請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99011完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周佳靚 | zh_TW |
| dc.contributor.advisor | Chia-Ching Chou | en |
| dc.contributor.author | 王聖元 | zh_TW |
| dc.contributor.author | Sheng-Yuan Wang | en |
| dc.date.accessioned | 2025-08-20T16:38:47Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-14 | - |
| dc.identifier.citation | 參考文獻Uncategorized References
1. Balan, M., J. Mertens, and M.R. Bahubalendruni, Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review. Materials Today Communications, 2023. 34: p. 105285. 2. Momoh, E.O., et al., A state-of-the-art review on the application of auxetic materials in cementitious composites. Thin-Walled Structures, 2024. 196: p. 111447. 3. Montgomery-Liljeroth, E., S. Schievano, and G. Burriesci, Elastic properties of 2D auxetic honeycomb structures-a review. Applied Materials Today, 2023. 30: p. 101722. 4. Adams, R., S. Soe, and P. Theobald, Optimisation of an elastomeric pre-buckled honeycomb helmet liner for advanced impact mitigation. Smart Materials and Structures, 2023. 32(9): p. 095012. 5. Li, J., et al., Harnessing Friction in Intertwined Structures for High‐Capacity Reusable Energy‐Absorbing Architected Materials. Advanced Science, 2022. 9(13): p. 2105769. 6. Nugroho, W.T., et al., Additive manufacturing of re-entrant structures: Well-tailored structures, unique properties, modelling approaches and real applications. Additive Manufacturing, 2023. 78: p. 103829. 7. Luo, C., et al., Design, manufacturing and applications of auxetic tubular structures: A review. Thin-Walled Structures, 2021. 163: p. 107682. 8. Zhang, C., et al., Tunable compressive properties of a novel auxetic tubular material with low stress level. Thin-Walled Structures, 2021. 164: p. 107882. 9. Yang, C., H.D. Vora, and Y. Chang, Behavior of auxetic structures under compression and impact forces. Smart Materials and Structures, 2018. 27(2): p. 025012. 10. Bornengo, D., F. Scarpa, and C. Remillat, Evaluation of hexagonal chiral structure for morphing airfoil concept. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2005. 219(3): p. 185-192. 11. Spadoni, A. and M. Ruzzene, Numerical and experimental analysis of the static compliance of chiral truss-core airfoils. Journal of mechanics of Materials and Structures, 2007. 2(5): p. 965-981. 12. Spadoni, A. and M. Ruzzene, Static aeroelastic response of chiral-core airfoils. Journal of intelligent material Systems and Structures, 2007. 18(10): p. 1067-1075. 13. Bettini, P., et al., Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process. Composites Part B: Engineering, 2010. 41(2): p. 133-147. 14. Alderson, A., et al., Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Composites Science and Technology, 2010. 70(7): p. 1042-1048. 15. Mauko, A., et al., Dynamic deformation behaviour of chiral auxetic lattices at low and high strain-rates. Metals, 2020. 11(1): p. 52. 16. Najafi, M., H. Ahmadi, and G. Liaghat, Evaluation of the mechanical properties of fully integrated 3D printed polymeric sandwich structures with auxetic cores: experimental and numerical assessment. The International Journal of Advanced Manufacturing Technology, 2022. 122(9): p. 4079-4098. 17. Kai, L., et al., Dynamic mechanical performances of enhanced anti-tetra-chiral structure with rolled cross-section ligaments under impact loading. International Journal of Impact Engineering, 2022. 166: p. 104204. 18. Bohara, R.P., et al., Anti-blast and-impact performances of auxetic structures: A review of structures, materials, methods, and fabrications. Engineering structures, 2023. 276: p. 115377. 19. Patpatiya, P., et al., A review on polyjet 3D printing of polymers and multi-material structures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022. 236(14): p. 7899-7926. 20. Jenett, B., et al., Discretely assembled mechanical metamaterials. Science advances, 2020. 