請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99010完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳仁治 | zh_TW |
| dc.contributor.advisor | Jen-Chih Chen | en |
| dc.contributor.author | 李伯倫 | zh_TW |
| dc.contributor.author | Po-Lun Lee | en |
| dc.date.accessioned | 2025-08-20T16:38:34Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-14 | - |
| dc.identifier.citation | Abe, M., Y. Kobayashi, S. Yamamoto, Y. Daimon, A. Yamaguchi, Y. Ikeda, et al. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309: 1052-1056. doi:10.1126/science.1115983.
Alabadí, D., T. Oyama, M.J. Yanovsky, F.G. Harmon, P. Más and S.A. Kay. 2001. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293: 880-883. doi:10.1126/science.1061320. Amasino, R. 2010. Seasonal and developmental timing of flowering. Plant J 61: 1001-1013. doi:10.1111/j.1365-313X.2010.04148.x. Ausín, I., C. Alonso-Blanco, J.A. Jarillo, L. Ruiz-García and J.M. Martínez-Zapater. 2004. Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet 36: 162-166. doi:10.1038/ng1295. Bai, B., J. Zhao, Y. Li, F. Zhang, J. Zhou, F. Chen, et al. 2016. OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice. Plant Sci 247: 25-34. doi:10.1016/j.plantsci.2016.02.017. Bai, J., X. Lei, J. Liu, Y. Huang, L. Bi, Y. Wang, et al. 2024. The strigolactone receptor DWARF14 regulates flowering time in Arabidopsis. The Plant Cell 36: 4752-4767. doi:10.1093/plcell/koae248. Bandara, W.W., W.S.S. Wijesundera and C. Hettiarachchi. 2022. Rice and Arabidopsis BBX proteins: toward genetic engineering of abiotic stress resistant crops. 3 Biotech 12: 164. doi:10.1007/s13205-022-03228-w. Blazquez, M.A., R. Green, O. Nilsson, M.R. Sussman and D. Weigel. 1998. Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter. Plant Cell 10: 791-800. doi:10.1105/tpc.10.5.791. Bratzel, F. and F. Turck. 2015. Molecular memories in the regulation of seasonal flowering: from competence to cessation. Genome Biol 16: 192. doi:10.1186/s13059-015-0770-6. Buban, T. and M. Faust. 2011. Flower bud induction in apple trees: internal control and differentiation. p. 174-203. Cao, J., J. Yuan, Y. Zhang, C. Chen, B. Zhang, X. Shi, et al. 2023. Multi-layered roles of BBX proteins in plant growth and development. Stress Biol 3: 1. doi:10.1007/s44154-022-00080-z. Castro Marín, I., I. Loef, L. Bartetzko, I. Searle, G. Coupland, M. Stitt, et al. 2011. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta 233: 539-552. doi:10.1007/s00425-010-1316-5. Cha, J.-K., K. O’Connor, S. Alahmad, J.-H. Lee, E. Dinglasan, H. Park, et al. 2022. Speed vernalization to accelerate generation advance in winter cereal crops. Molecular Plant 15: 1300-1309. doi:https://doi.org/10.1016/j.molp.2022.06.012. Cho, H., I. Choi, Z. Shahzad, F. Brandizzi and H. Rouached. 2025. Nutrient cues control flowering time in plants. Trends Plant Sci. doi: https://doi.org/10.1016/j.tplants.2025.05.010. Chory, J. 2010. Light signal transduction: an infinite spectrum of possibilities. Plant J 61: 982-991. doi:10.1111/j.1365-313X.2009.04105.x. Clough, S.J. and A.F. Bent. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743. doi:10.1046/j.1365-313x.1998.00343.x. Collard, B.C. and D.J. Mackill. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363: 557-572. doi:10.1098/rstb.2007.2170. Corbesier, L., C. Vincent, S. Jang, F. Fornara, Q. Fan, I. Searle, et al. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316: 1030-1033. doi:10.1126/science.1141752. Crocco, C.D., A. Locascio, C.M. Escudero, D. Alabadí, M.A. Blázquez and J.F. Botto. 2015. The transcriptional regulator BBX24 impairs DELLA activity to promote shade avoidance in Arabidopsis thaliana. Nat Commun 6: 6202. doi:10.1038/ncomms7202. Cucinotta, M., A. Cavalleri, J.W. Chandler and L. Colombo. 2021. Auxin and flower development: a blossoming field. Cold Spring Harb Perspect Biol 13. doi:10.1101/cshperspect.a039974. D'Aloia, M., D. Bonhomme, F. Bouché, K. Tamseddak, S. Ormenese, S. Torti, et al. 2011. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65: 972-979. doi:10.1111/j.1365-313X.2011.04482.x. Datta, S., C. Hettiarachchi, H. Johansson and M. Holm. 2007. SALT TOLERANCE HOMOLOG2, a B-Box protein in Arabidopsis that activates transcription and positively regulates light-mediated development. The Plant Cell 19: 3242-3255. doi:10.1105/tpc.107.054791. Datta, S., G.H.C.M. Hettiarachchi, X.-W. Deng and M. Holm. 2006. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. Plant Cell 18: 70. doi:10.1105/tpc.105.038182. De Bodt, S., J. Raes, Y. Van de Peer and G. Theißen. 2003. And then there were many: MADS goes genomic. Trends Plant Sci 8: 475-483. doi: https://doi.org/10.1016/j.tplants.2003.09.006. Deng, W., H. Ying, C.A. Helliwell, J.M. Taylor, W.J. Peacock and E.S. Dennis. 2011. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc Natl Acad Sci U S A 108: 6680-6685. doi:10.1073/pnas.1103175108. Ding, Z., A.J. Millar, A.M. Davis and S.J. Davis. 