請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98993完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林恩仲 | zh_TW |
| dc.contributor.advisor | En-Chung Lin | en |
| dc.contributor.author | 許舒涵 | zh_TW |
| dc.contributor.author | Shu-Han Hsu | en |
| dc.date.accessioned | 2025-08-20T16:34:33Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-15 | - |
| dc.identifier.citation | 台灣區種豬產業協會。2016。台灣種豬場場內檢定種豬拍賣作業規則。台灣區種豬產業協會。台北市。
台灣區種豬產業協會。2025。種豬拍賣榮譽頒獎影片。https://pigbase.angrin.tlri.gov.tw/pigfarm/Pigsale_FarmWMV.htm (accessed 2025/05/11)。 台灣種豬場場內檢定委員會。2014。台灣種豬場場內檢定規章。農業部。台北市。 全國種豬改良小組。1982。國家核心種豬場管理作業辦法。中國農村發展委員會。 池雙慶。1980。種豬選拔指數與本省豬種改良方向。中國畜牧學會會誌9:55-69。 池雙慶。1991。台湾における養豚事業の近況。日本養豚学会誌28:271-272。doi: 10.5938/youton.28.271 林恩仲。2017。2017年種豬場場內檢定期末統計與報告。台灣種豬場場內檢定委員會。 林恩仲、許舒涵、藍育祥、梁淑敏。2025。2024年種豬場場內檢定期末統計與報告。台灣種豬場場內檢定委員會。 林欽德。2013。台灣種豬產業現況。https://www.angrin.tlri.gov.tw/pig/course/pigtrain_2013/train.7-16.pdf (accessed 2025/05/11)。 財團法人中央畜產會。2015。種豬產業現況。https://www.angrin.tlri.gov.tw/pig/course/2015pig/2015pig_01.pdf (accessed 2025/05/11)。 財團法人中央畜產會。2020。財團法人中央畜產會種豬性能檢定規章。財團法人中央畜產會。台北市。 財團法人中央畜產會。2025。種豬-產業現況。https://www.naif.org.tw/industrialContent.aspx?param=frontMenuID=13%EF%BC%86sDate=%EF%BC%86eDate=%EF%BC%86key1=%EF%BC%86frontTitleMenuID=12%EF%BC%86forewordTypeID=0%EF%BC%86pn=1&frontTitleMenuID=12&frontMenuID=13&forewordID=1832 (accessed 2025/05/15)。 崔慈悌。2013。國家核心種豬場為養豬業黃金時代奠定基石。第53-63頁。種豬產業60年記事實錄。財團法人中央畜產會。台北市。 黃玉鴻。1992。國家核心種豬場(北站)豬隻的生長及繁殖性能。碩士論文。國立中興大學畜牧學研究所。台中市。 鄒會良。1993。台灣種豬性能場內檢定計畫:現況與未來發展。第133-153頁。豬育種策略研討會專輯。台灣養豬科學研究所。苗栗縣。 鄒會良、甘明宗。1990。臺灣豬隻場內檢定性能之遺傳改進(1980-1988)。中國畜牧學會會誌19:117-129。 臺灣養豬科學研究所。1994。台灣省種豬場內檢定82/83統計圖表。臺灣養豬科學研究所。苗栗縣。 鍾佩真。2013。種豬產業大事紀。第180-184頁。種豬產業60年記事實錄。財團法人中央畜產會。台北市。 簡執中、蔡政樵、陳怡蓁、王佩華、駱秋英、羅玲玲、王旭昌、黃存后、林恩仲。2008。利用各式超音波儀器進行黑毛豬隻活體背脂厚度檢測可行性之評估。中國畜牧學會會誌37:203。 顏秀鳳、黃士娟、黎漢龍、邱聖峰、池雙慶。1981。種豬場內檢定69/70年度工作報告。臺灣養豬科學研究所。苗栗縣。 石井和雄、佐分美恵、寺井禎貴、佐々木修、西浦明子、佐藤正寛。2010。超音波探傷器を用いて測定した体長1/2部位のロース断面積と最後胸椎部位におけるロース断面積及びロースの深さとの関係。日本養豚学会誌47:127-135。doi: 10.5938/youton.47.127 家畜改良中心。2014。繁殖形質に用いる記録の採用条件及び評価方法等について。日本。 家畜改良中心。2016。産肉形質に用いる記録の採用条件及び評価方法等について。日本。 家畜改良中心。2024。国産純粋種豚改良協議会遺伝的能力評価結果の概要。日本。 Akinola, O., M. Olaniyi, A. Jegede, E. Akinsaya, and G. Ajayi. 2018. Growth performance, back fat thickness and loin eye area measurements of growing pigs fed with different energy sources. Niger. J. Anim. Prod. 588-590. Andersen, S., G. Ohl, and I. Pedersen. 1993. Continuous genetic evaluation of field and station test in Denmark. In: Proc. EC seminar on application of mixed linear models in the prediction of genetic merit in pigs. pp. 55-59. Andersen, S. R., and T. Vestergaard. 1984. Estimation of genetic and phenotypic parameters for selection index evaluation in the danish pig breeding program. Acta. Agr. Scand. 34:231-243. doi: 10.1080/00015128409435392 APL. 2024. Annual report 2022-23, Australian Pork Limited, Australia. Bampton, P. R., M. K. Curran, and R. E. Kempson. 1977. A comparison of ‘on-farm’ and station testing in pigs. Anim. Prod. 25:83-94. doi: 10.1017/S0003356100039076 Bereskin, B. 1977. Evaluating and using performance records of boars at central testing stations. pp.15. Bidanel, J. P., and A. Ducos. 1993. Genetic evaluation of pigs for production and reproductive traits in France. in: E. Groeneveld (Ed.), Proc. EC seminar on application of mixed linear models in the prediction of genetic merit in pigs, May 27, Mariensee, Germany, pp. 7-18. Bidanel, J. P., and A. Ducos. 