請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9902
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林仁混(Jen-Kun Lin) | |
dc.contributor.author | Pei-Shan Cai | en |
dc.contributor.author | 蔡佩珊 | zh_TW |
dc.date.accessioned | 2021-05-20T20:48:24Z | - |
dc.date.available | 2011-08-13 | |
dc.date.available | 2021-05-20T20:48:24Z | - |
dc.date.copyright | 2008-08-13 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-01 | |
dc.identifier.citation | 1. Stumvoll M, Goldstein BJ, van Haeften TW 2005 Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333-1346
2. Murphy R, Ellard S, Hattersley AT 2008 Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab 4:200-213 3. Shih DQ, Stoffel M 2002 Molecular etiologies of MODY and other early-onset forms of diabetes. Curr Diab Rep 2:125-134 4. Zimmet P, Alberti KG, Shaw J 2001 Global and societal implications of the diabetes epidemic. Nature 414:782-787 5. Lazar MA 2005 How obesity causes diabetes: not a tall tale. Science 307:373-375 6. Kahn SE, Hull RL, Utzschneider KM 2006 Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840-846 7. Prentki M, Nolan CJ 2006 Islet beta cell failure in type 2 diabetes. J Clin Invest 116:1802-1812 8. Rhodes CJ 2005 Type 2 diabetes-a matter of beta-cell life and death? Science 307:380-384 9. Lingohr MK, Buettner R, Rhodes CJ 2002 Pancreatic beta-cell growth and survival--a role in obesity-linked type 2 diabetes? Trends Mol Med 8:375-384 10. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC 2003 Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102-110 11. Weir GC, Laybutt DR, Kaneto H, Bonner-Weir S, Sharma A 2001 Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes 50 Suppl 1:S154-159 12. Fujimoto S, Nabe K, Takehiro M, Shimodahira M, Kajikawa M, Takeda T, Mukai E, Inagaki N, Seino Y 2007 Impaired metabolism-secretion coupling in pancreatic beta-cells: role of determinants of mitochondrial ATP production. Diabetes Res Clin Pract 77 Suppl 1:S2-10 13. MacDonald PE, Joseph JW, Rorsman P 2005 Glucose-sensing mechanisms in pancreatic beta-cells. Philos Trans R Soc Lond B Biol Sci 360:2211-2225 14. Brady MJ 2004 IRS2 takes center stage in the development of type 2 diabetes. J Clin Invest 114:886-888 15. White MF 2003 Insulin signaling in health and disease. Science 302:1710-1711 16. Hennige AM, Burks DJ, Ozcan U, Kulkarni RN, Ye J, Park S, Schubert M, Fisher TL, Dow MA, Leshan R, Zakaria M, Mossa-Basha M, White MF 2003 Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest 112:1521-1532 17. Kim SJ, Winter K, Nian C, Tsuneoka M, Koda Y, McIntosh CH 2005 Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J Biol Chem 280:22297-22307 18. Bernal-Mizrachi E, Fatrai S, Johnson JD, Ohsugi M, Otani K, Han Z, Polonsky KS, Permutt MA 2004 Defective insulin secretion and increased susceptibility to experimental diabetes are induced by reduced Akt activity in pancreatic islet beta cells. J Clin Invest 114:928-936 19. Martinez SC, Cras-Meneur C, Bernal-Mizrachi E, Permutt MA 2006 Glucose regulates Foxo1 through insulin receptor signaling in the pancreatic islet beta-cell. Diabetes 55:1581-1591 20. Nakae J, Biggs WH, 3rd, Kitamura T, Cavenee WK, Wright CV, Arden KC, Accili D 2002 Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet 32:245-253 21. Okamoto H, Hribal ML, Lin HV, Bennett WR, Ward A, Accili D 2006 Role of the forkhead protein FoxO1 in beta cell compensation to insulin resistance. J Clin Invest 