2007. TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock. Plant Cell 19: 1522-1536. doi:10.1105/tpc.106.047241. Doyle, M.R., S.J. Davis, R.M. Bastow, H.G. McWatters, L. Kozma-Bognár, F. Nagy, et al. 2002. The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419: 74-77. doi:10.1038/nature00954. Dukovski, D., R. Bernatzky and S. Han. 2006. Flowering induction of Guzmania by ethylene. Sci Hortic - SCI HORT-AMSTERDAM 110: 104-108. doi:10.1016/j.scienta.2006.05.004. Dunlap, J.C. 1999. Molecular bases for circadian clocks. Cell 96: 271-290. doi:10.1016/S0092-8674(00)80566-8. Fleet, C.M. and T.-p. Sun. 2005. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8: 77-85. doi: https://doi.org/10.1016/j.pbi.2004.11.015. Fornara, F., A. de Montaigu and G. Coupland. 2010. SnapShot: Control of flowering in Arabidopsis. Cell 141: 550, 550.e551-552. doi:10.1016/j.cell.2010.04.024. Fujiwara, S., A. Oda, R. Yoshida, K. Niinuma, K. Miyata, Y. Tomozoe, et al. 2008. Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20: 2960-2971. doi:10.1105/tpc.108.061531. Gómez-Ocampo, G., E.L. Ploschuk, A. Mantese, C.D. Crocco and J.F. Botto. 2021. BBX21 reduces abscisic acid sensitivity, mesophyll conductance and chloroplast electron transport capacity to increase photosynthesis and water use efficiency in potato plants cultivated under moderated drought. Plant J 108: 1131-1144. doi:10.1111/tpj.15499. Gangappa, S.N. and J.F. Botto. 2014. The BBX family of plant transcription factors. Trends Plant Sci 19: 460-470. doi:10.1016/j.tplants.2014.01.010. Godfray, H.C.J., J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, et al. 2010. Food security: the challenge of feeding 9 billion people. Science 327: 812-818. doi:doi:10.1126/science.1185383. Graeff, M., D. Straub, T. Eguen, U. Dolde, V. Rodrigues, R. Brandt, et al. 2016. MicroProtein-wediated recruitment of CONSTANS into a TOPLESS trimeric complex represses flowering in Arabidopsis. PLoS Genet 12: e1005959. doi:10.1371/journal.pgen.1005959. Gustafson-Brown, C., B. Savidge and M.F. Yanofsky. 1994. Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76: 131-143. doi:10.1016/0092-8674(94)90178-3. Hanano, S. and K. Goto. 2011. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23: 3172-3184. doi:10.1105/tpc.111.088641. Hayama, R., L. Sarid-Krebs, R. Richter, V. Fernández, S. Jang and G. Coupland. 2017. PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length. Embo j 36: 904-918. doi: 10.15252/embj.201693907. Hazen, S.P., T.F. Schultz, J.L. Pruneda-Paz, J.O. Borevitz, J.R. Ecker and S.A. Kay. 2005. LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci U S A 102: 10387-10392. doi: 10.1073/pnas.0503029102. He, Y., S.D. Michaels and R.M. Amasino. 2003. Regulation of flowering time by histone acetylation in Arabidopsis. Science 302: 1751-1754. doi:10.1126/science.1091109. Heng, Y., F. Lin, Y. Jiang, M. Ding, T. Yan, H. Lan, et al. 2019. B-Box containing proteins BBX30 and BBX31, acting downstream of HY5, negatively regulate photomorphogenesis in Arabidopsis. Plant Physiol 180: 497-508. doi:10.1104/pp.18.01244. Heo, J.B. and S. Sung. 2011. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science (New York, N.Y.) 331: 76. doi: 10.1126/science.1197349. Holm, M., C.S. Hardtke, R. Gaudet and X.W. Deng. 2001. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. Embo j 20: 118-127. doi:10.1093/emboj/20.1.118. Holtan, H.E., S. Bandong, C.M. Marion, L. Adam, S. Tiwari, Y. Shen, et al. 2011. BBX32, an Arabidopsis B-box protein, functions in light signaling by suppressing HY5-regulated gene expression and interacting with STH2/BBX21 Plant Physiol 156: 2109-2123. doi:10.1104/pp.111.177139. Hornyik, C., L.C. Terzi and G.G. Simpson. 2010. The spen family protein FPA controls alternative cleavage and polyadenylation of RNA. Dev Cell 18: 203-213. doi:10.1016/j.devcel.2009.12.009. Hu, X., X. Kong, C. Wang, L. Ma, J. Zhao, J. Wei, et al. 2014. Proteasome-mediated degradation of FRIGIDA modulates flowering time in Arabidopsis during Vernalization. Plant Cell 26: 4763. doi:10.1105/tpc.114.132738. Huang, W., P. Pérez-García, A. Pokhilko, A.J. Millar, I. Antoshechkin, J.L. Riechmann, et al. 2012. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336: 75-79. doi: 10.1126/science.1219075. Imaizumi, T., T.F. Schultz, F.G. Harmon, L.A. Ho and S.A. Kay. 2005. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309: 293-297. doi:doi:10.1126/science.1110586. Immink, R.G.H., D. Posé, S. Ferrario, F. Ott, K. Kaufmann, F.L. Valentim, et al. 2012. Characterization of SOC1’s central role in flowering by the identification of its upstream and downstream regulators Plant Physiol 160: 433-449. doi: 10.1104/pp.112.202614. Iqbal, N., N.A. Khan, A. Ferrante, A. Trivellini, A. Francini and M.I.R. Khan. 2017. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci 8: 475. doi:10.3389/fpls.2017.00475. Ito, S., H. Kawamura, Y. Niwa, N. Nakamichi, T. Yamashino and T. Mizuno. 2009. A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1 (TOC1) gene. Plant Cell Physiol 50: 290-303. doi:10.1093/pcp/pcn198. Jiang, L., Y. Wang, Q.F. Li, L.O. Björn, J.X. He and S.S. Li. 2012. Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity. Cell Res 22: 1046-1057. doi:10.1038/cr.2012.34. Jing, Y. and R. Lin. 2020. Transcriptional regulatory network of the light signaling pathways. New Phytol 227: 683-697. doi:10.1111/nph.16602. Job, N., P. Yadukrishnan, K. Bursch, S. Datta and H. Johansson. 