1996. Genetic correlations between test station and on-farm performance traits in Large White and French Landrace pig breeds. Livest. Prod. Sci. 45:55-62. doi: 10.1016/0301-6226(95)00079-8 Bidanel, J. P., A. Ducos, R. Guéblez, and F. Labroue. 1994. Genetic parameters of backfat thickness, age at 100 kg and ultimate pH in on-farm tested French Landrace and Large White pigs. Livest. Prod. Sci. 40:291-301. doi: 10.1016/0301-6226(94)90096-5 Bourdon, R. M. 2014. Understanding animal breeding. 2nd ed. Pearson Education Limited, Harlow. CCSI. 2020. 2020 annual report. Canadian Centre for Swine Improvement. Canada. Chen, P., T. Baas, J. Mabry, K. Koehler, and J. Dekkers. 2003. Genetic parameters and trends for litter traits in US Yorkshire, Duroc, Hampshire, and Landrace pigs. J. Anim. Sci. 81:46-53. doi: 10.2527/2003.81146x Chen, P., T. J. Baas, J. W. Mabry, J. C. M. Dekkers, and K. J. Koehler. 2002. Genetic parameters and trends for lean growth rate and its components in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs1. J. Anim. Sci. 80:2062-2070. doi: 10.1093/ansci/80.8.2062 Chyr, S. C. 1987. Pig breeding and development in Taiwan. in: Proc. A seminar on pig breeding and development in Asia. pp. C1-45. Clutter, A. C. 2011. Genetics of performance traits. in: The genetics of the pig. M. F. Rothschild and A. Ruvinsky, ed. CABI, UK. pp. 325-354. Crump, R. 2001. The national pig improvement program. in 2001 Pig Genetics Workshop, Armidale. Crump, R., and T. Henzell. 2003. PIGBLUP Version 5.10. in AGBU Pig Genetics Workshop. Armidale. Crump, R., and S. Hermesch. 2004. The national pig improvement program–update. in AGBU Pig Genetics Workshop, Armidale. pp 13-19. Cunningham, P. J. 1978. Economic definition of breeding value: total performance and breeding goals for swine. in 70th Annual Meeting, American Society of Animal Science. Danbred. 2025. Who we are | Danbred. https://danbred.com/about-us/ (accessed 2025/05/15). Danish Pig Research Centre. 2022. Results 2022, Danish Agriculture & Food Council Pig Research Centre, Landbrug & Fødevarer Sektor for Gris, Axeltorv 3, DK 1609 København V. Ducos, A. 1994. Paramètres génétiques des caractères de production chez le porc. Mise au point bibliographique. Techni-Porc. 17:35-67. Ducos, A., J. P. Bidanel, V. Ducrocq, D. Boichard, and E. Groeneveld. 1993. Multivariate restricted maximum likelihood estimation of genetic parameters for growth, carcass and meat quality traits in French Large White and French Landrace pigs. Genet. sel. evol. 25:475-493. FABA. 2002. Kotieläinjalostuksen tilastokirja (Animal Breeding Statistics), Finn. Anim. Breed. Assoc, Vantaa, Finland. Figen. 2024. breeding program Figen. https://www.figen.fi/en/genetics/programme. (accessed 2025/05/15). Fisher, R. A. 1922. On the mathematical foundations of theoretical statistics. Philosophical transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character 222:309-368. Fisher, R. A. 1925. Statistical methods for research workers. First ed. Oliver and Boyd, UK. Gardner, J., A. Dunkin, and L. Lloyd. 1990. Pig production in Australia. Butterworths Pty Limited. Sydney. pp.358. Gilmour, A. R., B. J. Gogel, B. R. Cullis, S. J. Welham, and R. Thompson. 2021. ASReml-SA User Guide Release 4.2 Functional Specification. VSN International Ltd, UK. Gilmour, A. R., R. Thompson, and B. R. Cullis. 1995. Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51:1440-1450. doi: 10.2307/2533274 Goodwin, R., and S. Burroughs. 1995. Genetic evaluation terminal line program results. National Pork Producers Council, Urbandale, IA. Graser, H.-U., S. Smith, and B. Tier. 1987. A derivative-free approach for estimating variance components in animal models by restricted maximum likelihood. J. Anim. Sci. 64:1362-1370. Groeneveld, E. 2010. VCE User's Guide and Reference Manual Version 6.0 Hammond, K. 1991. Organising your recording system to optimise management decisions. in AGBU Pigblup Clinic. Harris, D. L., D. L. Lofgren, T. S. Stewart, and A. P. Schinckel. 1989. Adapting best linear unbiased prediction (BLUP) for timely genetic evaluation: I. progeny traits in a single contemporary group for each sex. J. Anim. Sci. 67:3209-3222. doi: 10.2527/jas1989.67123209x Hartley, H. O., and J. N. Rao. 1967. Maximum-likelihood estimation for the mixed analysis of variance model. Biometrika 54:93-108. Harville, D. A. 1977. Maximum likelihood approaches to variance component estimation and to related problems. J. Am. Stat. Assoc 72:320-338. Henderson, C. 1980. A simple method for unbiased estimation of variance components in the mixed model. J. Anim. Sci. 58:119. Henderson, C. R. 1949. Estimation of changes in herd environment. J. Dairy Sci. 32:706-706. Henderson, C. R. 1953. Estimation of variance and covariance components. Biometrics 9:226-252. doi: 10.2307/3001853 Henderson, C. R. 1973. Sire evaluation and genetic trends. J. Anim. Sci. (Symposium):10-41. doi: 10.1093/ansci/1973.Symposium.10 Henderson, C. R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423-447. doi: 10.2307/2529430 Henderson, C. R. 1976. A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 69-83. Henzell, T. 1993. What's new in PIGBLUP? AGBU Pigblup Clinic. Armidale. Hermesch, S. 2006. Outline of R&D directions for Australian pig genetics AGBU Pig Genetics Workshop. Armidale. Hermesch, S. 2024. EBVs can only be compared from the same genetic evaluation. AGBU. https://agbu.une.edu.au/pig_genetics/pdf/Info%20sheets/producer2.pdf (accessed 2024/06/11). Hermesch, S., and R. Crump. 2005. The national pig improvement program (NPIP). http://agbu.une.edu.au/pig_genetics/pdf/Info%20sheets/npip1.pdf Hermesch, S., and R. Crump. 2024. PBSELECT The online PIGBLUP service. https://agbu.une.edu.au/pig_genetics/pdf/Info%20sheets/PBSELECT1.pdf (accessed 2024/06/11). Hermesch, S., R. Crump, and T. Henzell. 2005. Genetic evaluation systems for pigs used in Australia. https://agbu.une.edu.au/pig_genetics/pdf/Info%20sheets/pigblup1.pdf (accessed 2024/06/11). Hermesch, S., R. Crump, T. Henzell, and H. Graser. 2024. Benefits of using PIGBLUP in pig breeding programs. https://agbu.une.edu.au/pig_genetics/pdf/Info%20sheets/breeder1.pdf (accessed 2024/06/11). Hermesch, S., C. Parke, M. Bauer, and H. Gilbert. 2014. Maternal genetic effects for lifetime growth should be considered more in pig breeding. in Proc. the 10th world congress of genetics applied to livestock production’, Vancouver, Canada. Hofer, A. 1998. Variance component estimation in animal breeding: a review. J. Anim. Breed. Genet. 115:247-265. Horndrup, L. V., T. Ostersen, M. Henryon, J. Vinther, C. Sørensen, and A. Vernersen. 