116:775-782 22. Wang H, Maechler P, Ritz-Laser B, Hagenfeldt KA, Ishihara H, Philippe J, Wollheim CB 2001 Pdx1 level defines pancreatic gene expression pattern and cell lineage differentiation. J Biol Chem 276:25279-25286 23. Brissova M, Shiota M, Nicholson WE, Gannon M, Knobel SM, Piston DW, Wright CV, Powers AC 2002 Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J Biol Chem 277:11225-11232 24. Kushner JA, Ye J, Schubert M, Burks DJ, Dow MA, Flint CL, Dutta S, Wright CV, Montminy MR, White MF 2002 Pdx1 restores beta cell function in Irs2 knockout mice. J Clin Invest 109:1193-1201 25. Johnson JD, Ahmed NT, Luciani DS, Han Z, Tran H, Fujita J, Misler S, Edlund H, Polonsky KS 2003 Increased islet apoptosis in Pdx1+/- mice. J Clin Invest 111:1147-1160 26. Poitout V, Hagman D, Stein R, Artner I, Robertson RP, Harmon JS 2006 Regulation of the insulin gene by glucose and fatty acids. J Nutr 136:873-876 27. Ruderman N, Prentki M 2004 AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nat Rev Drug Discov 3:340-351 28. Prentki M, Joly E, El-Assaad W, Roduit R 2002 Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes 51 Suppl 3:S405-413 29. Long YC, Zierath JR 2006 AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116:1776-1783 30. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D 2003 LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004-2008 31. Ferre P, Azzout-Marniche D, Foufelle F 2003 AMP-activated protein kinase and hepatic genes involved in glucose metabolism. Biochem Soc Trans 31:220-223 32. Foretz M, Carling D, Guichard C, Ferre P, Foufelle F 1998 AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J Biol Chem 273:14767-14771 33. Eto K, Yamashita T, Matsui J, Terauchi Y, Noda M, Kadowaki T 2002 Genetic manipulations of fatty acid metabolism in beta-cells are associated with dysregulated insulin secretion. Diabetes 51 Suppl 3:S414-420 34. Brunham LR, Kruit JK, Verchere CB, Hayden MR 2008 Cholesterol in islet dysfunction and type 2 diabetes. J Clin Invest 118:403-408 35. van Herpen NA, Schrauwen-Hinderling VB 2008 Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav 94:231-241 36. Kao YH, Chang HH, Lee MJ, Chen CL 2006 Tea, obesity, and diabetes. Mol Nutr Food Res 50:188-210 37. Lin CL, Huang HC, Lin JK 2007 Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells. J Lipid Res 48:2334-2343 38. Lin CL, Lin JK 2008 Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells. Mol Nutr Food Res 39. Kawa JM, Taylor CG, Przybylski R 2003 Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. J Agric Food Chem 51:7287-7291 40. Stanley Mainzen Prince P, Kamalakkannan N 2006 Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes. J Biochem Mol Toxicol 20:96-102 41. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, Hogan BL, Wright CV 1996 PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122:983-995 42. Ruderman NB, Saha AK, Vavvas D, Witters LA 1999 Malonyl-CoA, fuel sensing, and insulin resistance. Am J Physiol 276:E1-E18 43. Brun T, Roche E, Kim KH, Prentki M 1993 Glucose regulates acetyl-CoA carboxylase gene expression in a pancreatic beta-cell line (INS-1). J Biol Chem 268:18905-18911 44. Krssak M, Falk Petersen K, Dresner A, DiPietro L, Vogel SM, Rothman DL, Roden M, Shulman GI 1999 Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42:113-116 45. Jacob S, Machann J, Rett K, Brechtel K, Volk A, Renn W, Maerker E, Matthaei S, Schick F, Claussen CD, Haring HU 1999 Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 48:1113-1119 46. Ryysy L, Hakkinen AM, Goto T, Vehkavaara S, Westerbacka J, Halavaara J, Yki-Jarvinen H 2000 Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 49:749-758 47. Prentki M, Corkey BE 1996 Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 45:273-283 48. Mulder H, Lu D, Finley Jt, An J, Cohen J, Antinozzi PA, McGarry JD, Newgard CB 2001 Overexpression of a modified human malonyl-CoA decarboxylase blocks the glucose-induced increase in malonyl-CoA level but has no impact on insulin secretion in INS-1-derived (832/13) beta-cells. J Biol Chem 276:6479-6484 49. El-Assaad W, Buteau J, Peyot ML, Nolan C, Roduit R, Hardy S, Joly E, Dbaibo G, Rosenberg L, Prentki M 2003 Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology 144:4154-4163 50. Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S, Polonsky KS 1998 Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47:358-364 51. Unger RH 2002 Lipotoxic diseases. Annu Rev Med 53:319-336 52. Buteau J, Accili D 2007 Regulation of pancreatic beta-cell function by the forkhead protein FoxO1. Diabetes Obes Metab 9 Suppl 2:140-146 53. Wang H, Maechler P, Antinozzi PA, Herrero L, Hagenfeldt-Johansson KA, Bjorklund A, Wollheim CB 2003 The transcription factor SREBP-1c is instrumental in the development of beta-cell dysfunction. J Biol Chem 278:16622-16629 54. Shimano H, Amemiya-Kudo M, Takahashi A, Kato T, Ishikawa M, Yamada N 2007 Sterol regulatory element-binding protein-1c and pancreatic beta-cell dysfunction. Diabetes Obes Metab 9 Suppl 2:133-139 55. Wild S, Roglic G, Green A, Sicree R, King H 2004 Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047-1053 56. Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G, Diehl AM 2000 Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med 6:998-1003 57. Park S, Dong X, Fisher TL, Dunn S, Omer AK, Weir G, White MF 2006 Exendin-4 uses Irs2 signaling to mediate pancreatic beta cell growth and function. J Biol Chem 281:1159-1168 58. Yki-Jarvinen H 2004 Thiazolidinediones. N Engl J Med 351:1106-1118 59. Anton S, Melville L, Rena G 2007 Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1a and elicits cellular responses in the presence and absence of insulin. Cell Signal 19:378-383 60. Hale PJ, Horrocks PM, Wright AD, Fitzgerald MG, Nattrass M, Bailey CJ 1989 Xiaoke tea, a Chinese herbal treatment for diabetes mellitus. Diabet Med 6:675-676 61. Reaven GM 1988 Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37:1595-1607 62. Reaven G 2002 Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation 106:286-288 63. Ruderman N, Chisholm D, Pi-Sunyer X, Schneider S 1998 The metabolically obese, normal-weight individual revisited. Diabetes 47:699-713 64. Donath MY, Ehses JA, Maedler K, Schumann DM, Ellingsgaard H, Eppler E, Reinecke M 2005 Mechanisms of beta-cell death in type 2 diabetes. Diabetes 54 Suppl 2:S108-113 65. Grill V, Bjorklund A 2000 Dysfunctional insulin secretion in type 2 diabetes: role of metabolic abnormalities. Cell Mol Life Sci 57:429-440 66. Lowell BB, Shulman GI 2005 Mitochondrial dysfunction and type 2 diabetes. Science 307:384-387 67. Maechler P, Wollheim CB 2001 Mitochondrial function in normal and diabetic beta-cells. Nature 414:807-812 68. White MF 2006 Regulating insulin signaling and beta-cell function through IRS proteins. Can J Physiol Pharmacol 84:725-737 69. Dickson LM, Rhodes CJ 2004 Pancreatic beta-cell growth