flux crosstalk calibration for superconducting circuits. Quantum Science and Technology, 9(2):025007, feb 2024. Sandoko Kosen, Hang-Xi Li, Marcus Rommel, Robert Rehammar, Marco Caputo, Leif Grönberg, Jorge Fernández-Pendás, Anton Frisk Kockum, Janka Biznárová, Liangyu Chen, Christian Križan, Andreas Nylander, Amr Osman, Anita Fadavi Roudsari, Daryoush Shiri, Giovanna Tancredi, Joonas Govenius, and Jonas Bylander. Signal crosstalk in a flip-chip quantum processor. PRX Quantum, 5:030350, Sep 2024. Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Charge-insensitive qubit design derived from the cooper pair box. Phys. Rev. A, 76:042319, Oct 2007. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and John M. Martinis. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 508(7497):500–503, Apr 2014. David C. McKay, Stefan Filipp, Antonio Mezzacapo, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. Universal gate for fixed-frequency qubits via a tunable bus. Phys. Rev. Appl., 6:064007, Dec 2016. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431(7005):162–167, Sep 2004. Alexandre Blais, Ren-Shou Huang, Andreas Wallraff, S. M. Girvin, and R. J. Schoelkopf. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 69:062320, Jun 2004. X. Li, T. Cai, H. Yan, Z. Wang, X. Pan, Y. Ma, W. Cai, J. Han, Z. Hua, X. Han, Y. Wu, H. Zhang, H. Wang, Yipu Song, Luming Duan, and Luyan Sun. Tunable coupler for realizing a controlled-phase gate with dynamically decoupled regime in a superconducting circuit. Physical Review Applied, 14(2), August 2020. Pranav Mundada, Gengyan Zhang, et al. Suppression of qubit crosstalk in a tunable coupling superconducting circuit. Physical Review Applied, 12(5):054023, 2019. Zhengqi Niu, Wanpeng Gao, Xiaoliang He, Yifan Wang, Zhen Wang, and Zhi-Rong Lin. Dc flux crosstalk reduction with dual flux line. Applied Physics Letters, 124(25):254002, 06 2024. Kunliang Bu, Sainan Huai, Zhenxing Zhang, Dengfeng Li, Yuan Li, Jingjing Hu, Xiaopei Yang, Maochun Dai, Tianqi Cai, Yi-Cong Zheng, and Shengyu Zhang. Tantalum airbridges for scalable superconducting quantum processors. npj Quantum Information, 11(1):17, Jan 2025. X. Dai, D.M. Tennant, R. Trappen, A.J. Martinez, D. Melanson, M.A. Yurtalan, Y. Tang, S. Novikov, J.A. Grover, S.M. Disseler, J.I. Basham, R. Das, D.K. Kim, A.J. Melville, B.M. Niedzielski, S.J. Weber, J.L. Yoder, D.A. Lidar, and A. Lupascu. Calibration of flux crosstalk in large-scale flux-tunable superconducting quantum circuits. PRX Quantum, 2:040313, Oct 2021. Chi Zhang, Tian-Le Wang, Liang-Liang Guo, Xiao-Yan Yang, Xin-Xin Yang, Peng Duan, Zhi-Long Jia, Wei-Cheng Kong, and Guo-Ping Guo. Characterization of tunable coupler without a dedicated readout resonator in superconducting circuits. Applied Physics Letters, 122(2):024001, 01 2023. Xuan Zhang, Xu Zhang, Changling Chen, Kai Tang, Kangyuan Yi, Kai Luo, Zheshu Xie, Yuanzhen Chen, and Tongxing Yan. Characterization and optimization of tunable couplers via adiabatic control in superconducting circuits, 2025. Anuj Aggarwal, Jorge Fernández-Pendás, Tahereh Abad, Daryoush Shiri, Halldór Jakobsson, Marcus Rommel, Andreas Nylander, Emil Hogedal, Amr Osman, Janka Biznárová, Robert Rehammar, Michele Faucci Giannelli, Anita Fadavi Roudsari, Jonas Bylander, and Giovanna Tancredi. Mitigating transients in flux-control signals in a superconducting quantum processor, 2025. Deanna M. Abrams, Nicolas Didier, Shane A. Caldwell, Blake R. Johnson, and Colm A. Ryan. Methods for measuring magnetic flux crosstalk between tunable transmons. Physical Review Applied, 12(6), December 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99043 | - |
| dc.description.abstract | 現行的超導量子位元架構越來越多採用包含可調耦合器的系統,以便在未執行雙量子位元閘操作時,能有效關閉相鄰量子位元間的耦合,從而達到更佳的雙量子位元閘保真度。然而,由於可調耦合器通常不具備獨立的量測線路,使得整體磁通串擾的量測與分析變得困難。
本研究針對由多顆可調式 transmon 量子位元與耦合器所構成之超導量子系統,進行磁通串擾效應的量化分析與補償技術開發。透過 Two-Tone Spectroscopy 與 Ramsey 干涉法建構磁通串擾矩陣,並搭配線性模型進行偏壓映射與補償參數提取,成功將非預期耦合導致的磁通串擾抑制至O(10−4 )。補償後系統具備更佳的頻率可控性,顯著提升元件間的獨立操作能力。此外,我們亦展示補償機制能促進 CZ gate 操作點之辨識。並藉由比較不同封裝方式下的樣品設計,指出控制線接地處理對於抑制近距離磁通串擾具顯著影響。 | zh_TW |
| dc.description.abstract | Modern superconducting quantum processors increasingly adopt architectures incorporating tunable couplers, which allow the effective decoupling of neighboring qubits when two-qubit gates are idle, thereby improving two-qubit gate fidelity. However, since these couplers typically lack independent readout lines, it becomes challenging to characterize the overall flux crosstalk in such systems.