2024. Results for DanBred Pigs 2024, Breeding & Genetics, Danish Agriculture & Food Council Pig Research Centre. Copenhagen. Hsia, L., and G. Lu. 2004. The effect of high environmental temperature and nutrient density on pig performance, conformation and carcass characteristics under restricted feeding system. Asian-Australas J Anim Sci 17:250-258. Hyttel, H. L. 2024a. Brancheanalyse for produktivitet i 2023 i et udsnit af besætninger som anvendte DanBred-genetik, SEGES Innovation. Aarhus. Hyttel, H. L. 2024b. Landsgennemsnit for produktivitet i produktion af grise i 2023, SEGES Innovation. Aarhus. IFIP. 2024. Le porc par les chiffres 2024-2025 : gratuit à télécharger, Institut du porc, 5 rue Lespagnol , 75020 Paris. Johnson, D. L., and R. Thompson. 1995. Restricted maximum likelihood estimation of variance components for univariate animal models using sparse matrix techniques and average information. J. Dairy Sci. 78:449-456. doi: 10.3168/jds.S0022-0302(95)76654-1 Kavlak, A. T. 2022. The genetic parameters of feeding behaviour and production traits, social interaction and disease control in finnish pigs. Doctoral thesis. University of Helsinki, doctoral school in environmental, food and biological sciences. Helsinki. Kennedy, B. W., V. M. Quinton, and C. Smith. 1996. Genetic changes in Canadian performance-tested pigs for fat depth and growth rate. Can. J. Anim. Sci. 76:41-48. doi: 10.4141/cjas96-006 Kyriazakis, I., (eds) 2006. Whittemore's science and practice of pig production. Blackwell, Iowa, USA. LaMotte, L. R. 1973. Quadratic estimation of variance components. Biometrics 311-330. Li, X., and B. W. Kennedy. 1994. Genetic parameters for growth rate and backfat in Canadian Yorkshire, Landrace, Duroc, and Hampshire pigs. J. Anim. Sci. 72:1450-1454. doi: 10.2527/1994.7261450x Lofgren, D. L., D. L. Harris, T. S. Stewart, and A. P. Schinckel. 1989. Adapting best linear unbiased prediction (BLUP) for timely genetic evaluation: II. progeny traits in multiple contemporary groups within a herd. J. Anim. Sci. 67:3223-3242. doi: 10.2527/jas1989.67123223x Maijala, K. 1999. Sata kehityksen vuotta. in J. Juga, K. Maijala, A. Mäki-Tanila, E. Mäntysaari, M. Ojala and J. Syväjärvi, editors, Kotieläinjalostus. Gummerus Kirjapaino, Jyväskylä, Finland. pp. 1-34. McKay, R. M. 1992. Practical guide to swine breeding. Minister of Supply and Services Canada, Communications Branch, Agriculture Canada, Ottawa, Ont. K1A 0C7. Misztal, I. 2008. Reliable computing in estimation of variance components. J. Anim. Breed. Genet. 125:363-370. doi: 10.1111/j.1439-0388.2008.00774.x Mäntysaari, E. A. 1992. BLUP-arvostelu hedelmällisyysvalintaan. Sika 22:52-53. Mrode, R. A. 2014. Linear models for the prediction of animal breeding values. 3rd ed. CAB International, UK. NPPC. 1991. Procedures to Evaluate Market Hogs. Third ed. The National Pork Producers Council, Des Moines, IA. NPPC. 2000. Pork composition and quality assessment procedures. The National Pork Producers Council, Des Moines, IA. NSIF. 1987. Guidelines for uniform swine improvement programs. National Swine Improvement Federation. National Pork Producers Council, Des Moines, IA. NSIF. 2024. Genetic Evaluation Programs. https://swineimprovementfederation.com/swine-genetics-handbook/fs12/ (accessed 01 July 2024). Ott, L., and M. Longnecker. 2010. An introduction to statistical methods and data analysis. Brooks/Cole. pp.555-621. Patterson, H. D., and R. Thompson. 1971. Recovery of inter-block information when block sizes are unequal. Biometrika 58:545-554. Powell, R., and H. Norman. 