Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99013Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 許鶴瀚 | zh_TW |
| dc.contributor.advisor | Ho-Han Hsu | en |
| dc.contributor.author | 陳維蓁 | zh_TW |
| dc.contributor.author | Wei-Chen Chen | en |
| dc.date.accessioned | 2025-08-20T16:39:13Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | Aiello, I. W. (2005). Fossil seep structures of the Monterey Bay region and tectonic/structural controls on fluid flow in an active transform margin. Palaeogeography, Palaeoclimatology, Palaeoecology, 227(1-3), 124-142.
Alfaro, P., Delgado, J., Estévez, A., Molina, J., Moretti, M., & Soria, J. (2002). Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain). International Journal of Earth Sciences, 91, 505-513. Alfaro, P., Moretti, M., & Soria, J. M. (1997). Soft-sediment deformation structures induced by earthquakes (seismites) in pliocene lacustrine deposits (Guadix-Baza Basin. Central Betic Cordillera). Eclogae Geologicae Helvetiae, 90(3), 531-540. Allen, J.R.L. (1982) Sedimentary Structures: Their Character and Physical Basis. Developments in Sedimentology, 30. Elsevier, Amsterdam, Vol. 2, 663 pp. Audemard, F. A., & De Santis, F. (1991). Survey of liquefaction structures induced by recent moderate earthquakes. Bulletin of the International Association of Engineering Geology, 44(1), 5-16. Bao, X., Jin, Z., Cui, H., Chen, X., & Xie, X. (2019). Soil liquefaction mitigation in geotechnical engineering: An overview of recently developed methods. Soil Dynamics and Earthquake Engineering, 120, 273-291. Bhattacharya, B., & Saha, A. (2020). Large soft-sediment deformation structures (SSDS) in the Permian Barren Measures Formation, Pranhita-Godavari Valley, India: Potential link to syn-rift palaeoearthquake events. Journal of Palaeogeography, 9, 1-18. Biq, C. (1972). Dual-trench structure in the Taiwan-Luzon region. Proc. Geol. Soc. Chin, 15, 65-75. Bowin, C., Lu, R. S., Lee, C. S., & Schouten, H. (1978). Plate convergence and accretion in Taiwan-Luzon region. AAPG bulletin, 62(9), 1645-1672. Cartwright, J., & Santamarina, C. (2015). Seismic characteristics of fluid escape pipes in sedimentary basins: Implications for pipe genesis. Marine and Petroleum Geology, 65, 126-140. Chai, B. H. (1972). Structure and tectonic evolution of Taiwan. American Journal of Science, 272(5), 389-422. Chang, J. H., Hsu, H. H., Su, C. C., Liu, C. S., Hung, H. T., & Chiu, S. D. (2015). Tectono-sedimentary control on modern sand deposition on the forebulge of the Western Taiwan Foreland Basin. Marine and Petroleum Geology, 66, 970-977. Chang, J. H., Yu, H. S., Hsu, H. H., & Liu, C. S. (2012). Forebulge migration in late Cenozoic Western Taiwan foreland basin. Tectonophysics, 578, 117-125. Chang, K. T., & Jeng, D. S. (2014). Numerical study for wave-induced seabed response around offshore wind turbine foundation in Donghai offshore wind farm, Shanghai, China. Ocean Engineering, 85, 32-43. Chen, J., & Lee, H. S. (2013). Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): Differential liquefaction and fluidization triggered by storm-wave loading. Sedimentary Geology, 288, 81-94. Chi, W. R. (1981). Stratigraphic record of plate interactions in the Coastal Range of eastern Taiwan. Memoir of the Geological Society of China, 4, 155-194. Chien, L. K., Tseng, W. C., Chen, B. C., & Hsu, C. M. (2013, June). The Study of Liquefaction Potential Assessment and Threshold of Liquefaction Resistance of Seabed Soil Under Cyclic Loading. ISOPE International Ocean and Polar Engineering Conference, ISOPE-I. Chou, Y. W., & Yu, H. S. (2002). Structural expressions of flexural extension in the arc-continent collisional foredeep of western Taiwan. Geology and geophysics of an arc-continent collision,Taiwan, vol. 358. Covey, M. (1986). The evolution of foreland basins to steady state: evidence from the western Taiwan foreland basin. Foreland basins, 77-90. Dadson, S. J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651. Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J., Hsu, M., Lin, C., Horng, M., Chen, T., Milliman, J., & Stark, C.P. (2004). Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology, 32(8), 733-736. de Groot, M.B., Bolton, M.D., Foray, P., Meijers, P., Palmer, A.C., Sandven, R., Sawicki, A., Teh, T.C. (2006). Physics of liquefaction phenomena around marine structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 132(4), 227-243. del Valle, L., Pomar, F., Fornós, J. J., Gelabert, B., & Timar-Gabor, A. (2021). Processes and evolution of the Pleistocene coastal sedimentary succession of Es Codolar (Southern Eivissa, Balearic Islands, Western Mediterranean): insights from soft-sediment deformation structures. Environmental Earth Sciences, 80, 1-18. Dunn, S. L., Vun, P. L., Chan, A. H. C., & Damgaard, J. S. (2006). Numerical modeling of wave-induced liquefaction around pipelines. Journal of waterway, port, coastal, and ocean engineering, 132(4), 276-288. Ekwenye, O., Mode, A., Oha, I., & Onah, F. (2020). Soft-sediment deformation in the Campanian-Maastrichtian Deltaic deposits of the Afikpo Sub-basin, South-eastern Nigeria: Recognition of endogenic trigger. Jordan J. Earth Environ. Sci, 11, 1-11. Galewsky, J., Stark, C. P., Dadson, S., Wu, C. C., Sobel, A. H., & Horng, M. J. (2006). Tropical cyclone triggering of sediment discharge in Taiwan. Journal of Geophysical Research: Earth Surface, 111(F3). Gay, A., Lopez, M., Berndt, C., & Seranne, M. (2007). Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Marine Geology, 244(1-4), 68-92. Gay, A., Lopez, M., Cochonat, P., Sultan, N., Cauquil, E., & Brigaud, F. (2003). Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the lower slope of the Congo Basin, West African Margin. In: Van Rensbergen, P., Hillis, R.R., Maltman, A.J., Morley, C.K. (Eds.), Subsurface Sediment Mobilization, Geological Society of London, Special Publication, vol. 216, pp. 173–189. Ho, C. S. (1988). An introduction to the geology of Taiwan: explanatory text of the geologic map of Taiwan. Central Geol. Sur, Taipei, Taiwan. Huang, Y., & Han, X. (2020). Features of earthquake-induced seabed liquefaction and mitigation strategies of novel marine structures. Journal of Marine Science and Engineering, 8(5), 310. Huh, C.-A., Chen, W.F., Hsu, F.-H., Su, C.-C., Chiu, J.-K., Lin, S., Liu, C.-S., Huang, B.-J. (2011). Modern (< 100 years) sedimentation in the Taiwan Strait: Rates and source-to-sink pathways elucidated from radionuclides and particle size distribution. Continental Shelf Research, 31(1), 47-63. Hustoft, S., Bünz, S., & Mienert, J. (2010). Three‐dimensional seismic analysis of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid‐Norway. Basin Research, 22(4), 465-480. Hustoft, S., Mienert, J., Bünz, S., & Nouzé, H. (2007). High-resolution 3D-seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid-Norwegian margin. Marine Geology, 245(1-4), 89-106. James, K. R., Cormier, M. H., & Sloan, H. (2019). Mapping of Tectonic Features Submerged Beneath Lake Azuei, Haiti: Implications for Seismic Hazards. SURFO Technical Report No. 19-02, 42. Kao, S. J., & Milliman, J. D. (2008). Water and sediment discharge from small mountainous rivers, Taiwan: The roles of lithology, episodic