2018. Two B-box proteins regulate photomorphogenesis by oppositely modulating HY5 through their diverse C-terminal domains. Plant Physiol 176: 2963-2976. doi:10.1104/pp.17.00856. Jung, C. and A.E. Müller. 2009. Flowering time control and applications in plant breeding. Trends Plant Sci 14: 563-573. doi:10.1016/j.tplants.2009.07.005. Karapetyan, S. and X. Dong. 2018. Redox and the circadian clock in plant immunity: A balancing act. Free Radic Biol Med 119: 56-61. doi: 10.1016/j.freeradbiomed.2017.12.024. Kazan, K. and R. Lyons. 2015. The link between flowering time and stress tolerance. J Exp Bot 67: 47-60. doi:10.1093/jxb/erv441. Khanna, R., B. Kronmiller, D.R. Maszle, G. Coupland, M. Holm, T. Mizuno, et al. 2009. The Arabidopsis B-box zinc finger family. Plant Cell 21: 3416-3420. doi:10.1105/tpc.109.069088. Kim, H., S.J. Park, Y. Kim and H.G. Nam. 2020. Subcellular localization of GIGANTEA regulates the timing of leaf senescence and flowering in Arabidopsis. Front Plant Sci 11: 589707. doi:10.3389/fpls.2020.589707. Klug, A. and J.W. Schwabe. 1995. Protein motifs 5. Zinc fingers. Faseb j 9: 597-604. Lazaro, A., A. Mouriz, M. Piñeiro and J.A. Jarillo. 2015. Red light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis. Plant Cell 27: 2437-2454. doi:10.1105/tpc.15.00529. Lazaro, A., F. Valverde, M. Piñeiro and J.A. Jarillo. 2012. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell 24: 982-999. doi:10.1105/tpc.110.081885. Ledger, S., C. Strayer, F. Ashton, S.A. Kay and J. Putterill. 2001. Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J 26: 15-22. doi:10.1046/j.1365-313x.2001.01003.x. Lee, I., M.J. Aukerman, S.L. Gore, K.N. Lohman, S.D. Michaels, L.M. Weaver, et al. 1994. Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6: 75-83. doi:10.1105/tpc.6.1.75. Lee, P.-L. and J.-T. Chen. 2014. Plant regeneration via callus culture and subsequent in vitro flowering of Dendrobium huoshanense. Acta Physiol. Plant 36. doi:10.1007/s11738-014-1632-7. Lee, Y.S., D.H. Jeong, D.Y. Lee, J. Yi, C.H. Ryu, S.L. Kim, et al. 2010. OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J 63: 18-30. doi:10.1111/j.1365-313X.2010.04226.x. Lee, Z., S. Kim, S.J. Choi, E. Joung, M. Kwon, H.J. Park, et al. 2023. Regulation of flowering time by environmental factors in plants. Plants 12: 3680. Legris, M., C. Klose, E.S. Burgie, C.C.R. Rojas, M. Neme, A. Hiltbrunner, et al. 2016. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354: 897-900. doi:doi:10.1126/science.aaf5656. Li, C., A. Distelfeld, A. Comis and J. Dubcovsky. 2011. Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes. Plant J 67: 763-773. doi:10.1111/j.1365-313X.2011.04630.x. Li, F., J. Sun, D. Wang, S. Bai, A.K. Clarke and M. Holm. 2014. The B-box family gene STO (BBX24) in Arabidopsis thaliana regulates flowering time in different pathways. PLoS One 9: e87544. doi:10.1371/journal.pone.0087544. Li, K., R. Yu, L.M. Fan, N. Wei, H. Chen and X.W. Deng. 2016. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat Commun 7: 11868. doi:10.1038/ncomms11868. Li, X., Q. Wang, X. Yu, H. Liu, H. Yang, C. Zhao, et al. 2011. Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Proc Natl Acad Sci 108: 20844-20849. doi:doi:10.1073/pnas.1114579108. Li, Y.H., Q.S. Wu, X. Huang, S.H. Liu, H.N. Zhang, Z. Zhang, et al. 2016. Molecular cloning and characterization of four genes encoding ethylene receptors associated with pineapple (Ananas comosus L.) flowering. Front Plant Sci 7: 710. doi:10.3389/fpls.2016.00710. Li, Z. and Y. He. 2020. Roles of brassinosteroids in plant reproduction. Int J Mol Sci 21: 872. doi:10.3390/ijms21030872. Liao, Y.T., S.S. Lin, S.J. Lin, W.T. Sun, B.N. Shen, H.P. Cheng, et al. 2019. Structural insights into the interaction between phytoplasmal effector causing phyllody 1 and MADS transcription factors. Plant J 100: 706-719. doi:10.1111/tpj.14463. Libault, M., J. Wan, T. Czechowski, M. Udvardi and G. Stacey. 2007. Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol Plant Microbe Interact 20: 900-911. doi:10.1094/mpmi-20-8-0900. Lin, F., Y. Jiang, J. Li, T. Yan, L. Fan, J. Liang, et al. 2018. B-BOX DOMAIN PROTEIN28 negatively regulates photomorphogenesis by repressing the activity of transcription factor HY5 and Undergoes COP1-mediated degradation. Plant Cell 30: 2006-2019. doi:10.1105/tpc.18.00226. Liu, F., S. Marquardt, C. Lister, S. Swiezewski and C. Dean. 2010. Targeted 3' processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327: 94-97. doi:10.1126/science.1180278. Liu, H., F. Gu, S. Dong, W. Liu, H. Wang, Z. Chen, et al. 2016. CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway. Biochem Biophys Res Commun 479: 173-178. doi:10.1016/j.bbrc.2016.09.013. Liu, H., X. Yu, K. Li, J. Klejnot, H. Yang, D. Lisiero, et al. 2008. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322: 1535-1539. doi:10.1126/science.1163927. Liu, L.-J., Y.-C. Zhang, Q.-H. Li, Y. Sang, J. Mao, H.-L. Lian, et al. 2008. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20: 292-306. doi:10.1105/tpc.107.057281. Liu, L.J., Y.C. Zhang, Q.H. Li, Y. Sang, J. Mao, H.L. Lian, et al. 2008. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20: 292-306. doi:10.1105/tpc.107.057281. Liu, Y., X. Li, D. Ma, Z. Chen, J.W. Wang and H. Liu. 2018. CIB1 and CO interact to mediate CRY2 dependent regulation of flowering. EMBO reports 19: e45762. doi:https://doi.org/10.15252/embr.201845762. Liu, Y., G. Lin, C. Yin and Y. Fang. 2020. B-box transcription factor 28 regulates flowering by interacting with constans. Sci Rep 10: 17789. doi:10.1038/s41598-020-74445-7. Liu, Y., C. Luo, X.-J. Zhang, X.-X. Lu, H.-X. Yu, X.-J. Xie, et al. 2020. Overexpression of the mango MiCO gene delayed flowering time in transgenic Arabidopsis. Plant Cell, Tissue and Organ Culture (PCTOC) 143. doi:10.1007/s11240-020-01894-3. Locke, J.C., M.M. Southern, L. Kozma-Bognár, V. Hibberd, P.E. Brown, M.S. Turner, et al. 2005. Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 1: 2005.0013. doi:10.1038/msb4100018. Lu, S.X., C.J. Webb, S.M. Knowles, S.H. Kim, Z. Wang and E.M. Tobin. 2012. CCA1 and ELF3 interact in the control of hypocotyl length and flowering time in Arabidopsis. Plant Physiol 158: 1079-1088. doi:10.1104/pp.111.189670. Macknight, R., I. Bancroft, T. Page, C. Lister, R. Schmidt, K. Love, et al. 1997. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89: 737-745. doi:10.1016/s0092-8674(00)80256-1. Martin-Tryon, E.L., J.A. Kreps and S.L. Harmer. 2006. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation. Plant Physiol 143: 473-486. doi:10.1104/pp.106.088757. Martínez, C., E. Pons, G. Prats and J. León. 2004. Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37: 209-217. doi:10.1046/j.1365-313x.2003.01954.x. McClung, C.R. 2006. Plant circadian rhythms. Plant Cell 18: 792-803. doi:10.1105/tpc.106.040980. McWatters, H.G., E. Kolmos, A. Hall, M.R. Doyle, R.M. Amasino, P. Gyula, et al. 2007. ELF4 is required for oscillatory properties of the circadian clock. Plant Physiol 144: 391-401. doi:10.1104/pp.107.096206. Michaels, S.D. and R.M. Amasino. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell 11: 949. doi:10.1105/tpc.11.5.949. Michaels, S.D., E. Himelblau, S.Y. Kim, F.M. Schomburg and R.M. Amasino. 2005. Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol 137: 149-156. doi:10.1104/pp.104.052811. Mikkelsen, M.D. and M.F. Thomashow. 2009. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J 60: 328-339. doi:10.1111/j.1365-313X.2009.03957.x. Mizoguchi, T., K. Wheatley, Y. Hanzawa, L. Wright, M. Mizoguchi, H.R. Song, et al. 2002. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell 2: 629-641. doi:10.1016/s1534-5807(02)00170-3. Más, P. 2008. Circadian clock function in Arabidopsis thaliana: time beyond transcription. Trends Cell Biol 18: 273-281. doi:10.1016/j.tcb.2008.03.005. Más, P., W.-Y. Kim, D.E. Somers and S.A. Kay. 2003. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426: 567-570. doi:10.1038/nature02163. Mockler, T.C., X. Yu, D. Shalitin, D. Parikh, T.P. Michael, J. Liou, et al. 2004. Regulation of flowering time in Arabidopsis by K homology domain proteins. Proc Natl Acad Sci 101: 12759-12764. doi:doi:10.1073/pnas.0404552101. Monte, E., J.M. Alonso, J.R. Ecker, Y. Zhang, X. Li, J. Young, et al. 2003. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. The Plant Cell 15: 1962-1980. doi:10.1105/tpc.012971. Murase, K., Y. Hirano, T.P. Sun and T. Hakoshima. 2008. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456: 459-463. doi:10.1038/nature07519. Nagel, Dawn H. and Steve A. Kay. 2012. Complexity in the wiring and regulation of plant circadian entworks. Curr Biol 22: R648-R657. doi:https://doi.org/10.1016/j.cub.2012.07.025. Nakamichi, N., T. Kiba, R. Henriques, T. Mizuno, N.-H. Chua and H. Sakakibara. 2010. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. The Plant Cell 22: 594-605. doi:10.1105/tpc.109.072892. Nakamichi, N., M. Kita, S. Ito, T. Yamashino and T. Mizuno. 2005. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46: 686-698. doi:10.1093/pcp/pci086. Nakamichi, N., M. Kusano, A. Fukushima, M. Kita, S. Ito, T. Yamashino, et al. 2009. Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant & Cell Physiol 50: 447-462. doi:10.1093/pcp/pcp004. Nakamichi, N., S. Takao, T. Kudo, T. Kiba, Y. Wang, T. Kinoshita, et al. 2016. Improvement of Arabidopsis biomass and cold, drought and salinity stress tolerance by modified circadian clock-associated PSEUDO-RESPONSE REGULATORs. Plant & Cell Physiol 57: 1085-1097. doi:10.1093/pcp/pcw057. Nusinow, D.A., A. Helfer, E.E. Hamilton, J.J. King, T. Imaizumi, T.F. Schultz, et al. 2011. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475: 398-402. doi:10.1038/nature10182. Ogas, J. 1998. Plant hormones: Dissecting the gibberellin response pathway. Curr Biol 8: R165-R167. doi:https://doi.org/10.1016/S0960-9822(98)70101-0. Osterlund, M.T., C.S. Hardtke, N. Wei and X.W. Deng. 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405: 462-466. doi:10.1038/35013076. Paajanen, P., L. Lane de Barros Dantas and A.N. Dodd. 2021. Layers of crosstalk between circadian regulation and environmental signalling in plants. Curr Biol 31: R399-r413. doi:10.1016/j.cub.2021.03.046. Para, A., E.M. Farré, T. Imaizumi, J.L. Pruneda-Paz, F.G. Harmon and S.A. Kay. 2007. PRR3 is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. Plant Cell 19: 3462-3473. doi:10.1105/tpc.107.054775. Park, H.