請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98996完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖文正 | zh_TW |
| dc.contributor.advisor | Wen-Cheng Liao | en |
| dc.contributor.author | 賴恆育 | zh_TW |
| dc.contributor.author | Heng-Yu Lai | en |
| dc.date.accessioned | 2025-08-20T16:35:17Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-14 | - |
| dc.identifier.citation | 參考文獻
1. 公共工程施工綱要規範,第 03315 章,「自充填混凝土」,2010。 2. 日本土木學會,「高流動混凝土施工指針」,1998。 3. EFNARC, Specification and guidelines for self-compacting concrete. European Federation of National Associations Representing for concrete, 2002. Norfolk,UK. 4. ACI Committee 237, Self-Comsolidating Concrete. American Concrete Institude, 2007. ACI 237R-07. 5. CNS 15286,「水硬性混合水泥」,2022. 6. EN 197-1, Cement - Part 1: Composition, specifications and conformity criteria for common cements. 2011. 7. ASTM C595, Standard Specification for Blended Hydraulic Cements. 2012. 8. CAS A3001-08, Cementitious Materials for Use in Concrete supersedes. 2008. 9. Senhadji, Y., Christidis, C., Sacco, E., Pera, J. Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technology, 2014. 254: p. 314–323. 10. Lai, M., L. Hanzic, and J. Ho, Fillers to improve passing ability of concrete. Structural Concrete, 2019. 20(1): p. 185–197. 11. Li, W., et al., Influence of Nanolimestone on the Hydration, Mechanical Strength, and Autogenous Shrinkage of Ultrahigh-Performance Concrete. Journal of Materials in Civil Engineering, 2016. 28(1): p. 04015068. 12. Yu, C.-X., et al., Influence of limestone powder particle size and content on portland cement paste properties. CTU Journal of Innovation and Sustainable Development, 2025. 17(Special issue: ETMD): p. 9–15. 13. Rode, S., et al., True Atomic-Resolution Imaging of (101̅4) Calcite in Aqueous Solution by Frequency Modulation Atomic Force Microscopy. Langmuir, 2009. 25(5): p. 2850–2853. 14. Soroka, I. and N. Stern, Calcareous fillers and the compressive strength of portland cement. Cement and Concrete Research, 1976. 6(3): p. 367–376. 15. Mounanga, P., et al., Improvement of the early-age reactivity of fly ash and blast furnace slag cementitious systems using limestone filler. Materials and Structures, 2011. 44(2): p. 437–453. 16. Voglis, N., et al., Portland-limestone cements. Their properties and hydration compared to those of other composite cements. Cement and Concrete Composites, 2005. 27(2): p. 191–196. 17. Ouyang, X., et al., Insights into the mechanisms of nucleation and growth of C–S–H on fillers. Materials and Structures, 2017. 50(5): p. 213. 18. Lollini, F., E. Redaelli, and L. Bertolini, Effects of portland cement replacement with limestone on the properties of hardened concrete. Cement and Concrete Composites, 2014. 46: p. 32–40. 19. Palm, S., et al., Cements with a high limestone content – Mechanical properties, durability and ecological characteristics of the concrete. Construction and Building Materials, 2016. 119: p. 308–318. 20. Wang, D., et al., A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, 2018. 181: p. 659–672. 