events, and human activities. The Journal of Geology, 116(5), 431-448. Kong, D., Deng, M., & Xu, Y. (2019). Study on calculation of pile sliding interval of large-diameter steel pipe piles on offshore platforms. Mathematical Problems in Engineering, 2019. Kuo, Y. S., Lin, C. S., Chai, J. F., Chang, Y. W., & Tseng, Y. H. (2019). Case Study for the Ground Motion Analyses and Seabed Soil Liquefaction Potential of Chang-Bin Offshore Wind Farm. Journal of Marine Science and Technology, 27(5), 7. Liao, H. R., & Ho-Shing, Y. (2005). Morphology, hydrodynamics and sediment characteristics of the Changyun sand ridge offshore western Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 16(3), 621. Liao, H. R., Yu, H. S., & Su, C. C. (2008). Morphology and sedimentation of sand bodies in the tidal shelf sea of eastern Taiwan Strait. Marine Geology, 248(3-4), 161-178. Lin, G. L., Lu, L. Y., Lei, K. T., Liu, K. Y., Ko, Y. Y., & Ju, S. H. (2021). Experimental study on seismic vibration control of an offshore wind turbine with TMD considering soil liquefaction effect. Marine Structures, 77, 102961. Lin, J., Jeng, D. S., Zhao, H., Gao, Y., Liu, J., & Guo, Y. (2023). Recent advances of seabed liquefaction around the vicinity of marine structures. Ocean Engineering, 280, 114660. Liu, J. P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J., & Lin, S. W. (2008). Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256(1-4), 65-76. Loon, A. J. (2009). Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos, 15(1), 3-55. Lowe, D. R. (1975). Water escape structures in coarse‐grained sediments. Sedimentology, 22(2), 157-204. Milliman, J. D., & Kao, S. J. (2005). Hyperpycnal discharge of fluvial sediment to the ocean: impact of super-typhoon Herb (1996) on Taiwanese rivers. The Journal of geology, 113(5), 503-516. Milliman, J. D., Lin, S. W., Kao, S. J., Liu, J. P., Liu, C. S., Chiu, J. K., & Lin, Y. C. (2007). Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Geology, 35(9), 779-782. Moretti, M. (1997). Le strutture sedimentarie deformative. Studio delle modalitadi deformazione e dell’origine attraverso esempi fossili e modellizzazione in laboratorio. Unpublished PhD thesis, University of Bari, 232pp. Moretti, M., & Ronchi, A. (2011). Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquén Basin (Northern Patagonia). Sedimentary Geology, 235(3-4), 200-209. Moretti, M., & Sabato, L. (2007). Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the SantʻArcangelo Basin (Southern Italy): seismic shock vs. overloading. Sedimentary Geology, 196(1-4), 31-45. Moretti, M., Soria, J. M., Alfaro, P., & Walsh, N. (2001). Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, Southern Spain). Facies, 44, 283-294. Neuwerth, R., Suter, F., Guzman, C. A., & Gorin, G. E. (2006). Soft-sediment deformation in a tectonically active area: the Plio-Pleistocene Zarzal Formation in the Cauca Valley (Western Colombia). Sedimentary Geology, 186(1-2), 67-88. Nichols, R. J. (1995). The liquification and remobilization of sandy sediments. Geological Society, London, Special Publications, 94(1), 63-76. Obermeier, S. F. (1996). Use of liquefaction-induced features for paleoseismic analysis—an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, 44(1-4), 1-76. Oliveira, C. M., Hodgson, D. M., & Flint, S. S. (2009). Aseismic controls on in situ soft‐sediment deformation processes and products in submarine slope deposits of the Karoo Basin, South Africa. Sedimentology, 56(5), 1201-1225. Oliveira, C. M., Hodgson, D. M., & Flint, S. S. (2011). Distribution of soft-sediment deformation structures in clinoform successions