2006. Major advances in genetic evaluation techniques. J. Dairy Sci. 89:1337-1348. Quaas, R. L. 1976. Computing the diagonal elements and inverse of a large numerator relationship matrix. Biometrics 949-953. Queensland Government. 2022a. Measuring for pig herd performance testing. https://www.business.qld.gov.au/industries/farms-fishing-forestry/agriculture/animal/industries/pigs/breed/genetics/measure (accessed 2024/06/11). Queensland Government. 2022b. Pig traits and genetics. https://www.business.qld.gov.au/industries/farms-fishing-forestry/agriculture/animal/industries/pigs/breed/genetics/traits (accessed 2024/06/11). Rao, C. R. 1971a. Estimation of variance and covariance components—MINQUE theory. J. Multivar. Anal. 1:257-275. Rao, C. R. 1971b. Minimum variance quadratic unbiased estimation of variance components. J. Multivar. Anal. 1:445-456. Renco corp. 2009. Sono-grader user’s guide, Renco corp.Minnesota. Rydhmer, L. 2005. Swine breeding programmes in the Nordic countries. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c070083e191ad4c7e7f3bde54b8374185e552b03 (accessed 2024/06/11). Salces, A. J., K. S. Seo, K. H. Cho, S. Kim, and Y. C. Lee. 2006. Genetic parameter estimation of carcass traits of Duroc predicted using ultrasound scanning modes. Asian-Australas J Anim Sci 19:1379-1383. SAS Institute Inc. 2015. SAS/STAT® 14.1 user’s guide. SAS Institute Inc Cary, NC. Sather, A., A. Tong, and D. Harbison. 1986. A study of ultrasonic probing techniques for swine. I. The effect of operator, machine and site. Can. J. Anim. Sci. 66:591-598. Schinckel, A. P. 1991. Use of estimated breeding value microcomputer programs to improve pork production efficiency. Comput. Electron. Agric. 6:63-69. doi: 10.1016/0168-1699(91)90023-3 Schinckel, A. P., and M. E. Einstein. 1999. STAGES Index Changes for 1999. https://www.ansc.purdue.edu/swine/swineday/sday99/psd16-1999.html (accessed 2024/06/11). Schinckel, A. P., T. S. Stewart, D. L. Lofgreen, and D. L. Harris. 1986. Swine Testing and Genetic Evaluation System: Post-Weaning Records and Reports (STAGE 2). https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1219&context=agext (accessed 2024/06/11). Serenius, T. 2004. Genetics of Sow Efficiency in the Finnish Landrace and Large White Populations. Doctoral dissertation. University of Helsinki, MTT Agrifood Research Finland, Helsinki. Serenius, T., M.-L. Sevo´n-Aimonen, A. Kause, E. A. Ma¨ntysaari, and A. Ma¨ki-Tanila. 2004a. Selection potential of different prolificacy traits in the finnish landrace and large white populations. . Acta Agric. Scand. A Anim. Sci. 54:36–43.. doi: 10.1080/09064700310019082 Serenius, T., M.-L. Sevo´n-Aimonen, A. Kause, E. A. Ma¨ntysaari, and A. Ma¨ki-Tanila. 2004b. Genetic associations of prolificacy with performance, carcass, meat quality, and leg conformation traits in the Finnish Landrace and Large White pig populations. J. Anim. Sci. 82:2301-2306. doi: 10.2527/2004.8282301x Smith, B., W. Jones, J. Hough, D. Huffman, W. Mikel, and D. Mulvaney. 1992. Prediction of carcass characteristics by real-time ultrasound in barrows and gilts slaughtered at three weights. Journal of animal science 70:2304-2308. Smith, S., and H.-U. Graser. 