請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99002完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王立民 | zh_TW |
| dc.contributor.advisor | Li-Min Wang | en |
| dc.contributor.author | 葉宇晟 | zh_TW |
| dc.contributor.author | Yu-Cheng Yeh | en |
| dc.date.accessioned | 2025-08-20T16:36:42Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-15 | - |
| dc.identifier.citation | [1] H. K. ONNES. Thesuperconductivity of mercury. Comm. Phys. Lab. Univ. Leiden, 122:124, 1911.
[2] Walther Meissner and Robert Ochsenfeld. Ein neuer effekt bei eintritt der supraleitfähigkeit. Naturwissenschaften, 21(44):787–788, 1933. [3] Vitaly L Ginzburg and Lev D Landau. On the theory of superconductivity. In On superconductivity and superfluidity: a scientific autobiography, pages 113–137. Springer, 2009. [4] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Phys. Rev., 108:1175–1204, Dec 1957. [5] J George Bednorz and K Alex Müller. Possible high t c superconductivity in the bala- cu- o system. Zeitschrift für Physik B Condensed Matter, 64(2):189–193, 1986. [6] Maw-Kuen Wu,JoRAshburn, ClJ Torng, Pei-Herng Hor, Rl L Meng, Lo Gao, Z Jo Huang, YQ Wang, and aCW Chu. Superconductivity at 93 k in a new mixed-phase y-ba-cu-o compound system at ambient pressure. Physical Review Letters, 58(9): 908, 1987. [7] Yoichi Kamihara, Hidenori Hiramatsu, Masahiro Hirano, Ryuto Kawamura, HiroshiYanagi, Toshio Kamiya, and Hideo Hosono. Iron-based layered superconductor: Laofep. Journal of the American Chemical Society, 128(31):10012–10013, 2006. [8] C.L.Kane”. Quantumspinhalleffect in graphene. Physical Review Letters, 95(22), 2005. [9] B Andrei Bernevig, Taylor L Hughes, and Shou-Cheng Zhang. Quantum spin hall effect and topological phase transition in hgte quantum wells. Science, 314(5806): 1757–1761, 2006. [10] Markus Konig, Steffen Wiedmann, Christoph Brune, Andreas Roth, Hartmut Buhmann, Laurens W Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum spin hall insulator state in hgte quantum wells. Science, 318(5851):766–770, 2007. [11] Shuichi Murakami. Phase transition between the quantum spin hall and insulator phases in 3d: emergence of a topological gapless phase. New Journal of Physics, 9(9):356, 2007. [12] David Hsieh, Dong Qian, Lewis Wray, Yiman Xia, Yew San Hor, Robert Joseph Cava, and M Zahid Hasan. A topological dirac insulator in a quantum spin hall phase. Nature, 452(7190):970–974, 2008. [13] YL Chen, James G Analytis, J-H Chu, ZK Liu, S-K Mo, Xiao-Liang Qi, HJ Zhang, DHLu, Xi Dai, Zhong Fang, et al. Experimental realization of a three-dimensional topological insulator, bi2te3. Science, 325(5937):178–181, 2009. [14] Jin-Peng Xu, Canhua Liu, Mei-Xiao Wang, Jianfeng Ge, Zhi-Long Liu, Xiaojun Yang, Yan Chen, Ying Liu, Zhu-An Xu, Chun-Lei Gao, et al. Artificial topological superconductor by the proximity effect. Physical Review Letters, 112(21):217001, 2014. [15] Hernane R Salles Moura and Lourenço de Moura. Melting and purification of niobium. In AIP Conference Proceedings, volume 927, pages 165–178. American Institute of Physics, 2007. [16] N.W.Ashcroft and N.D. Mermin. Solid State Physics. Saunders College Publishing, Fort Worth, 1976. [17] Charles Kittel and Paul McEuen. Introduction to solid state physics. John Wiley & Sons, 2018. [18] Fritz London and Heinz London. The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 149(866):71–88, 1935. [19] Charles K Poole, Horacio A Farach, and Richard J Creswick. Handbook of superconductivity. Elsevier, 1999. [20] V Metlushko, U Welp, GW Crabtree, R Osgood, SD Bader, LE DeLong, Zhao