This thesis investigates flux crosstalk in a superconducting quantum processor composed of multiple frequency-tunable transmon qubits and couplers. By constructing crosstalk matrices using the Two-Tone and Ramsey measurement, and applying a linear compensation model, we successfully suppress unintended magnetic coupling to O(10−4 ). The compensated system exhibits improved frequency controllability and enhanced orthogonality of the bias control lines, enabling more independent operation of individual components. Furthermore, we demonstrate that the compensation procedure facilitates the identification of CZ gate operating points. Finally, by comparing different packaging configurations we analyze the impact of wire bonding on flux crosstalk. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:10:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T16:10:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v 目次 vii 圖次 ix 表次 xi 第一章 緒論 1 第二章 理論模型架構 3 2.1 Transmon 量子位元 3 2.1.1 二能級系統與量子諧振子 3 2.1.2 約瑟夫森接面與非線性能階 5 2.1.3 SQUID 與頻率可調性 8 2.1.4 微波驅動下的量子位元動力學 10 2.1.5 Ramsey 干涉實驗與磁通感測原理 13 2.2 讀取共振腔與Dispersive 讀取機制 16 2.3 可調耦合器與ZZ Interaction 20 2.4 磁通串擾 23 2.4.1 硬體層面解決策略 23 2.4.2 量測層面補償策略 24 第三章實驗設備架構 27 3.1 晶片架構 27 3.2 低溫傳輸架構 30 第四章實驗方法與結果 33 4.1 Two-Tone Spectroscopy 與量子位元頻率掃描 33 4.2 耦合器頻率量測 35 4.3 磁通串擾量測與補償 37 4.3.1 使用Two-Tone Spectroscopy 建立串擾矩陣 37 4.3.2 使用Ramsey 干涉法建立串擾矩陣 40 4.3.3 串擾補償方法 41 4.4 初始化時間與脈衝時間對量子位元頻率及磁通串擾之影響 43 4.4.1 對量子位元頻率之影響 43 4.4.2 Pulse 時長對磁通串擾之影響 44 4.5 實驗結果與數據分析 47 4.5.1 串擾矩陣與補償之效果分析 47 4.5.2 磁通串擾補償對CZ 閘操作點優化之影響 50 4.5.3 wire bonding 對磁通串擾影響之比較 52 第五章結論與討論 55 5.1 結論 55 5.2 討論 56 參考文獻 59 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 可調式耦合器 | zh_TW |
| dc.subject | 超導量子位元 | zh_TW |
| dc.subject | CZ 閘 | zh_TW |
| dc.subject | 磁通串擾 | zh_TW |
| dc.subject | Transmon | en |
| dc.subject | tunable coupler | en |
| dc.subject | CZ gate | en |
| dc.subject | Superconducting qubit | en |
| dc.subject | flux crosstalk | en |
| dc.title | 具可調式耦合器之超導多量子位元系統的磁通串擾特性分析與抑制 | zh_TW |
| dc.title | Characterization and Suppression of Flux Crosstalk in Superconducting Multi-Qubit Systems with Tunable Couplers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 柯忠廷 | zh_TW |
| dc.contributor.coadvisor | Chung-Ting Ke | en |
| dc.contributor.oralexamcommittee | 王喬萱;陳啟東 | zh_TW |
| dc.contributor.oralexamcommittee | Chiao-Hsuan Wang;Chii-Dong Chen | en |
| dc.subject.keyword | 超導量子位元,可調式耦合器,磁通串擾,CZ 閘, | zh_TW |
| dc.subject.keyword | Superconducting qubit,Transmon,tunable coupler,flux crosstalk,CZ gate, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202502632 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 16.51 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