21. De Weerdt, K., et al., Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 2011. 41(3): p. 279–291. 22. ACI Committee 209, Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures,, in American Concrete Institute, ACI 209R-92,. 1992 (Reapproved 2008). 23. Feldman, R.F. and P.J. Sereda, A new model for hydrated Portland cement and its practical implications. Engineering Journal, 1970. 53(8-9): p. 53–59. 24. Holt, E. and M. Leivo, Cracking risks associated with early age shrinkage. Cement and Concrete Composites, 2004. 26(5): p. 521–530. 25. Davis, H.E., Autogenous volume change of concrete. Proc. ASTM, 40, 1940: p. 1103–1110. 26. Le Roy, R. and F. De Larrard. Creep and shrinkage of high-performance concrete: the LCPC experience. in RILEM PROCEEDINGS. 1993. CHAPMAN & HALL. 27. Tazawa, E.-i. and S. Miyazawa, Influence of cement and admixture on autogenous shrinkage of cement paste. Cement and Concrete Research, 1995. 25(2): p. 281–287. 28. Tazawa, E. and S. Miyazawa, Influence of constituents and composition on autogenous shrinkage of cementitious materials. Magazine of Concrete Research, 1997. 49(178): p. 15–22. 29. 劉家佑,高性能混凝土自體收縮性質之硏究」,1996, 碩士論文(指導教授:陳振川),國立臺灣大學土木工程學硏究所。 30. Bentur, A., S.-i. Igarashi, and K. Kovler, Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates. Cement and concrete research, 2001. 31(11): p. 1587–1591. 31. Tazawa, E.-i. Autogeneous shrinkage of concrete and its importance in concrete technology. in Proc. of the Fifth International RILEM Symposium, 1993. 32. Shariq, M., J. Prasad, and H. Abbas, Creep and drying shrinkage of concrete containing GGBFS. Cement and Concrete Composites, 2016. 68: p. 35–45. 33. Tangtermsirikul, S., Class C fly ash as a shrinkage reducer for cement paste. Special Publication, 1995. 153: p. 385–402. 34. Termkhajornkit, P., et al., Effect of fly ash on autogenous shrinkage. Cement and Concrete Research, 2005. 35(3): p. 473–482. 35. Wang, X., Drying shrinkage of ternary blends in mortar and concrete. Iowa State University, 2011 36. Gerald, P., Effect of Aggregate on Shrinkage of Concrete and a Hypothesis Concerning Shrinkage. ACI Journal Proceedings. 52(1). 37. Roper, H., The Influence of Cement Composition and Fineness on Concrete Shrinkage, Tensile Creep and Cracking Tendency. 1974. 38. Odman, S. Effects of variations in volume, surface area exposed to drying, and composition of concrete on shrinkage. in RILEM/CEMBUREAU Int. Colloquium on the Shrinkage of Hydraulic Concretes. 1968. 39. Torben, C.H. and E.C.N. Knud, Influence of Aggregate Properties on Concrete Shrinkage. ACI Journal Proceedings. 62(7). 40. Neville, A.M., Properties of concrete. Vol. 4. 1995, Longman London. 41. Zhang, W., M. Zakaria, and Y. Hama, Influence of aggregate materials characteristics on the drying shrinkage properties of mortar and concrete. Construction and Building Materials, 2013. 49: p. 500–510. 42. Hyodo, H., et al. Evaluation of effect of aggregate properties on drying shrinkage of concrete. in third international conference on sustainable construction materials and technologies, Kyoto, Japan, 2013. 43. 