-Y., S.-Y. Lee, H.-Y. Seok, S.-H. Kim, Z.R. Sung and Y.-H. Moon. 2011. EMF1 interacts with EIP1, EIP6 or EIP9 involved in the regulation of flowering time in Arabidopsis. Plant & Cell Physiol 52: 1376-1388. doi:10.1093/pcp/pcr084. Podolec, R., T.B. Wagnon, M. Leonardelli, H. Johansson and R. Ulm. 2022. Arabidopsis B-box transcription factors BBX20-22 promote UVR8 photoreceptor-mediated UV-B responses. Plant J 111: 422-439. doi:10.1111/tpj.15806. Potchanasin, P., K. Sringarm, P. Sruamsiri and K.F. Bangerth. 2009. Floral induction (FI) in longan (Dimocarpus longan, Lour.) trees: Part I. Low temperature and potassium chlorate effects on FI and hormonal changes exerted in terminal buds and sub-apical tissue. Sci Hort 122: 288-294. doi: https://doi.org/10.1016/j.scienta.2009.06.008. Preuss, S.B., R. Meister, Q. Xu, C.P. Urwin, F.A. Tripodi, S.E. Screen, et al. 2012. Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield. PLoS One 7: e30717. doi:10.1371/journal.pone.0030717. Putterill, J., F. Robson, K. Lee, R. Simon and G. Coupland. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847-857. doi:10.1016/0092-8674(95)90288-0. Rosegrant, M.W. and S.A. Cline. 2003. Global Food Security: Challenges and Policies. Science 302: 1917-1919. doi:doi:10.1126/science.1092958. Samach, A., H. Onouchi, S.E. Gold, G.S. Ditta, Z. Schwarz-Sommer, M.F. Yanofsky, et al. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613-1616. doi:10.1126/science.288.5471.1613. Sawa, M., D.A. Nusinow, S.A. Kay and T. Imaizumi. 2007. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318: 261-265. doi:10.1126/science.1146994. Schomburg, F.M., D.A. Patton, D.W. Meinke and R.M. Amasino. 2001. FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13: 1427-1436. doi:10.1105/tpc.13.6.1427. Searle, I., Y. He, F. Turck, C. Vincent, F. Fornara, S. Kröber, et al. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20: 898-912. doi:10.1101/gad.373506. Serrano-Bueno, G., F.E. Said, P. de Los Reyes, E.I. Lucas-Reina, M.I. Ortiz-Marchena, J.M. Romero, et al. 2020. CONSTANS-FKBP12 interaction contributes to modulation of photoperiodic flowering in Arabidopsis. Plant J 101: 1287-1302. doi:10.1111/tpj.14590. Shaw, L.M., A.S. Turner, L. Herry, S. Griffiths and D.A. Laurie. 2013. Mutant alleles of Photoperiod-1 in wheat (Triticum aestivum L.) that confer a late flowering phenotype in long days. PLoS One 8: e79459. doi:10.1371/journal.pone.0079459. Shim, J.S. and T. Imaizumi. 2015. Circadian clock and photoperiodic response in Arabidopsis: from seasonal flowering to redox homeostasis. Biochem 54: 157-170. doi:10.1021/bi500922q. Shim, J.S., A. Kubota and T. Imaizumi. 2017. Circadian Clock and Photoperiodic Flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiol 173: 5-15. doi:10.1104/pp.16.01327. Shin, S.Y., H. Kim, S.G. Woo, J.C. Hong and Y.H. Song. 2023. Analysis of protein binding characteristics among Arabidopsis BBX protein family. Appl. Biol. Chem 66: 29. doi:10.1186/s13765-023-00784-4. Shiose, L., J.d.R. Moreira, B.S. Lira, G. Ponciano, G. Gómez-Ocampo, R.T.A. Wu, et al. 2024. A tomato B-box protein regulates plant development and fruit quality through the interaction with PIF4, HY5, and RIN transcription factors. J Exp Bot 75: 3368-3387. doi:10.1093/jxb/erae119. Simpson, G.G. 2004. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol 7: 570-574. doi:https://doi.org/10.1016/j.pbi.2004.07.002. Simpson, G.G., P.P. Dijkwel, V. Quesada, I. Henderson and C. Dean. 2003. FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113: 777-787. doi:10.1016/s0092-8674(03)00425-2. Somers, D.E., T.F. Schultz, M. Milnamow and S.A. Kay. 2000. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319-329. doi:10.1016/s0092-8674(00)80841-7. Song, Y.H., R.W. Smith, B.J. To, A.J. Millar and T. Imaizumi. 2012. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336: 1045-1049. doi:10.1126/science.1219644. Song, Z., Y. Bian, J. Liu, Y. Sun and D. Xu. 2020. B-box proteins: Pivotal players in light-mediated development in plants. J. Integr. Plant Biol. 62: 1293-1309. doi:10.1111/jipb.12935. Srikanth, A. and M. Schmid. 2011. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68: 2013-2037. doi:10.1007/s00018-011-0673-y. Steinbach, Y. 2019. The Arabidopsis thaliana CONSTANS-LIKE 4 (COL4) – a modulator of flowering time. Front. Plant Sci 10. doi:10.3389/fpls.2019.00651. Stephen, M., J. Ambuko, M. Hutchinson and O. Willis. 2017. Off-season flower induction in mango fruits using ethephon and potassium nitrate. J Agr Sci 9: 158-158. doi:10.5539/jas.v9n9p158. Strader, L.C., S. Ritchie, J.D. Soule, K.M. McGinnis and C.M. Steber. 2004. Recessive-interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by overexpression of its homologue, SNEEZY. Proc Natl Acad Sci U S A 101: 12771-12776. doi:10.1073/pnas.0404287101. Strayer, C., T. Oyama, T.F. Schultz, R. Raman, D.E. Somers, P. Más, et al. 2000. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289: 768-771. doi:10.1126/science.289.5480.768. Suárez-López, P., K. Wheatley, F. Robson, H. Onouchi, F. Valverde and G. Coupland. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410: 1116-1120. doi:10.1038/35074138. Swiezewski, S., F. Liu, A. Magusin and C. Dean. 2009. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462: 799-802. doi:10.1038/nature08618. Takagi, H., A.K. Hempton and T. Imaizumi. 2023. Photoperiodic flowering in Arabidopsis: Multilayered regulatory mechanisms of CONSTANS and the florigen FLOWERING LOCUS T. Plant Commun 4: 100552. doi:https://doi.org/10.1016/j.xplc.2023.100552. Talar, U. and A. Kiełbowicz-Matuk. 2021. Beyond Arabidopsis: BBX regulators in crop plants. Int J Mol Sci 22. doi:10.3390/ijms22062906. Tepperman, J.M., Y.S. Hwang and P.H. Quail. 2006. phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation. Plant J 48: 728-742. doi:10.1111/j.1365-313X.2006.02914.x. Tiwari, S.B., Y. Shen, H.C. Chang, Y. Hou, A. Harris, S.F. Ma, et al. 2010. The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol 187: 57-66. doi:10.1111/j.1469-8137.2010.03251.x. Tripathi, P., M. Carvallo, E.E. Hamilton, S. Preuss and S.A. Kay. 2017. Arabidopsis B-BOX32 interacts with CONSTANS-LIKE3 to regulate flowering. Proc Natl Acad Sci U S A 114: 172-177. doi:10.1073/pnas.1616459114. Turck, F., F. Fornara and G. Coupland. 2008. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59: 573-594. doi:10.1146/annurev.arplant.59.032607.092755. Tyler, L., S.G. Thomas, J. Hu, A. Dill, J.M. Alonso, J.R. Ecker, et al. 2004. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135: 1008-1019. doi:10.1104/pp.104.039578. Vaishak, K.P., P. Yadukrishnan, S. Bakshi, A.K. Kushwaha, H. Ramachandran, N. Job, et al. 2019. The B-box bridge between light and hormones in plants. J Photochem Photobiol B: Biol 191: 164-174. doi: https://doi.org/10.1016/j.jphotobiol.2018.12.021. Valverde, F., A. Mouradov, W. Soppe, D. Ravenscroft, A. Samach and G. Coupland. 2004. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303: 1003-1006. doi:doi:10.1126/science.1091761. Visentin, I., L.F. Ferigolo, G. Russo, P. Korwin Krukowski, C. Capezzali, D. Tarkowská, et al. 2024. Strigolactones promote flowering by inducing the miR319- LA- SFT module in tomato. Proc Natl Acad Sci 121: e2316371121. doi: 10.1073/pnas.2316371121. Wang, C.Q., C. Guthrie, M.K. Sarmast and K. Dehesh. 2014. BBX19 interacts with CONSTANS to repress FLOWERING LOCUS T transcription, defining a flowering time checkpoint in Arabidopsis. Plant Cell 26: 3589-3602. doi:10.1105/tpc.114.130252. Wang, J., Q. Wang, J. Gao, Y. Lei, J. Zhang, J. Zou, et al. 2025. Genetic regulatory pathways of plant flowering time affected by abiotic stress. Plant Stress 15: 100747. doi:https://doi.org/10.1016/j.stress.2025.100747. Wang, L., J. Sun, L. Ren, M. Zhou, X. Han, L. Ding, et al. 2020. CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer chrysanthemum. Plant Biotechnol J 18: 1562-1572. doi:10.1111/pbi.13322. Wang, M.J., L. Ding, X.H. Liu and J.X. Liu. 2021. Two B-box domain proteins, BBX28 and BBX29, regulate flowering time at low ambient temperature in Arabidopsis. Plant mol biol. doi:10.1007/s11103-021-01123-1. Wang, M.J., L. Ding, X.H. Liu and J.X. Liu. 2021. Two B-box domain proteins, BBX28 and BBX29, regulate flowering time at low ambient temperature in Arabidopsis. Plant Mol Biol 106: 21-32. doi:10.1007/s11103-021-01123-1. Wang, Y., T. Lv, T. Fan, Y. Zhou and C.-e. Tian. 2025. Research progress on delayed flowering under short-day condition in Arabidopsis thaliana. Front Plant Sci Volume 16 - 2025. doi:10.3389/fpls.2025.1523788. Wang, Y., N. Zafar, Q. Ali, H. Manghwar, G. Wang, L. Yu, et al. 2022. CRISPR/Cas genome editing technologies for plant improvement against biotic and abiotic stresses: advances, limitations, and future perspectives. Cells 11. doi:10.3390/cells11233928. Wargent, J.J., V.C. Gegas, G.I. Jenkins, J.H. Doonan and N.D. Paul. 2009. UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation. New Phytol 183: 315-326. doi:10.1111/j.1469-8137.2009.02855.x. Wu, G., M.Y. Park, S.R. Conway, J.W. Wang, D. Weigel and R.S. Poethig. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138: 750-759. doi:10.1016/j.cell.2009.06.031. Xu, D., D. Zhu and X.W. Deng. 2016. The role of COP1 in repression of photoperiodic flowering. F1000Res 5. doi:10.12688/f1000research.7346.1. Yadav, A., S. Bakshi, P. Yadukrishnan, M. Lingwan, U. Dolde, S. Wenkel, et al. 2019. The B-box-containing MicroProtein miP1a/BBX31 eegulates photomorphogenesis and UV-B protection. Plant Physiol 179: 1876-1892. doi:10.1104/pp.18.01258. Yakir, E., D. Hilman, Y. Harir and R.M. Green. 2007. Regulation of output from the plant circadian clock. Febs j 274: 335-345. doi:10.1111/j.1742-4658.2006.05616.x. Yamaguchi, A., Y. Kobayashi, K. Goto, M. Abe and T. Araki. 2005. TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol 46: 1175-1189. doi:10.1093/pcp/pci151. Yang, H.Q., R.H. Tang and A.R. Cashmore. 2001. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13: 2573-2587. doi:10.1105/tpc.010367. Yu, S., V.C. Galvão, Y.-C. Zhang, D. Horrer, T.-Q. Zhang, Y.-H. Hao, et al. 2012. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING–LIKE transcription tactors. The Plant Cell 24: 3320-3332. doi:10.1105/tpc.112.101014. Yuan, Z. and D. Zhang. 2015. Roles of jasmonate signalling in plant inflorescence and flower development. Curr Opin Plant Biol 27: 44-51. doi: https://doi.org/10.1016/j.pbi.2015.05.024. Zhai, Q., X. Zhang, F. Wu, H. Feng, L. Deng, L. Xu, et al. 2015. Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. The Plant Cell 27: 2814-2828. doi:10.1105/tpc.15.00619. Zhang, C., M.Y. Bai and K. Chong. 2014. Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep 33: 683-696. doi:10.1007/s00299-014-1578-7. Zhu, D., A. Maier, J.H. Lee, S. Laubinger, Y. Saijo, H. Wang, et al. 2008. Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell 20: 2307-2323. doi:10.1105/tpc.107.056580. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99010 | - |
| dc.description.abstract | 在植物中,複雜網絡調控開花是為了確保能在適當的時間完成花朵的發育。開花有賴環境的訊息如:光線、溫度,以及內在基因途徑去調控。光線能引發生物時鐘的變化去調控開花,其中CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)、 LATE ELONGATED HYPOCOTYL (LHY)及Timing of CAB Expression 1 (TOC1)等蛋白,扮演著震幅調控機制者,其中CCA1及LHY的高峰表現在清晨,功能被認為是清晨時期的調控者。 GIGANTEA (GI) 扮演著生物時鐘傳導訊息的整合者角色,使光週期的基因表現,包括:最主要的調控蛋白-- CONSTANS (CO)及FLOWERING LOCUS T (FT),可調控阿拉芥長日照的開花。然而CO的轉錄及轉譯後調控,是為了確保FT轉錄表現得以精準的調節。B-box蛋白帶有b-box結構域,或有無CCT結構域,扮演著特有角色於調控CO。B-box第五群蛋白包括有BBX26到BBX32,結構只具有一個b-box結構域而無CCT結構域,扮演著更多調控角色。大量表現BBX29基因下,會導致阿拉伯芥在長日照與短日照環境下晚開花;相較於bbx29突變株,在長日照情況下會表現早開花之性狀。經基因分析,CO的轉錄沒有受影響之下,下游基因FT及SOC1的表現則被顯著壓制。相對於bbx29突變株則FT轉錄有著上調控的表現。此外,在基因大量表現組中,開花抑制基因FLC則呈現上調控之情形。BBX29與CO兩種蛋白具有相互結合作用,這似乎影響CO在細胞核的分佈情形。這樣的發現可以闡述BBX29調控開花是藉由與CO的結合作用及FLC的誘導有關。雖然BBX30不具有影響FLC的功能,但大量表現BBX30基因的結果,會造成晚開花的性狀與BBX29調控開花相似。這兩個基因表現之生理節律都是於ZT4有個高峰值。在CCA1及LHY基因突變狀況之下,BBX30基因的生理節律表現,會被改變於高峰時間與擺盪震幅。於此可證,BBX30基因乃受生理時鐘調控。至此,本研究提供了BBX29及BBX30在開花調控上更深入的研究探討。 | zh_TW |
| dc.description.abstract | Complex networks regulate flowering to ensure the suitable timing for floral development in plants. Flowering depends on environmental cues like light, temperature, and internal genetic pathways. Light can trigger the oscillator of the circadian clock to regulate flowering. The central oscillator is controlled by CCA1 (CIRCADIAN CLOCK ASSOCIATED 1), LHY (LATE ELONGATED HYPOCOTYL), and TOC1 (Timing of CAB Expression 1), where CCA1 and LHY levels peak at dawn and function as morning-phased regulators. GI (GIGANTEA) plays an integrator role in transducing the clock signaling to induce the expression of photoperiodic genes, including the pivotal components, CONSTANS (CO) and FLOWERING LOCUS T (FT), to control long-day flowering in Arabidopsis. Transcriptional and post-translational regulations ensure that CO can precisely regulate FT expression. B-box proteins containing b-box domains with or without a CCT domain play significant roles in regulating CO. Group V B-box proteins (BBX26 to BBX32) possessing only one B-box domain and lacking a CCT domain may also have roles in the regulation. BBX29 overexpression resulted in late-flowering under both long-day and short-day conditions. In contrast, the bbx29 mutants showed an early-flowering phenotype under long-day conditions. The transcript abundance of CO was not affected, but the expression of its downstream genes, FT and SOC1, was significantly suppressed in the overexpression lines. Consistently, the FT transcript level was up-regulated in the bbx29 mutants. The gene encoding the flowering repressor FLC was also up-regulated in the overexpression lines. BBX29 can interact with CO, which seems to alter the CO distribution in the nucleus. Our findings suggest that BBX29 may regulate flowering by interacting with CO and FLC induction. Although BBX30 did not affect FLC expression, overexpression of BBX30 delayed flowering through a regulatory mechanism similar to BBX29. Both genes showed a rhythmic expression pattern with their expression peak at ZT4. Mutations in CCA1 and LHY influenced BBX30 expression in relative amplitude and peak time, suggesting that BBX30 may be regulated by circadian rhythm. Here, I provide insights on BBX29 and BBX30 in flowering regulations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:38:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:38:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents:
口試委員審定書…………………………………………………………………….ii 致謝…………………………………………………………………………………iii 中文摘要…………………………………………………………………………….iv Abstract……………………………………………………………………………...v Contents…………………………………………………………………………….vi List of Tables ……………………………………………………………………..viii List of Figures……………………………………………………………………....ix Chapter 1. Introduction 1 1.1 Flowering regulation in Arabidopsis………………………………………..1 1.1.1 Light signaling involves in flowering regulation…………………………1 1.1.2 Circadian clock involves in flowering regulation………………………...5 1.1.3 Photoperiod (Sense of day length)………………………………………...6 1.1.4 Vernalization (Flowering regulation of cold requirement)……………..11 1.1.5 Autonomous pathway……………………………………………………. 