6(47): p. eabc9943. 21. Novak, N., et al., Development and characterisation of novel three-dimensional axisymmetric chiral auxetic structures. journal of materials research and technology, 2022. 17: p. 2701-2713. 22. Johnston, R. and Z. Kazancı, Analysis of additively manufactured (3D printed) dual-material auxetic structures under compression. Additive Manufacturing, 2021. 38: p. 101783. 23. Qi, C., F. Jiang, and S. Yang, Advanced honeycomb designs for improving mechanical properties: A review. Composites Part B: Engineering, 2021. 227: p. 109393. 24. Jiao, C. and G. Yan, Design and elastic mechanical response of a novel 3D-printed hexa-chiral helical structure with negative Poisson’s ratio. Materials & Design, 2021. 212: p. 110219. 25. Teraiya, S., S. Vyavahare, and S. Kumar, Parametric investigation for mechanical properties of tetra‐anti‐chiral auxetic structures of polymer under compressive loading. Polymer Engineering & Science, 2022. 62(6): p. 1735-1755. 26. Günaydın, K., et al., In-plane compression behavior of anti-tetrachiral and re-entrant lattices. Smart Materials and Structures, 2019. 28(11): p. 115028. 27. Prall, D. and R.S. Lakes, Properties of a chiral honeycomb with a Poisson's ratio of—1. International Journal of Mechanical Sciences, 1997. 39(3): p. 305-314. 28. Gatt, R., et al., A realistic generic model for anti‐tetrachiral systems. physica status solidi (b), 2013. 250(10): p. 2012-2019. 29. Gün2aydın, K., C. Rea, and Z. Kazancı, Energy absorption enhancement of additively manufactured hexagonal and re-entrant (auxetic) lattice structures by using multi-material reinforcements. Additive Manufacturing, 2022. 59: p. 103076. 30. Kumar, S., et al., Flexural, pull-out, and fractured surface characterization for multi-material 3D printed functionally graded prototype. Journal of Composite Materials, 2020. 54(16): p. 2087-2099. 31. Singh, R., et al., Multi-material additive manufacturing of sustainable innovative materials and structures. Polymers, 2019. 11(1): p. 62. 32. Zhang, Y., et al., In-plane compressive properties of assembled auxetic chiral honeycomb composed of slotted wave plate. Materials & Design, 2022. 221: p. 110956. 33. Park, E.B., Y.C. Jeong, and K. Kang, A novel auxetic sandwich panel for use in structural applications: fabrication and parametric study. Materials Today Communications, 2023. 34: p. 105383. 34. Wei, X., et al. Experimental investigation of stratasys J750 PolyJet printer: Effects of orientation and layer thickness on mechanical properties. in International Manufacturing Science and Engineering Conference. 2019. American Society of Mechanical Engineers. 35. Ghimire, A. and P.-Y. Chen, Mechanical properties of additively manufactured multi-material stiff-soft interfaces: Guidelines to manufacture complex interface composites with tunable properties. Materials & Design, 2024. 238: p. 112677. 36. Akdoğan, E., The effects of high density polyethylene addition to low density polyethylene polymer on mechanical, impact and physical properties. European Journal of Technique (EJT), 2020. 10(1): p. 25-37. 37. Yap, Y.L., et al., Topology optimization and 3D printing of micro-drone: Numerical design with experimental testing. International Journal of Mechanical Sciences, 2023. 237: p. 107771. 38. Lee, W., et al., Effect of cyclic compression and curing agent concentration on the stabilization of mechanical properties of PDMS elastomer. Materials & Design, 2016. 96: p. 470-475. 39. Belhassen, L., et al. Determination of Hyper-viscoelastic Parameters of Elastomeric Materials. in Advances in Mechanical Engineering and Mechanics II: Selected Papers from the 5th Tunisian Congress on Mechanics, CoTuMe 2021, March 22–24, 2021. 2022. Springer. 40. Wu, X., Y. Su, and J. Shi, In-plane impact resistance enhancement with a graded cell-wall angle design for auxetic metamaterials. Composite Structures, 2020. 