詹穎雯,「環境溫、濕度對含高爐石、飛灰與普通卜特蘭水泥混凝土強度之影響與變形之研究」,1988,碩士論文(指導教授:陳振川),國立臺灣大學土木工程學硏究所。 44. Perenchio, W.F., The drying shrinkage dilemma. Concrete Construction, 1997, 42(4): p. 379–383. 45. Blakey, F., Influence of Creep and Shrinkage on Structural Behavior. Constructional Review., 1963: p. 15–21. 46. Duran-Herrera, A., et al., Self-compacting concretes using fly ash and fine limestone powder: Shrinkage and surface electrical resistivity of equivalent mortars. Construction and Building Materials, 2019. 199: p. 50–62. 47. 陳育聖, 許瑞紋, 梁喬茵, 「卜特蘭石灰石水泥添加礦物摻料之混凝土性質探討」 營建知訊, 2024(497): p. 21–33. 48. Wang, Q., J. Yang, and H. Chen, Long-term properties of concrete containing limestone powder. Materials and Structures, 2017. 50(3): p. 168. 49. Bederina, M., Z. makhloufi, and T. bouziani, Effect of Limestone Fillers the Physic-Mechanical Properties of Limestone Concrete. Physics Procedia, 2011. 21: p. 28–34. 50. Hooton, R., M. Nokken, and M. Thomas, Portland-limestone cement: state-of-the-art report and gap analysis for CSA A 3000. Cement association of Canada, 2007: p. 6–7. 51. CEB MC90-99, Structural Concrete - Textbook on Behaviour, Design and Performance. Updated Knowledge of the CEB/FIP Mode Code 1990,, S. Fédération Internationale du Béton, 1999. 52. Kawai, M., S. Mizyawa,, “Prediction Model for Autogenous Shrinkage of Concrete”. 2004: Research Reports Ashikaga Institute of Technology. p. 29–36. 53. Müller, H.S., and Kvitsel, V.,, Creep and Shrinkage Model for Normal Concrete and HPC: Concept for a Uniform Code-Type Approach, A.W. Special Issue for RFGC, Paris,. 2000. 54. Z. P. Bažant, R.W.W., Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability. Materials and Structures, 2015. vol. 48: p. 753–770. 55. 秦維邑,「建置及應用資料庫以發展台灣混凝土收縮預測公式」,碩士論文(指導教授:陳振川),國立臺灣大學土木工程學硏究所,2017。 56. 黃禾程,「以資料庫回歸台灣混凝土收縮與潛變預測模型並應用於預力橋梁長期變位分析」,碩士論文(指導教授:廖文正),國立臺灣大學土木工程學硏究所,2020。 57. AASHTO, AASHTO LRFD bridge design specifications, 8th ed., in Washington: American Association of State Highway and Transportation Officials,. 2017. 58. CEB MC90, CEB-FIB Model Code 1990,, S. Comité Euro-International du Béton, 1991. 59. fib MC2010, fib Model Code for Concrete Structures 2010. International Federation for Structural Concrete, 2013. 60. JSCE Concrete Committee, "Standard specifications for concrete structures "Design",, Japan Society of Civil Engineers, 2007: Tokyo. 61. Sandeep Baweja and Zdeněk P. Bažant, Creep and shrinkage prediction model for analysis and design of concrete structures - model B3,. Materials and Structures, 1995. vol. 28: p. 357–365. 62. Kamal, H.K. and L. Wu Jian, Shrinkage of Precast, Prestressed Self-Consolidating Concrete. ACI Materials Journal. 107(3). 63. Poppe, A.-M. and G. De Schutter. Creep and shrinkage of self-compacting concrete. in First International Symposium on Design, Performance and Use of Self-Consolidating Concrete, China. 2005. 64. Aslani, F. and L. Maia, Creep and shrinkage of high-strength self-compacting concrete: experimental and analytical analysis. Magazine of Concrete Research, 2013. 65(17): p. 1044–1058. 65. 阮平段,「自充填混凝土收縮潛變行為及其預測模型」,博士論文(指導教授:廖文正),國立臺灣大學土木工程學硏究所,2023。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98996 | - |