and survival in the onset of type 2 diabetes: a role for protein kinase B in the Akt? Am J Physiol Endocrinol Metab 287:E192-198 70. Biggs WH, 3rd, Meisenhelder J, Hunter T, Cavenee WK, Arden KC 1999 Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A 96:7421-7426 71. Marshak S, Benshushan E, Shoshkes M, Havin L, Cerasi E, Melloul D 2000 Functional conservation of regulatory elements in the pdx-1 gene: PDX-1 and hepatocyte nuclear factor 3beta transcription factors mediate beta-cell-specific expression. Mol Cell Biol 20:7583-7590 72. McGarry JD 2002 Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7-18 73. Lee Y, Hirose H, Ohneda M, Johnson JH, McGarry JD, Unger RH 1994 Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A 91:10878-10882 74. Ide T, Shimano H, Yahagi N, Matsuzaka T, Nakakuki M, Yamamoto T, Nakagawa Y, Takahashi A, Suzuki H, Sone H, Toyoshima H, Fukamizu A, Yamada N 2004 SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol 6:351-357 75. Rabinovitch A, Suarez-Pinzon W, Strynadka K, Ju Q, Edelstein D, Brownlee M, Korbutt GS, Rajotte RV 1999 Transfection of human pancreatic islets with an anti-apoptotic gene (bcl-2) protects beta-cells from cytokine-induced destruction. Diabetes 48:1223-1229 76. Lupi R, Dotta F, Marselli L, Del Guerra S, Masini M, Santangelo C, Patane G, Boggi U, Piro S, Anello M, Bergamini E, Mosca F, Di Mario U, Del Prato S, Marchetti P 2002 Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 51:1437-1442 77. Zhang X, Gaspard JP, Mizukami Y, Li J, Graeme-Cook F, Chung DC 2005 Overexpression of cyclin D1 in pancreatic beta-cells in vivo results in islet hyperplasia without hypoglycemia. Diabetes 54:712-719 78. Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta M, Long SY, Sicinski P, White MF 2005 Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol Cell Biol 25:3752-3762 79. Wolfram S, Wang Y, Thielecke F 2006 Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 50:176-187 80. Zheng G, Sayama K, Okubo T, Juneja LR, Oguni I 2004 Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo 18:55-62 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9902 | - |
dc.description.abstract | 第二型糖尿病,此後天慢性疾病對於現今人類有著重大的威脅,目前以周邊組織產生胰島素抗性與胰臟胰島β細胞功能喪失為主要探討之對象。在長時間因飲食等因素導致肥胖產生下,當體內為因應高代謝負荷量時,胰島β細胞會大量釋出胰島素促使糖類代謝,過去研究發現在肥胖個體上胰島β細胞因應體內代謝需求,產生代償性β細胞增生之現象,如此達到應對體內代謝之需求。但在長期負荷環境下可導致胰島β細胞失去對糖份感受性,最終可促使β細胞走向細胞凋亡一途,當胰島β細胞失去代償作用,同時合併周邊組織胰島素抗性之情況下,往往成為糖尿病致死之因素。過往研究中已顯示茶中富含之EGCG對於抗癌與身體能量之代謝有著顯著之功效。此外,已有研究顯示,蕎麥濃縮萃取物可有效降低於糖尿病模式動物之血糖濃度。因而針對天然物質中茶多酚物EGCG與蕎麥富含之類黃酮Rutin,對於胰島β細胞於高糖濃度的環境下,是否能提供實質上保護作用與其分子機制為何,進行相關研究與探討。
於本實驗研究顯示,EGCG與Rutin皆可以有效增加β細胞對於高糖環境培育下之胰島素釋放,並對長時間培育於高糖環境下之β細胞維持對糖份之感受性,並有效減緩β細胞長期培育於高糖環境下所導致之細胞衰亡之發生,有助於細胞生長與存活。進一步探討其分子機制,Rutin與EGCG可有效促進其PDX-1轉錄因子進入細胞核,並促進其活化。PDX-1為對於胰島發育與β細胞維持正常功能之重要因子,有效活化PDX-1可幫助β細胞生長、胰島素生成與第二型葡萄糖運輸蛋白(Glucose transporter 2)等蛋白質表現,同時發現EGCG於長時間的作用下,更可有效增加PDX-1蛋白質表現量。胰島素接受器受質IRS-2在過去研究顯示,對於β細胞生長、維持糖份感受性和胰島素生成等相關生理功能皆扮演重要角色,而β細胞長期處於高糖環境下會降低IRS-2表現而影響細胞正常功能,在同時給予細胞Rutin與合併於高糖的環境下,發現對於胰島素接受器受質(IRS-2)蛋白質表現量有顯著增加的效果,對於其活性的增加也藉由Rutin與EGCG之給予有著顯著的效果,並有效影響至下游訊號,包括Akt與FoxO1活性之表現。過去研究顯示β細胞在長期高糖環境下會促進細胞內脂肪堆積,造成對細胞的損傷與破壞,直接影響其正常功能運作。EGCG及Rutin於高糖之環境下對於β細胞皆能快速促進活化細胞內之AMPK(AMP-activated protein kinase)此激酶活性,並能有效抑制脂肪酸合成酶FAS(Fatty acid synthase)之生成,同時也抑制乙醯輔酶A羧化酶ACC(Acetyl-CoA carboxylase)活性之上升與脂質合成相關之轉錄因子SREBP1的表現,並有效減緩細胞於高糖環境下細胞內脂肪之囤積。Rutin與EGCG有效幫助胰島β細胞於調控醣類與脂質類代謝,此外,也可藉由影響細胞週期相關之蛋白質表現幫助維持細胞活性與增生,如Cyclin D1與p21,同時也作用於BAX與Bcl-2等蛋白質表現,幫助抑制高糖下導致之細胞凋亡現象。 胰島β細胞於長期高糖環境下,促使其逐漸失去正常生理功能與反應,而EGCG與Rutin兩種物質則可幫助β細胞面對於高糖所誘導產生之毒性,延續其細胞活性與存活能力,可望有效延緩糖尿病致病過程之發展。 | zh_TW |