247: p. 112451. 41. Shinde, M., et al., A critical assessment of the onset strain of densification in the evaluation of energy absorption for additively manufactured cellular materials. Manufacturing Letters, 2024. 41: p. 708-719. 42. Shinde, M., et al., Towards an ideal energy absorber: relating failure mechanisms and energy absorption metrics in additively manufactured AlSi10Mg cellular structures under quasistatic compression. Journal of Manufacturing and Materials Processing, 2022. 6(6): p. 140. 43. Liu, Y., et al., Shape recovery effect and energy absorption of reusable honeycomb structures. Composite Structures, 2025. 352: p. 118708. 44. Stratasys J750 官方範例圖,https://www.git.com.tw/stratasys-polyjet-j55prime 45. DMM.make 3D列印材料介紹,https://make.dmm.com/print/material/rubber-like-mjt-j750/ | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99011 | - |
| dc.description.abstract | 自然界中的仿生設計啟發出多種具備特殊力學行為的結構型態,其中具旋轉單元特性的負泊松比結構(如chiral與anti-tetra chiral)因具備高能量吸收與可回復性,逐漸受到結構工程與材料科學的關注。本研究聚焦於anti-tetra chiral 結構,設計五種剛柔材料交錯配置,探討多材料配置對結構吸能行為、平台穩定性與破壞機制的影響。我們以Stratasys J750 多材料列印機製作七組不同配置之試體,包含軟試體 Agilus Black、硬性試體 Vero Clear 以及五種多材料配置,分別為:半核心與韌帶配置(Half Core & Ligament)、全核心配置(Full Core)、全韌帶配置(Full Ligament)、橫向配置(Horizontal)與縱向配置(Vertical),進而透過力–位移曲線(Force–Displacement Curve)與應變變形行為(Strain-Induced Deformation Behavior)之分析,並輔以影像觀察,探討旋轉展開與局部屈曲等變形機制。結果顯示,當軟材料配置於旋轉主軸區域(如 Half Core & Ligament 與 Vertical 設計)時,可有效延長平台段並降低破壞集中現象。所有設計之試體皆採取對稱幾何設計,包括中心節點配置與韌帶排列方式,目的就是為了確保旋轉展開的一致性與力學行為穩定性,避免受力偏心或變形不均的情形發生。此外,我們以實測數據比較 (Specific Energy Absorption,單位質量能量吸收)、平台載重波動係數(ULC)、與形貌恢復效率(SRE, Shape Recovery Efficiency)等性能指標進一步分析不同材料配置下的吸能能力與結構回復表現。結果顯示,Vertical多材料設計在吸能與穩定性間達成最佳平衡。具體而言,Vertical試體之單位質量能量吸收值為 17996 J/m³,顯著高於其他試體;平台波動載重係數為 1.219。楊氏模數為(163.5 kPa)展現適中強度。整體而言,anti-tetra chiral 結構藉由區域材料配置策略,能達成具可程式化力學回應之目標,提供新一代防護性結構設計之參考依據。 | zh_TW |
| dc.description.abstract | Bio-inspired designs found in nature have led to the development of various structures with unique mechanical behaviors. Among them, negative Poisson’s ratio (NPR) structures characterized by rotational units—such as chiral and anti-tetra chiral designs—have attracted increasing attention in structural engineering and materials science due to their high energy absorption and recoverability. This study focuses on the anti-tetra chiral structure, designing five configurations with alternating rigid and flexible materials to examine how multi-material arrangements affect energy absorption, plateau stability, and failure modes. Seven types of specimens were fabricated using a Stratasys J750 multi-material 3D printer, including two pure-material designs—Agilus Black (flexible) and Vero Clear (rigid)—and five multi-material configurations: Half Core & Ligament, Full Core, Full Ligament, Horizontal, and Vertical. These specimens underwent uniaxial compression tests, with force–displacement curves and strain-induced deformation recorded throughout. Rotational motion and local buckling were analyzed via image-assisted observation. The results indicate that placing flexible materials near the rotational axis (as in the Half Core & Ligament and Vertical designs) effectively extends the plateau stage and mitigates localized failure. All specimens featured geometrical symmetry—including centrally arranged nodes and symmetric ligament layouts—to ensure consistent rotational unfolding and mechanical stability, thereby avoiding eccentric loading and uneven deformation. Performance metrics including Specific Energy Absorption (SEA), Undulation of Load-bearing Capacity (ULC), and Shape Recovery Efficiency (SRE) were evaluated to compare energy absorption and recoverability across configurations. The Vertical design demonstrated the best balance between energy absorption and structural stability, achieving an SEA of 17,996 J/m³, a ULC of 1.219, and a Young’s modulus of 163.5 kPa—indicating moderate stiffness.