| dc.description.abstract | 近年來,全球面臨日益嚴重的氣候變遷與碳排放問題,各國積極推動節能減碳措施以邁向淨零碳排目標。水泥工業作為主要的碳排來源之一,其低碳轉型成為當前關鍵課題。其中,以卜特蘭石灰石水泥為主要替代方案,因具有較低之碳足跡而成為歐美主流趨勢,尤其是自充填混凝土中。然而,在台灣工程規範限制混合水泥與卜作嵐摻料併用的背景下,石灰石水泥實際應用尚不普及。自充填混凝土因其高流動性、免振動搗實之特性,廣泛用於高密集鋼筋結構,但其低水膠比、高粉體用量與高藥劑需求,造成其收縮變形行為較傳統混凝土有所差異,若直接以石灰石水泥取代I型水泥,其體積穩定性仍有待深入探討。
本研究旨在探討使用卜特蘭石灰石水泥於自充填混凝土中的應用表現,特別聚焦於其對混凝土收縮行為的影響,並與傳統卜特蘭I型水泥進行比較分析。本研究針對三種不同水膠比(w/b=0.32、0.4、0.48)與三種卜作嵐摻料取代量(純水泥、30%爐石、35%爐石+15%飛灰)進行共18組自充填混凝土配比設計,評估其新拌性質、抗壓強度、自體收縮與乾燥收縮表現,並進一步與現有的預測模型Model B4TW-SCC進行驗證與分析,以探討其適用性與預測精度。 實驗結果顯示,石灰石水泥在新拌性質上與I型水泥表現相當,強度發展在中高水膠比條件下亦無明顯劣化。然在收縮行為上,石灰石水泥對乾燥收縮無顯著改善,但在所有水膠比條件下之自體收縮普遍高於I型水泥,尤其在搭配爐石與飛灰時情況更為明顯。推測是因為石灰石粉的成核效應促進水化產物形成並加速礦物摻料的卜作嵐反應,導致更劇烈之內部耗水與自乾現象。整體而言,石灰石水泥在自充填混凝土中對體積穩定性的影響需審慎評估。 | zh_TW |
| dc.description.abstract | In recent years, the world has faced increasingly severe challenges related to climate change and carbon emissions. Countries around the globe are actively promoting energy-saving and carbon reduction strategies to achieve net-zero emissions. As one of the major sources of carbon emissions, the cement industry is undergoing a critical low-carbon transformation. Among various approaches, Portland Limestone Cement (PLC) has emerged as a key alternative due to its lower carbon footprint and has become a mainstream trend in Europe and North America, particularly in the application of Self-Compacting Concrete (SCC). However, under current Taiwanese engineering specifications that prohibit the simultaneous use of blended cement and supplementary cementitious materials (SCMs), the practical application of PLC remains limited. SCC, known for its high flowability and self-consolidating properties without the need for vibration, is widely used in structures with dense reinforcement. Nevertheless, its low water-to-binder ratio, high powder content, and high chemical admixture dosage lead to different shrinkage behaviors compared to triditional concrete. Thus, the volume stability of SCC using PLC as a substitute for ordinary Portland cement (OPC) warrants further investigation.
This study aims to evaluate the performance of SCC made with PLC, focusing particularly on its effects on shrinkage behavior, and to compare it with that of SCC made with OPC. Eighteen mix designs were developed, covering three different water-to-binder ratios (w/b = 0.32, 0.40, 0.48) and three different pozzolanic replacement levels (pure cement, 30% slag, 35% slag + 15% fly ash). Each mix was evaluated for fresh properties, compressive strength, autogenous shrinkage, and drying shrinkage. In addition, the prediction accuracy of the existing B4TW-SCC model was examined to assess its applicability. Experimental results indicated that the fresh properties of PLC mixes were comparable to those of OPC mixes, and the strength performance under medium to high w/b conditions showed no significant degradation. However, in terms of shrinkage behavior, PLC did not significantly improve drying shrinkage and generally exhibited higher autogenous shrinkage across all w/b