1986. Estimating variance components in a class of mixed models by restricted maximum likelihood. J. Dairy Sci. 69:1156-1165. Spike, P. L., (eds) 2010. Applied animal breeding laboratory manual. Iowa State University, Ames, IA, U.S.A. pp.GP1-GP14 Stewart, T. S., D. L. Lofgren, D. L. Harris, M. E. Einstein, and A. P. Schinckel. 1991. Genetic improvement programs in livestock: swine testing and genetic evaluation system (STAGES). Journal of animal science 69:3882-3890. doi: 10.2527/1991.6993882x Stewart, T. S., and A. P. Schinckel. 1989. Genetic parameters for swine growth andcarcass traits. in Genetics of Swine. L. D. Young, ed. USDA-ARS, Clay Center, NE. p.77 Sullivan, B. 2005. Genetic Sources of Variability in Pig Production. CCSI. Tsou, H. L. 1976. Effect of sex, skeletal size, and materal breed on perfoumance and carcass traits of heavyweight swine. Master's thesis. Iowa State Unicersity. USA. Van Diepen, T. A., and B. W. Kennedy. 1989. Genetic correlations between test station and on-farm performance for growth rate and backfat in pigs. J. Anim. Sci. 67:1425-1431. doi: 10.2527/jas1989.6761425x Vangen, O., B. Holm, A. Valros, M. S. Lund, and L. Rydhmer. 2005. Genetic variation in sows' maternal behaviour, recorded under field conditions. Livest. Prod. Sci. 93:63-71. VanRaden, P. M. 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91:4414-4423. Williams, Pattinson, Wilcox, and Ball. 2023. Independent performance review: Final report, Australian Pork Limited. Australia. Wolverton, D., D. E. Burson, and T. Socha. 1996. National Swine Improvement Federation Ultrasound Certification Workshops. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1194&context=coopext_swine (accessed 2024/06/11). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98993 | - |
| dc.description.abstract | 本研究旨在評估台灣種豬場內檢定杜洛克豬隻的生長與屠體性狀之遺傳表現。本研究分析了2014至2024年間來自11個特定種豬場的14,948頭杜洛克豬隻性能資料,主要分析的生長與屠體性狀包括達結束檢定日齡(tage)、平均隻日增重(ADG)、平均背脂厚度(BF)、腰眼面積(LMA)、瘦肉率(Lean%),以及多個超音波性狀如第4肋背脂厚度(P1)、最後肋背脂厚度(P2)、最後腰椎背脂厚度(P3)、第10肋背脂厚度(P10)與實際腰眼深度(tLD),並採用線性混合模型與最佳線性無偏估測方法估計各性狀的遺傳參數與育種價。研究結果顯示,tage、ADG、BF、LMA、Lean%、P1、P2、P3、P10與tLD的遺傳率估計值分別為0.315、0.322、0.393、0.199、0.208、0.262、0.333、0.398、0.334與0.212。台灣杜洛克豬群的生長與屠體性狀多呈現中等遺傳率,與國際文獻報導相似,然而LMA、Lean%與tLD的遺傳率估計值偏低,可能因採用A模式超音波儀器進行間接測量,導致非遺傳變異增加所致。在改進趨勢方面,分析結果顯示在2014至2024年間,年平均修正表型數值只有BF、P2、P3與P10(P < 0.001)呈現顯著的改進趨勢,其餘性狀受環境干擾較大,變動趨勢未達統計顯著;除了LMA以外,其餘性狀的年平均育種價估測值則呈現顯著的改進趨勢(tage、ADG、BF、P1、P2、P3與P10皆為P < 0.001,tLD為P < 0.05),顯示在排除環境因素之干擾後,育種價的選拔效果得以實現,改進趨勢也符合選育方向。本研究建議現場選拔應以育種價估測值為依據,而非受多種非遺傳因素影響的表型數值,以提升遺傳改進效率;同時,透過改善飼養管理與降低環境變異,可進一步提升台灣種豬之選拔效率與整體生產效益。未來種豬場場內檢定改採B模式超音波儀器進行屠體性狀測定,亦可望提升LMA、Lean%與tLD等性狀之遺傳率估計值,增進選拔準確性。 | zh_TW |
| dc.description.abstract | This study aimed to evaluate the genetic performance of growth and carcass traits for duroc pigs in the Taiwan Swine On-Farm Test. A total of 14,948 performance records were collected from 11 herds between 2014 and 2024. The analyzed traits included age at test (tage), average daily gain (ADG), backfat thickness (BF), loin muscle area (LMA), lean percentage (Lean%), and several ultrasound traits: backfat thickness at the 4th rib (P1), backfat thickness at the last rib (P2), backfat thickness at the last lumbar vertebra (P3), backfat thickness at the 10th rib (P10), and tested loin depth (tLD). Genetic parameters and estimated breeding values (EBVs) were obtained using linear mixed models and the best linear unbiased prediction (BLUP) method. Heritability estimates for tage, ADG, BF, LMA, Lean%, P1, P2, P3, P10, and tLD were 0.315, 0.322, 0.393, 0.199, 