Zhang, SRJ Brueck, B Ilic, K Chung, et al. Interstitial flux phases in a superconducting niobium film with a square lattice of artificial pinning centers. Physical Review B, 60(18):R12585, 1999. [21] JI Martin, M Vélez, A Hoffmann, Ivan K Schuller, and JL Vicent. Temperature dependence and mechanisms of vortex pinning by periodic arrays of ni dots in nb films. Physical Review B, 62(13):9110, 2000. [22] A Hoffmann, P Prieto, and Ivan K Schuller. Periodic vortex pinning with magnetic andnonmagneticdots: Theinfluenceofsize. PhysicalReviewB,61(10):6958, 2000. [23] Charles Reichhardt and Niels Grønbech-Jensen. Critical currents and vortex states at fractional matching fields in superconductors with periodic pinning. Physical Review B, 63(5):054510, 2001. [24] Woo Lee and Sang-Joon Park. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chemical Reviews, 114(15):74877556, 08 2014. [25] Hideki Masuda and Kenji Fukuda. Ordered metal nanohole arrays made by a two step replication of honeycomb structures of anodic alumina. Science, 268(5216): 1466–1468, 1995. [26] C. C. Tsuei, J. R. Kirtley, C. C. Chi, Lock See Yu-Jahnes, A. Gupta, T. Shaw, J. Z. Sun, and M. B. Ketchen. Pairing symmetry and flux quantization in a tricrystal superconducting ring of Yba2cu3o7 . Phys. Rev. Lett., 73:593–596, Jul 1994. [27] Chao Yang, Yi Liu, Yang Wang, Liu Feng, Qianmei He, Jian Sun, Yue Tang, Chunchun Wu, Jie Xiong, Wanli Zhang, et al. Intermediate bosonic metallic state in the superconductor-insulator transition. Science, 366(6472):1505–1509, 2019. [28] YufanLi, XiaoyingXu,M.-H.Lee,M.-W.Chu,andC.L.Chien. Observation of half quantum flux in the unconventional superconductor β-bi 2 pd. Science, 366(6462): 238–241, October 2019. [29] Daniel Arovas and Congjun Wu. Lecture notes on superconductivity (a work in progress). 2019. [30] Mohammad A Rashid. Lecture notes: Superconductivity. Jashore University of Science and Technology, page 8, 2019. [31] Siti Fatimah Saipuddin, Azhan Hashim, and Nurbaisyatul Ermiza Suhaimi. Type I and Type II Superconductivity, pages 123–146. Springer Nature Singapore, Singapore, 2022. [32] Stefano Rampino. Supersonic O2 Beam Assisted Deposition of Long-Length YBa2Cu3O7 Coated Conductors. PhD thesis, 03 2007. [33] Lev Davidovich Landau et al. On the theory of phase transitions. Zh. eksp. teor. Fiz, 7(19-32):926, 1937. [34] M Suzuki and IS Suzuki. Ginzburg-landau theory for superconductivity. [35] V. B. Geshkenbein”. Vortices with half magnetic flux quanta in “heavy-fermion” superconductors. Physical Review B, 36(1):235–238, 1987. [36] GE Volovik and LP Gor’kov. Superconducting classes in heavy-fermion systems. In Ten Years of Superconductivity: 1980–1990, pages 144–155. Springer, 1985. [37] 洪浩哲. 磊晶碲化銻薄膜之成長與超導碲化銻/鈮多層膜之電磁傳輸特性之研究. Master’s thesis, 國立臺灣大學, Jan 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99002 | - |
| dc.description.abstract | 本實驗大致上可以分成兩個部分,首先為使用磁控濺鍍的方法製備Nb以及Nb/$\\mathrm{Sb}_2\\mathrm{Te}_3$兩種薄膜樣品,傳統超導與拓墣材料的薄膜介面因鄰近效應成為非傳統超導材料--拓墣超導。在前人的努力下,我們已經掌握這兩種樣品在矽基板上的高品質鍍膜條件;Si(100)基板上,Nb在攝氏540度時有最好的品質,$\\mathrm{Sb}_2\\mathrm{Te}_3$ 則是需在攝氏123度。
但本實驗最重要的目的並非鎖定在製造拓墣超導,而是比較傳統超導以及拓墣超導產生的磁通量子匹配差異,與傳統超導的整數倍量子磁通不同,非傳統超導的量子磁通可能為半整數的性質,以鄰近效應造成之拓墣超導為例,自旋三重態會導致其量子磁通為半整數倍;透過將薄膜鍍在表面充滿高密度深孔的陽極氧化鋁基板,當樣品溫度低於超導溫度時,排磁性會使得每個孔洞成為一個人工的釘扎點,如此一來便可以將量子效應放大,穿過人工釘扎點的磁場強度基本單位必須為一個量子磁通量,其性質能容易被儀器所測量。 我們預期Nb薄膜樣品之量子磁通遵循 $H_n = nH_1$, 以及Nb/$\\mathrm{Sb}_2\\mathrm{Te}_3$ 雙層膜之量子磁通遵循 $H_n =\\qty(\\frac{1}{2}+n)H_1$, 其中因基板的釘扎結構使得 $H_1\\approx 100$ Oe。此週期性磁場可由統計方法運算並得出精確值。 | zh_TW |