conditions, especially when combined with slag and fly ash. This increase is attributed to the nucleation effect of limestone powder, which accelerates the formation of hydration products and enhances the pozzolanic reactions of SCMs, leading to more intensive internal water consumption and self-desiccation. Overall, the influence of PLC on the volume stability of SCC should be carefully considered in practical applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:35:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:35:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
謝辭 I 摘要 III Abstract IV 目次 VI 圖次 XI 表次 XV 1 第一章、緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 2 第二章、文獻回顧 3 2.1 自充填混凝土 3 2.1.1 自充填混凝土之定義 3 2.1.2 自充填混凝土之特性 3 2.2 石灰石水泥 4 2.2.1 石灰石 5 2.2.2 填充效應(Filler effect) 5 2.2.3 成核效應(Nucleation effect) 7 2.2.4 稀釋效應(Dilution effect) 9 2.2.5 化學效應(Chemical effect) 11 2.3 混凝土之收縮 13 2.3.1 收縮機制 13 2.3.2 收縮種類 14 2.3.3 影響混凝土自體收縮之因素 15 2.3.4 影響混凝土乾燥收縮之因素 17 2.3.5 自充填混凝土之收縮 25 2.4 石灰石對混凝土收縮之影響 26 2.4.1 對自體收縮之影響 26 2.4.2 對乾燥收縮之影響 28 3 第三章、收縮預測模型回顧 30 3.1 國外混凝土自體收縮預測模型式 30 3.1.1 CEB MC90-99 30 3.1.2 JCI 30 3.1.3 FIB2000 31 3.1.4 Model B4 32 3.2 國內混凝土自體收縮預測模型 33 3.2.1 Model B4TW(2017) 33 3.2.2 Model B4TW(2020) 35 3.3 國外混凝土總收縮預測模型 36 3.3.1 ACI 209R-92 36 3.3.2 AASHTO LRFD 2014 37 3.3.3 CEB MC90 38 3.3.4 CEB MC90-99 39 3.3.5 CEB MC10 40 3.3.6 JSCE 2002 41 3.3.7 Model B3 43 3.3.8 Model B4 44 3.4 國內混凝土總收縮預測模型 47 3.4.1 Model B4TW(2017) 47 3.4.2 Model B4TW(2020) 48 3.5 國外SCC收縮預測模型 52 3.5.1 AASHTO(Khayat and Long) model 52 3.5.2 CEB90(Poppe and De Schutter) model 53 3.5.3 JSCE (Aslani) model 53 3.6 國內SCC收縮預測模型 55 3.6.1 Model B4TW-SCC 55 3.7 NTU資料庫應用於預測模型之結果 58 4 第四章、實驗計畫 61 4.1 實驗內容 61 4.2 配比設計與名稱 61 4.3 實驗材料 62 4.4 實驗儀器與設備 67 4.5 實驗項目與方式 71 4.5.1 新拌混凝土性質試驗 71 4.5.2 抗壓強度試驗 72 4.5.3 收縮試驗 73 5 第五章、實驗結果與討論 74 5.1 新拌混凝土流動性試驗結果 74 5.2 抗壓試驗 84 5.3 收縮試驗 86 5.3.1 水膠比對總收縮的影響 88 5.3.2 水膠比對自體收縮的影響 91 5.3.3 石灰石對總收縮的影響 93 5.3.4 石灰石對自體收縮的影響 95 6 第六章、結論與建議 98 6.1 結論 98 6.2 建議 99 參考文獻 100 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 自充填混凝土 | zh_TW |
| dc.subject | 收縮 | zh_TW |
| dc.subject | 預測模型 | zh_TW |
| dc.subject | 卜作嵐摻料 | zh_TW |
| dc.subject | 石灰石水泥 | zh_TW |
| dc.subject | portland limestone cement | en |
| dc.subject | pozzolanic materials | en |
| dc.subject | prediction model | en |
| dc.subject | self-compacting concrete | en |
| dc.subject | shrinkage | en |
| dc.title | 使用石灰石水泥之自充填混凝土收縮行為與預測 模型 研究 | zh_TW |
| dc.title | Prediction Model for Shrinkage behavior of Self-Compacting Concrete using Portland Limestone Cement | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹穎雯;胡瑋秀;楊仲家 | zh_TW |
| dc.contributor.oralexamcommittee | Yin-Wen Chan;Wei-Hsiu Hu;Chung-Chia Yang | en |
| dc.subject.keyword | 收縮,自充填混凝土,石灰石水泥,卜作嵐摻料,預測模型, | zh_TW |
| dc.subject.keyword | shrinkage,self-compacting concrete,portland limestone cement,pozzolanic materials,prediction model, | en |
| dc.relation.page | 104 | - |
| dc.identifier.doi | 10.6342/NTU202504162 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 14.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