of the Permian Ecca Group, Karoo Basin, South Africa. Sedimentary Geology, 235(3-4), 314-330. Owen, G. (1987). Deformation processes in unconsolidated sands. Geological Society, London, Special Publications, 29(1), 11-24. Owen, G. (1995). Soft-sediment deformation in upper Proterozoic Torridonian sandstones (Applecross Formation) at Torridon, northwest Scotland. Journal of Sedimentary Research, 65(3a), 495-504. Owen, G. (2003). Load structures: gravity-driven sediment mobilization in the shallow subsurface. Geological Society, London, Special Publications, 216(1), 21-34. Owen, G., & Moretti, M. (2011). Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology, 235(3-4), 141-147. Owen, G. (1985). Mechanism and Controls of Deformation in Unconsolidated Sands: an Experimental Approach. Unpublished Ph.D. Thesis, University of Reading, 2 Vols., 674 pp. Owen, G., Moretti, M., & Alfaro, P. (2011). Recognising triggers for soft-sediment deformation: current understanding and future directions. Sedimentary Geology, 235(3-4), 133-140. Plaza-Faverola, A., Bünz, S., & Mienert, J. (2011). Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles. Earth and Planetary Science Letters, 305(3-4), 297-308. Qi, W. G., & Gao, F. P. (2015). A modified criterion for wave-induced momentary liquefaction of sandy seabed. Theoretical and Applied Mechanics Letters, 5(1), 20-23. Rodrı́guez-Pascua, M. A., Calvo, J. P., De Vicente, G., & Gómez-Gras, D. (2000). Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology, 135(1-4), 117-135. Rollet, N., Logan, G.A., Ryan, G., Judd, A.G., Totterdell, J.M., Glenn, K., Jones, A.T., Kroh, F., Struckmeyer, H.I.M., Kennard, J.M., Earl, K.L. (2009). Shallow gas and fluid migration in the northern Arafura Sea (offshore Northern Australia). Marine and Petroleum Geology, 26(1), 129-147. Rossetti, D. D. F. (1999). Soft‐sediment deformation structures in late Albian to Cenomanian deposits, São Luís Basin, northern Brazil: evidence for palaeoseismicity. Sedimentology, 46(6), 1065-1081. Shanmugam, G. (2017). Global case studies of soft-sediment deformation structures (SSDS): Definitions, classifications, advances, origins, and problems. Journal of Palaeogeography, 6(4), 251-320. Sun, Q., Wu, S., Cartwright, J., & Dong, D. (2012). Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea. Marine Geology, 315, 1-14. Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4, 67-89. Suppe, J. (1984). Kinematics of arc–continent collision, flipping of subduction, and back-arc spreading near Taiwan. Memoir of the Geological Society of China, 6, 21-33. Talukder, A. R. (2012). Review of submarine cold seep plumbing systems: leakage to seepage and venting. Terra Nova, 24(4), 255-272. Taşgin, C. K., & Türkmen, İ. (2009). Analysis of soft-sediment deformation structures in Neogene fluvio-lacustrine deposits of Çaybağı Formation, Eastern Turkey. Sedimentary Geology, 218(1-4), 16-30. Tseng, W. C., Chien, L. K., Chuang, S. T., Tsai, P. C., Hsu, Y. T., Lu, T. T., & Lin, C. K. (2010). Stability assessment for the undersea gas pipeline. Journal of Marine Science and Technology, 18(6), 4. Waldron, J. W., & Gagnon, J. F. (2011). Recognizing soft-sediment structures in deformed rocks of orogens. Journal of Structural Geology, 33(3), 271-279. Wang, F., Song, Y., Liu, S., Tao, C., & Lin, X. (2022). Characteristics and sedimentological significance of acoustic anomalies in silty seabed in the Yellow River subaqueous delta. Continental Shelf Research, 248, 104844. Wang, P., Zhang, B., Qiu, W., & Wang, J. (2011). Soft-sediment deformation structures from the Diexi paleo-dammed lakes in the upper reaches of the Minjiang River, east Tibet. Journal of Asian Earth Sciences, 40(4), 865-872. Wang, S., Zeng, X., Xu, M., Zhang, Y., Zhou, Y., Wei, X., & Lin, X. (2021). Rupture directivity of the 25 November 2018 Taiwan Strait Mw5.8 earthquake and its tectonic implications. Tectonophysics, 809, 228852. Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L., & Nakamura, M. (2008). A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005. Bulletin of the Seismological Society of America, 98(3), 1471-1481. Yan, S., Jia, Z., Liu, W., & Li, J. (2015). Reserch on the Large Diameter and Supper Long Pile Running under Self-Weight in the Ocean Engineering. Journal of Coastal Research, (73), 809-814. Yassir, N. (2003). The role of shear stress in mobilizing deep-seated mud volcanoes: geological and geomechanical evidence from Trinidad and Taiwan. Geol. Soc. Am. Spec. Publ. 216, 461–474. Yu, H. S., & Chou, Y. W. (2001). Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin. Tectonophysics, 333(1-2), 277-291. Zhang, S., Jian, X., Liu, J. T., Wang, P., Chang, Y. P., & Zhang, W. (2022). Climate-driven drainage reorganization of small mountainous rivers in Taiwan (East Asia) since the last glaciation: The Zhuoshui River example. Palaeogeography, Palaeoclimatology, Palaeoecology, 586, 110759. Zhao, H. Y., Jeng, D. S., & Liao, C. C. (2016). Effects of cross-anisotropic soil behaviour on the wave-induced residual liquefaction in the vicinity of pipeline buried in elasto-plastic seabed foundations. Soil Dynamics and Earthquake Engineering, 80, 40-55. Zhao, H. Y., Jeng, D. S., Liao, C. C., & Zhu, J. F. (2017). Three-dimensional modeling of wave-induced residual seabed response around a mono-pile foundation. Coastal Engineering, 128, 1-21. Zhong, N., Jiang, H., Li, H., Su, D., Xu, H., Liang, L., & Fan, J. (2022). The potential of using soft-sediment deformation structures for quantitatively reconstructing paleo-seismic shaking intensity: progress and prospect. Environmental Earth Sciences, 81(16), 408. 李勇,钟建华,邵珠福,毛毳 (2012) 软沉积变形构造的分类和形成机制研究。地质论评,第58卷、第5期,第829-838頁。 邱瑞焜 (2000) 烏坵嶼附近海域的3.5 千赫回聲型態及沉積作用,國立臺灣大學海洋研究所碩士論文,共64頁。 張植翔 (2002) 臺灣海峽東側海域之海床表層沉積物及其可能的沉積作用,國立臺灣大學海洋研究所碩士論文,共100頁。 張嫚珊 (2008) 臺灣海峽東側沉積物之來源及其傳輸途徑,臺灣大學海洋研究所學位論文,共83頁。 許鶴瀚 (2022) 離岸風場海域地質調查及地質環境資訊服務-地質構造及海床底質調查暨資料庫建置(1/4)。經濟部中央地質調查所報告第111-33號,共299頁。 許鶴瀚 (2023) 離岸風場海域地質調查及地質環境資訊服務-地質構造及海床底質調查暨資料庫建置(2/4)。經濟部中央地質調查所報告第112-33號,共499頁。 曾湧翔 (2021) 彰濱外海高解析震測地層及流體特徵分析,臺灣大學海洋研究所學位論文,共106頁。 楊懿丞,許鶴瀚,吳俊鼐,溫修敏,陳姿婷,連政佳,洪瑋廷,劉家瑄 (2020) 地形與震測地層剖面分析於離岸風電場址調查之應用。臺灣能源期刊,第7卷、第3期,第253-268頁。 廖宏儒 (2006) 彰雲潮流沙脊之形貌、沉積作用及演化模式,國立臺灣大學海洋研究所博士論文,共107頁。 廖音瑄 (2020) 中臺灣海峽近岸區沙波的遷移及演化 國立臺灣大學 理學院海洋研究所碩士論文,共151頁。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99013 | - |
| dc.description.abstract | 臺灣海峽中部曾被報導好發流體移棲與土壤液化,但過去之研究較少針對沉積物如何受到流體影響而產生流體移棲及沉積物變形特徵,若能進一步辨識與探討中臺灣海峽的軟質沉積物變形,將有助於更好地瞭解沉積物的變形過程、發育環境、流體移棲機制及對周遭地層可能產生之影響。本研究利用臺灣海峽收集之底質剖面與反射震測資料,辨識不同尺度下的軟質沉積物變形。並透過湧浪效應修正與複反射消除等進階的底質與震測剖面資料處理技術,有效提高本研究所使用的高解析震測成像成果,更提升解釋工作效率與對沉積物特徵辨識之可信度。另藉由穿透深度較深之反射震測剖面,觀察較深部地層有無可能導致變形發生的地質因子。本研究藉由不同的震測相特徵於底質剖面中辨識出荷重型、流體型F1和流體型F2三種軟質沉積物變形型態。流體型F1與荷重型僅於底質剖面資料於淺部地層中辨識,而流體型F2則可於底質剖面及反射震測資料中同時出現,且從震測剖面中可進一步於地層中觀察到大量裂隙出現,故判斷流體型F2可由深部發育並貫穿上部地層,為大尺度之軟質沉積物變形。透過軟質沉積物變形之形貌特徵與分布,結合過往研究之觸發指標,本研究提出中臺灣海峽軟質沉積物變形應有不同觸發機制,推測為地震、快速沉積或波浪等因素。結合軟質沉積物變形尺度與震測相特徵分析,也推論出三種軟質沉積物變形與沉積物液化過程:(1)荷重型為淺層之受壓地層受觸發導致變形,孔隙水與沉積物向上逃逸至海床釋放壓力,沉積物重新排列形成下凹碗狀之軟質沉積物變形;(2)流體型F1為淺層超壓地層受觸發而造成變形,使孔隙水與沉積物逃逸至上覆沉積層,變形結束後於沉積層內部形成不規則狀之軟質沉積物變形;(3)流體型F2為地層深部受壓地層被觸發變形,而孔隙水壓貫穿上覆地層以釋放壓力,最終於地層內形成垂直管狀之軟質沉積物變形。 | zh_TW |