0.208, 0.262, 0.333, 0.398, 0.334, and 0.212, respectively. The results indicated moderate heritability for most growth and carcass traits, consistent with values reported in international literature. However, LMA, Lean% and tLD showed relatively low heritability, which may be attributed to increased non-genetic variation associated with the use of A-mode ultrasound devices for indirect measurement. From 2014 to 2024, annual changes in adjusted phenotypic means were statistically significant only for BF, P2, P3, and P10 (P < 0.001), whereas other traits were more affected by environmental variation and did not reach statistical significance. In contrast, annual mean EBVs showed significant improvement trends for all traits except LMA (tage, ADG, BF, P1, P2, P3, and P10: P < 0.001; tLD: P < 0.05). These results confirm the effectiveness of selection based on EBVs when environmental effects are accounted for, and show that the improvement trends are consistent with the established breeding objectives. It is recommended that selection decisions be based on EBVs rather than phenotypic values, which are more susceptible to substantial non-genetic variation. Additionally, improving herd management and reducing environmental variability are essential to further enhance selection efficiency and overall productivity in the swine industry in Taiwan. The future use of B-mode ultrasound for carcass trait measurement in the Taiwan Swine On-Farm Test is expected to increase the heritability estimates for traits such as LMA, Lean%, and tLD, thereby improving selection precision. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:34:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:34:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 ii
摘要 iii Abstract iv 目次 vi 圖次 viii 表次 x 壹、 前言 1 貳、 文獻探討 2 一、 外國場內檢定概述 2 (一) 美國 2 (二) 加拿大 8 (三) 丹麥 14 (四) 芬蘭 15 (五) 法國 16 (六) 日本 18 (七) 澳洲 21 二、 台灣豬隻性能檢定制度 25 (一) 中央檢定 25 (二) 場內檢定 29 三、 動物育種的統計模型與方法 36 參、 材料與方法 40 一、 表型資料收集 40 二、 統計分析 45 (一) 線性混合模型 45 (二) 遺傳評估 47 肆、 結果與討論 48 一、 各性狀敘述性統計 48 二、 各性狀遺傳參數估計 55 三、 各性狀年改變量 57 四、 各性狀育種價估測值與修正表型數值之線性迴歸分析 66 五、 非遺傳因素的影響 73 (一) 出生季節不均 73 (二) 每胎檢定數量不足 74 伍、 結論 77 陸、 參考文獻 78 柒、 附錄 91 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 杜洛克 | zh_TW |
| dc.subject | 遺傳評估 | zh_TW |
| dc.subject | 場內檢定 | zh_TW |
| dc.subject | 育種價估測值 | zh_TW |
| dc.subject | 遺傳參數 | zh_TW |
| dc.subject | Genetic evaluation | en |
| dc.subject | On-farm test | en |
| dc.subject | Estimated breeding value | en |
| dc.subject | Genetic parameters | en |
| dc.subject | Duroc pigs | en |
| dc.title | 台灣種豬場場內檢定杜洛克豬隻生長及屠體性狀之遺傳評估 | zh_TW |
| dc.title | Genetic Evaluation of Growth and Carcass Traits for Duroc Pigs in the Taiwan Swine On-Farm Test | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 王佩華 | zh_TW |
| dc.contributor.coadvisor | Pei-Hwa Wang | en |
| dc.contributor.oralexamcommittee | 黃三元;林楷翔 | zh_TW |
| dc.contributor.oralexamcommittee | San-Yuan Huang;Kai-Hsiang Lin | en |
| dc.subject.keyword | 遺傳評估,遺傳參數,育種價估測值,場內檢定,杜洛克, | zh_TW |
| dc.subject.keyword | Genetic evaluation,Genetic parameters,Estimated breeding value,On-farm test,Duroc pigs, | en |
| dc.relation.page | 118 | - |
| dc.identifier.doi | 10.6342/NTU202504387 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 動物科學技術學系 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 5.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