13 1.1.6 Gibberellin (GA) pathway ……………………………………………….15 1.1.7 Flowering regulation under short-day conditions ……………………...16 1.1.8 Flowering regulation under stress condition ……………………………17 1.1.9 Flowering regulation by nutrients ……………………………………….21 1.1.10 Flowering regulation by plant hormones……………………………….23 1.2 B-box proteins function in Arabidopsis………………………………….....28 1.2.1 B-box (BBX) classification ………………………………………………..28 1.2.2 BBX proteins function in the regulation of flowering…………………...30 1.2.3 BBX proteins function in shade avoidance and photomorphogenesis….33 1.2.4 BBX proteins function in abiotic stress responses……………………….35 1.2.5 BBX proteins function in hormonal regulations………………………....36 1.2.6 BBX fifth proteins function in flowering…………………………………36 1.2.7 BBX proteins functions flowering regulation in other plant species…....38 1.3 Flowering regulations apply in agricultural biotechnology……………….39 1.4 Aims of this study………………………………………………………….....41 Chapter 2……………………………………………………………………………44 BBX29 negatively regulates flowering in Arabidopsis in both long-day and short-day………………………………………………………………………..44 2.1 Abstract …………………………………………..………………………… 44 2.2 Introduction………………………………………………………………..45 2.3 Materials and methods……………………………………………………..47 2.4 Results……………….………………………………………………….……49 2.5 Discussion…………………………………………………………………….55 2.6 Conclusions………………………………………………………………......57 Chapter .3…………………………………………………………………………...67 Circadian clock regulates BBX30 on controlling photoperiodic flowering in Arabidopsis…………………………………………………………………………67 3.1 Abstract………………………………………………………………………67 3.2 Introduction………………………………………………………………………...67 3.3 Materials and methods……………………………………………………...70 3.4 Results……………………………………………………………………......72 3.5 Discussion……………………………………………………………………76 Chapter 4 Conclusions…………………………………………………………….88 4.1 BBX29 and BBX30 regulate flowering time through diverse roles in Arabidopsis……………………………………………………………….88 4.2 Prospective…………………………………………………………………..96 Reference……………………………………………………………………….....100 Appendix-Published papers……………………………………………………...114 List of Tables Table 2-1. Primers used in this study…………………………………..……………58 Table 3-1. Primers used in this study…………………………………………………80 List of Figures Figure 1 BBX proteins-mediated flowering……………………………………..….43 Figure 2-1. Schematic diagram of deletion regions in the three BBX29 mutation lines (bbx29-1, bbx29-2, bbx29-3) generated through the CRISPR/Cas9 method…..60 Figure 2-2. BBX29 negatively regulates flowering…................................................61 Figure 2-3. BBX29 transcript levels in Col-0, bbx29, and OX-BBX29 Arabidopsis plants…………………………………………………………………………...62 Figure 2-4. BBX29 affects the transcript abundance of flowering-related genes…...63 Figure 2-5. BBX29 interacts with CO……………………………………………....64 Figure 2-6. BBX29 does not affect CO stability…………………………………….65 Figure 2-7. BBX29 attenuates CO activity in regulating FT transcription.………....66 Figure 3-1. BBX30 localizes the nucleus in the protoplast of Arabidopsis using a confocal microscope.…………………………………………………………..81 Figure 3-2. Phenotypes of BBX30 overexpression lines under long-day and short-day conditions in Arabidopsis…………………………………………....82 Figure 3-3. Expression levels of flowering-related genes in OX-BBX30 lines……...83 Figure 3-4. Expression patterns of BBX30 and flowering-related genes in a time-course experiment……………………………………………………………...84 Figure 3-5. Loss-of-function analysis of BBX30 in Arabidopsis……………………85 Figure 3-6. Expression of BBX30 in circadian clock and light signaling mutantsat ZT4…………………………………………………………………………..86 Figure 3-7. Expression patterns of BBX30 in mutant lines of circadian clock regulatory genes during time-course experiments……………………………..87 Figure 4-1. Expression levels of flowering-related genes in OX-BBX28 lines under long-day conditions.……………………………………………………..97 Figure 4-2 Expression patterns of BBX29 in a time-course experiment……………98 Figure 4-3. BBX29 affects the transcript abundance of GA-related genes…………99 | - |
| dc.language.iso | en | - |
| dc.subject | B-box 第五群蛋白 | zh_TW |
| dc.subject | 光週期 | zh_TW |
| dc.subject | 生理時鐘 | zh_TW |
| dc.subject | CO | zh_TW |
| dc.subject | BBX29 | zh_TW |
| dc.subject | BBX30 | zh_TW |
| dc.subject | FT | zh_TW |
| dc.subject | FLC | zh_TW |
| dc.subject | CCA1 | zh_TW |
| dc.subject | LHY | zh_TW |
| dc.subject | FT | en |
| dc.subject | BBX30 | en |
| dc.subject | B-box fifth proteins | en |
| dc.subject | photoperiod | en |
| dc.subject | circadian clock | en |
| dc.subject | CO | en |
| dc.subject | BBX29 | en |
| dc.subject | LHY | en |
| dc.subject | CCA1 | en |
| dc.subject | FLC | en |
| dc.title | 阿拉伯芥 B-box 第五群蛋白-BBX29 及 BBX30 調控開花之研究 | zh_TW |
| dc.title | A study of BBX29 and BBX30, B-box fifth group proteins, regulate flowering time in Arabidopsis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林詩舜;洪傳揚 ;王俊能;劉啟德;蔡文杰 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Shun Lin;Chwan-Yang HONG;Chun-Neng Wang;Chi-Te Liu;Wen-Chieh Tsai | en |
| dc.subject.keyword | B-box 第五群蛋白,光週期,生理時鐘,CO,BBX29,BBX30,FT,FLC,CCA1,LHY, | zh_TW |
| dc.subject.keyword | B-box fifth proteins,photoperiod,circadian clock,CO,BBX29,BBX30,FT,FLC,CCA1,LHY, | en |
| dc.relation.page | 135 | - |
| dc.identifier.doi | 10.6342/NTU202503573 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物科技研究所 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