Overall, the anti-tetra chiral structure illustrates the potential of programmable mechanical responses through region-specific material placement strategies, offering valuable insights for the design of next-generation protective structures. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:38:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:38:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
致謝 i 中文摘要 iii ABSTRACT iv 目次 vi 圖次 x 表次 xvi 第1章 緒論 1 1.1、 文獻回顧 1 1.1.1 能量吸收與防護應用需求 1 1.1.2 傳統結構限制與Chiral結構優勢 1 1.1.3 Anti-tetra chiral 結構的吸能潛力 3 1.1.4 材料選擇與3D列印技術對拉脹結構應用之推進 5 1.2、 金屬與聚合物材料在拉脹結構中的應用 7 1.2.1 材料選擇與性能對比 7 1.2.2 材料複合應用的潛力 8 1.3、 研究動機與背景 9 1.4、 論文架構 13 第2章 Anti-tetra chiral之結構介紹與設計邏輯 16 2.1、 結構原型與設計基礎 16 2.1.1 結構的單元格設計特性 16 2.1.2 3D列印過程中的製程挑戰與控制策略 18 2.2、 Chiral結構抽象化與幾何分類 19 2.3、 中心旋轉機制之機構分析與理論建模 20 2.3.1 Anti-tetra chiral 結構之旋轉機制與彎曲理論模型 20 2.4、 文獻基礎之旋轉變形機制解析與材料配置影響 24 2.4.1 純材料結構的旋轉行為觀察 24 2.4.2 多材料文獻試體的機制特徵 25 2.4.3 結構組態與材料對變形行為的影響 26 2.5、 內旋與側排傾倒模式比較 26 2.5.1 輔助結構的典型變形模式:旋轉 (內旋) 26 2.5.2 多材料之硬軟材料對變形模式的影響 27 2.5.3 Anti-tetra chiral 設計結構之綜合比較與結論 29 第3章 實驗製程列印流程與壓縮試驗設定 33 3.1、 列印設備與材料介紹 33 3.1.1 Stratasys J750 多材料列印機介紹 33 3.1.2 使用材料介紹:Agilus Black™ 與 Vero Clear™ 34 3.2、 模型與元件設計概述 35 3.2.1 單元格設計與尺寸設定 35 3.2.2 J750多材料配置考量 36 3.2.3 多材料配置分類說明 38 3.3、 列印流程與預處理步驟 41 3.3.1 模型切層與支撐生成 42 3.3.2 材料指定與交錯設定 42 3.3.3 列印參數與品質控管 44 3.4、 壓縮試驗設計與流程 47 3.4.1 試驗架構與設備配置 47 3.4.2 ASTM D575 試驗原則與本研究調整 48 3.4.3 試驗速度、重複次數與施力方向設定 49 3.5、 分析方法與觀察指標 51 3.5.1 變形機制與局部破壞觀察 53 3.5.2 平均壓縮載重與平台載重波動係數 54 3.5.3 單位質量能量吸收與總吸收能 55 3.5.4 操作影片與試體變形機制圖輔助分析 55 第4章 多材料 Anti-tetra Chiral 結構之製程與變形機制分析 56 4.1、 製程觀察與基本結構驗證 56 4.2、 單材料結構之實驗結果與行為分析 60 4.2.1 Agilus Black 與 Vero Clear 之壓縮載重與有效應力應變行為分析 60 4.2.2 變形行為與形貌演化比較 63 4.2.3 綜合評析:材料特性對結構行為之影響 64 4.3、 多材料配置結構之行為分析與對比 67 4.3.1 壓縮曲線觀察與趨勢比較 67 4.3.2 旋轉行為與局部變形機制分析 69 4.3.3 多材料設計之機制驗證與文獻對比 73 4.3.4 多材料結構間之性能關聯與機制分析 79 4.4、 製程整體建議以及結構補強策略 87 第5章 吸能性能與力學指標之整體比較力學性能表現與構型比較探討 92 5.1、 多材料不同核心韌帶配置對能量吸收表現之影響 92 5.2、 單材料與多材料之能量與穩定性指標以及楊氏模數結果分析 121 5.3、 綜合性能比較與設計策略建議 139 第6章 結論與未來展望 145 6.1、 結論 145 6.2、 未來展望 147 附錄:術語與縮寫對照表 149 參考文獻 152 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 多材料設計 | zh_TW |
| dc.subject | anti-tetra chiral結構 | zh_TW |
| dc.subject | 3D列印實驗 | zh_TW |
| dc.subject | 力學穩定性 | zh_TW |
| dc.subject | 能量吸收 | zh_TW |
| dc.subject | energy absorption | en |
| dc.subject | mechanical stability | en |
| dc.subject | 3D printing experiments | en |
| dc.subject | multi-material design | en |
| dc.subject | Anti-tetra chiral structure | en |
| dc.title | 多材料 anti-tetra chiral 結構於準靜態壓縮下力學行為機制分析 | zh_TW |
| dc.title | Energy Absorption and Deformation Mechanisms of Multi-material anti-tetra chiral Structures under Quasi-static Compression | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃仲偉;張書瑋;劉立偉 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Wei Huang;Shu-Wei Chang;Li-Wei Liu | en |
| dc.subject.keyword | anti-tetra chiral結構,多材料設計,能量吸收,力學穩定性,3D列印實驗, | zh_TW |
| dc.subject.keyword | Anti-tetra chiral structure,multi-material design,energy absorption,mechanical stability,3D printing experiments, | en |
| dc.relation.page | 154 | - |
| dc.identifier.doi | 10.6342/NTU202504220 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