| dc.description.abstract | The central Taiwan Strait is a region prone to fluid migration and soil liquefaction, few studies have investigated these processes from the perspective of soft-sediment deformation structures (SSDS) yet, leaving their formation mechanisms unclear. This study identifies and interprets SSDS using sub-bottom profiler (SBP) and multi-channel seismic (MCS) data. MCS profiles have also been used to examine deeper geological factors potentially responsible for triggering deformation. Advanced processing techniques, including swell filter and demultiple, were applied to enhance data resolution and improve interpretation reliability. These methods significantly enhanced the data quality, boosting both interpretation efficiency and the reliability of identifying SSDS. Based on seismic facies and morphology, three SSDS types have been identified: Load, F1 (irregular-shaped), and F2 (vertical pipe-like) types. Load and F1 types were observed only in SBP profiles, while F2 type appeare in both SBP and MCS data. Significantly, MCS data revealed abundant faults and fractures within the strata, suggesting that the F2 type deforms from depth and penetrates the overlying strata, indicative of large-scale SSDS. This study proposes that earthquakes, rapid sedimentation, and wave activity are likely triggers of SSDS in this region. Correspondingly, three liquefaction processes are inferred: (1) Load type deformations when shallow over-pressured strata release pore fluid to the seafloor, resulting in bowl-shaped features; (2) F1 type deformations when pore fluids escape into overlying strata, producing irregular shapes; and (3) F2 type deformations when deep pore fluids migrate upward, forming vertical pipe-like structures. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:39:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:39:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 v 圖次 vii 表次 x 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究區域與方法 3 1.3 文章架構 3 第二章 區域地質背景與軟質沉積物變形 5 2.1中臺灣海峽地質背景 5 2.2中臺灣海峽沉積物的來源與傳輸 8 2.3軟質沉積物變形 11 2.4軟質沉積物變形之震測相 17 第三章 資料收集與處理 20 3.1資料種類與分布 20 3.2資料概況 22 3.3資料處理與分析 25 3.3.1 底質剖面資料 25 3.3.2 反射震測資料 29 3.4 震測相分析 35 第四章 研究成果 40 4.1底質剖面解釋 40 4.2反射震測剖面解釋 53 4.3底質剖面辨識成果分類 65 4.3.1流體型F1(不規則狀) 65 4.3.2流體型F2(垂直管狀) 66 4.3.3荷重型 66 4.4反射震測剖面辨識成果 74 4.5軟質沉積物變形之尺度比較 79 第五章 討論 83 5.1軟質沉積物變形之觸發機制 83 5.1.1地震觸發機制之探討 85 5.1.2其他觸發機制之探討 91 5.2軟質沉積物變形之過程 101 5.2.1荷重型之變形過程 101 5.2.2流體型F1之變形過程 104 5.2.3流體型F2之變形過程 106 第六章 結論 109 第七章 參考文獻 112 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 軟質沉積物變形 | zh_TW |
| dc.subject | 液化作用 | zh_TW |
| dc.subject | 底質剖面 | zh_TW |
| dc.subject | 反射震測 | zh_TW |
| dc.subject | 臺灣海峽 | zh_TW |
| dc.subject | soft-sediment deformation structure | en |
| dc.subject | Taiwan Strait | en |
| dc.subject | multi-channel seismic | en |
| dc.subject | sub-bottom profiler | en |
| dc.subject | liquefaction | en |
| dc.title | 中臺灣海峽軟質沉積物變形構造分析 | zh_TW |
| dc.title | Soft-sediment deformation structure analysis in the central Taiwan Strait | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉家瑄;陳麗雯;韓為中;張頌平 | zh_TW |
| dc.contributor.oralexamcommittee | Char-Shine Liu;Li-Wen Chen;Wei-Chung Han;Sung-Ping Chang | en |
| dc.subject.keyword | 軟質沉積物變形,液化作用,底質剖面,反射震測,臺灣海峽, | zh_TW |
| dc.subject.keyword | soft-sediment deformation structure,liquefaction,sub-bottom profiler,multi-channel seismic,Taiwan Strait, | en |
| dc.relation.page | 122 | - |
| dc.identifier.doi | 10.6342/NTU202504081 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2026-12-31 | - |
| Appears in Collections: | 海洋研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Until 2026-12-31 | 31.65 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