| dc.description.abstract | This experiment can be roughly divided into two parts. First, using the method of magnetron sputtering, we prepared two different thin film samples, Nb and Nb/$\\mathrm{Sb}_2\\mathrm{Te}_3$. Due to the proximity effect, the interface between conventional superconductor and topological material becomes unconventional superconductor, known as topological superconductor. Thanks to previous efforts, our senior have already optimized the deposition conditions for high-quality films of both materials on silicon substrate. On Si(100) substrates, Nb film shows high quality when deposited at 540$^\\circ $C, while $\\mathrm{Sb}_2\\mathrm{Te}_3$ requires a deposition temperature of 123$^\\circ $C.
However, the main goal of this experiment is not simply to fabricate a topological superconductor, but to compare the difference of flux matching effects between conventional and topological superconductors. Unlike conventional superconductors, which exhibit integer multiples of the magnetic flux quantum, unconventional superconductors may exhibit exotic quantization such as half-integer or one-third-integer flux quanta. In the case of topological superconductors induced by the proximity effect, the spin-triplet pairing leads to half-integer flux quantization. By depositing the films onto anodic aluminum oxide (AAO) substrates with a high-order nanopores, each pore becomes an artificial pinning center due to the Meissner effect when the sample is cooled below its superconducting critical temperature. This magnifies the quantum effect: the magnetic field penetrating the pinning sites must be quantized in units of the magnetic flux quantum, allowing for direct measurement using experimental instruments. We expect that the flux quantization for the Nb film follows the relation $H_n = nH_1$,and for the Nb/$\\mathrm{Sb}_2\\mathrm{Te}_3$ bilayer it follows $H_n = \\qty(\\frac{1}{2}+n)H_1$, where the artificial pinning array yields $H_1 \\approx 100\\mathrm{~Oe}$. This periodic magnetic field structure can be computed and validated using statistical analysis methods. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:36:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:36:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements ii
摘要 iv Abstract v Contents vii List of Figures x List of Tables xiii Chapter 1 Introduction 1 1.1 Introduction of Superconductivity . . . . . . . . . . . . . . . . . . . 1 1.1.1 History of Superconductor . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Topological Insulators and Superconductors . . . . . . . . . . . . . 3 1.2 Overview of the materials . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Antimony telluride (Sb2Te3) . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Niobium (Nb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Electrical resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Propertes of superconductors . . . . . . . . . . . . . . . . . . . . . . 8 1.4.1 Meissner effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.2 Different types of superconductors . . . . . . . . . . . . . . . . . . 9 1.5 Study Background and Motivation . . . . . . . . . . . . . . . . . . . 10 1.5.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5.2 Fabrication of AAO Templates . . . . . . . . . . . . . . . . . . . . 11 1.5.3 Review of half-quantum flux effect . . . . . . . . . . . . . . . . . . 13 Chapter 2 Principle and Theory 15 2.1 London penetration depth . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Coherence Length . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Ginzburg-Landau Theory . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Landau’s Theory of Second-Order Phase Transitions . . . . . . . . 22 2.3.2 Helmholtz free energy density . . . . . . . . . . . . . . . . . . . . 23 2.3.3 Derivation of First Ginzburg-Landau Equation . . . . . . . . . . . . 24 2.3.4 Derivation of Second Ginzburg-Landau Equation . . . . . . . . . . 26 2.3.5 The Coherence Length in Ginzburg-Landau Theory . . . . . . . . . 28 2.3.6 Other Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Flux Quantizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5 Flux Matching Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Fractional Matching Effect . . . . . . . . . . . . . . . . . . . . . . . 33 2.6.1 Josephson Junctions . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6.2 Half-quantum Magnetic Fluxes . . . . . . . . . . . . . . . . . . . . 35 Chapter 3 Experiment Methods 38 3.1 Setup of Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.1 Magnetron Sputtering . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.2 Superconducting Quantum Interference Device (SQUID) . . . . . . 39 3.2 Experiment Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Preparation Process of Antimony telluride Target . . . . . . . . . . 40 3.2.2 Dealing with Anodic Aluminum Oxide (AAO) Substrate . . . . . . 44 3.2.3 Procedure of Deposit . . . . . . . . . . . . . . . . . . . . . . . . . 47 Chapter 4 Experiment Results 51 4.1 X-ray diffractometer (XRD) . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Moment and Temperature . . . . . . . . . . . . . . . . . . . . . . . 52 4.3 Resistance and Temperature . . . . . . . . . . . . . . . . . . . . . . 53 4.4 Critical Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.5 Basic Information of AAO substrate . . . . . . . . . . . . . . . . . . 61 4.5.1 Scanning Electron Microscope (SEM) . . . . . . . . . . . . . . . . 61 4.6 Qualitative Analysis of Resistance and Magnetic Field . . . . . . . . 62 4.7 Interpretation of R(H) . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.7.1 Derivative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.7.2 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 74 4.7.2.1 Statistical Verification of Interpolation Effects . . . . . 76 4.7.3 Least-Squares Spectral Analysis . . . . . . . . . . . . . . . . . . . 77 Chapter 5 Conclusion 82 References 84 | - |
| dc.language.iso | en | - |
| dc.subject | 超導體 | zh_TW |
| dc.subject | 陽極氧化鋁 | zh_TW |
| dc.subject | 碲化銻 | zh_TW |
| dc.subject | 鈮 | zh_TW |
| dc.subject | 人工釘扎中心 | zh_TW |
| dc.subject | 磁通匹配 | zh_TW |
| dc.subject | Antimony Telluride | en |
| dc.subject | Anodic Aluminum Oxide | en |
| dc.subject | Flux-matching effect | en |
| dc.subject | Superconductors | en |
| dc.subject | Niobium | en |
| dc.subject | Artificial pinning center | en |
| dc.title | 應用鈮/碲化銻雙層膜人工釘扎於陽極氧化鋁基板之磁通匹配效應研究 | zh_TW |
| dc.title | Investigation of Flux Matching Effects Using Nb/Antimony Telluride Bilayers with Artificial Pinning on Anodic Aluminum Oxide Substrate | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 尤孝雯;陳昭翰 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiao-Wen Yu;Chao-Han Chen | en |
| dc.subject.keyword | 超導體,磁通匹配,人工釘扎中心,鈮,碲化銻,陽極氧化鋁, | zh_TW |
| dc.subject.keyword | Superconductors,Flux-matching effect,Artificial pinning center,Niobium,Antimony Telluride,Anodic Aluminum Oxide, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202503084 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 應用物理研究所 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 26.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