dc.description.abstract | Pancreatic β cell is a fundamental element for the development of diabetes. Chronic hyperglycemia is associated with insulin insufficiency and peripheral insulin resistance, in which β cells have to meet overloaded metabolic demands, but gradually will cause the deteriorating cell function, even leading to irreversible damage, cell death. The decompensation of pancreatic β cell followed by adaptation of increased demand represents the onset of diabetic progression. Therefore, how to maintain the intact cellular function under long term glucose induced toxicity could be strategies for detaining the progression of diabetes.
Rutin and EGCG, natural occurring compounds, have been abundantly found in buckwheat and tea separately, which have been shown the potential of anti-diabetes and anti-obesity in past studies. The actions of Rutin and EGCG on pancreatic β cell are discussed in this study, manifesting the underlying molecular mechanism in regulating the cellular glucose and lipid metabolism. Rutin and EGCG preserved the glucose sensing and glucose-stimulated insulin secretion ability under high glucose incubation. IRS2 signaling was enhanced in the actions of Rutin and EGCG, facilitating the delivery to downstream signals Akt, FoxO1, and PDX-1, which have been implicated as crucial factors in pancreatic β cell growth and function. AMPK is considered as a fuel sensor that enables to response the cellular energy expenditure, and also exerts numerous regulations in metabolism. AMPK was activated in the treatment and effectively suppressed the cellular lipogenesis via inhibition of FAS expression, inactivation of ACC, and manipulation of SREBP1 maturation. Cyclin D1, p21, Bcl-2, and BAX expression levels are also affected in the treatment of Rutin and EGCG, which enhance the cell viability to deal with chronic exposure of elevated glucose. Long term action of glucose caused multiple abnormalities in metabolism, however, Rutin and EGCG presented comprehensive protection on pancreatic β cell against glucotoxicity, and exhibited the potential to be candidates for anti-diabetes. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:48:24Z (GMT). No. of bitstreams: 1 ntu-97-R95442009-1.pdf: 3364470 bytes, checksum: d94ae198ca0d65f7d5e4568c7a3f4a83 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 中文摘要…………………………………………………………………1
Abstract…………………………………………………………………3 Abbreviations……………………………………………………………5 Introduction……………………………………………………………6 Materials and Methods………………………………………………13 Results…………………………………………………………………18 Discussion………………………………………………………………27 References………………………………………………………………35 Figures…………………………………………………………………47 Appendices………………………………………………………………65 | |
dc.language.iso | zh-TW | |
dc.title | Rutin與EGCG作用於大鼠胰臟β細胞之抗糖毒性機制探討 | zh_TW |
dc.title | Protection of Rat Pancreatic β cells Against Glucotoxicity by Rutin and EGCG | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭水銀(Shoei-yn Lin-Shiau),鍾景光(Jing-Gung Chung),李宣佑(Shuan-Yow Li),何元順(Yuan-Soon Ho) | |
dc.subject.keyword | 糖毒性,糖尿病,胰臟細胞,胰島素感受性, | zh_TW |
dc.subject.keyword | diabetes,EGCG,Rutin,glucotoxicity,insulin, | en |
dc.relation.page | 71 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2008-07-02 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf | 3.29 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。