Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98986
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立民zh_TW
dc.contributor.advisorLi-Min Wangen
dc.contributor.author周均澤zh_TW
dc.contributor.authorChun-Tse Chouen
dc.date.accessioned2025-08-20T16:32:50Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citation[1] MAJORANA, Ettore. Teoria simmetrica dell’elettrone e del positrone. Il Nuovo Cimento (1924-1942), 1937, 14.4: 171-184.
[2] KITAEV, A. Yu. Unpaired majorana fermions in quantumwires. Physics-uspekhi, 2001, 44.10S: 131.
[3] KITAEV, A. Yu. Fault-tolerant quantum computation by anyons. Annals of physics, 2003, 303.1: 2-30..
[4] FU, Liang; KANE, Charles. Superconducting proximity effect and Majorana fermions at the surface. In: APS March Meeting Abstracts. 2008. p. V10. 001.
[5] WANG, Mei-Xiao, et al. The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science, 2012, 336.6077: 52-55.
[6] MAEMOTO, T., et al. Superconductor-semiconductor junctions with InAs/Al (Ga) Sb quantum wells. Applied surface science, 1997, 117: 714-718.
[7] SANG, Lina, et al. Majorana zero modes in iron-based superconductors. Matter, 2022, 5.6: 1734-1759.
[8] MOURIK, Vincent, et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science, 2012, 336.6084: 1003-1007. [9] Non-Abelian braiding of graph vertices in a superconducting processor. Nature, 2023, 618.7964: 264-269.
[10] KUMAR, Jagdish, et al. Physical property and electronic structure characterization of bulk superconductingBi3Ni. Superconductor Science and Technology, 2011, 24.8: 085002.
[11] LIN, Chin-Wei, et al. Inverse-proximity effect and 2D superconductivity of Ta/Au bilayer thin films. Journal of Alloys and Compounds, 2024, 1008: 176700.
[12] https://next-gen.materialsproject.org/materials/mp-81?chemsys=Au
[13] LECLAIR, Patrick, et al. Coexistence of Ferromagnetism and Superconductivity in Ni/Bi Bilayers. Physical review letters, 2005, 94.3: 037006.
[14] GONG, Xin-Xin, et al. Possible p-wave superconductivity in epitaxial Bi/Ni bilayers. Chinese Physics Letters, 2015, 32.6: 067402.
[15] ZHOU, Hexin; GONG, Xinxin; JIN, Xiaofeng. Magnetic properties of superconducting Bi/Ni bilayers. Journal of Magnetism and Magnetic Materials, 2017, 422: 73-76.
[16] GONG, Xinxin, et al. Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers. Science advances, 2017, 3.3: e1602579.
[17] SIVA, Vantari, et al. Spontaneous formation of superconducting NiBi3 phase in Ni-Bi bilayer films. Journal of Applied Physics, 2015, 117.8.
[18] LIU, L. Y., et al. Superconductivity in Bi/Ni bilayer system: Clear role of superconducting phases found at Bi/Ni interface. Physical Review Materials, 2018, 2.1: 014601.
[19] VAUGHAN, Matthew, et al. Origin of superconductivity at nickel-bismuth interfaces. Physical Review Research, 2020, 2.1: 013270.
[20] LIU, Liying, et al. Spontaneous morphology and phase modification driven by sequence of deposition in superconducting Ni–Bi bilayers. Materials Chemistry and Physics, 2021, 260: 124112.
[21] DORIA, Mauro M., et al. Shape resonances and the T c dependence on film thickness of Ni/Bi systems. Superconductor Science and Technology, 2021, 35.1: 015012.
[22] NANDA, Laxmipriya, et al. Bismuth Phase Dependent Growth of Superconducting NiBi3 Nanorods. Journal of Alloys and Compounds, 2023, 960: 170948.
[23] SANT’ANA, Gabriel, et al. Ni/Bi bilayers: The effect of thickness on the superconducting properties. Journal of Applied Physics, 2024, 135.4.
[24] PARK, Jihun, et al. Superconducting phase diagram in BixNi1–x thin films: The effects of Bi stoichiometry on superconductivity. Physical Review Materials, 2024, 8.7: 074805.
[25] ONNES, Kamerlingh. The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden, b, 1911, 120.
[26] MEISSNER, Walther; OCHSENFELD, Robert. Ein neuer effekt bei eintritt der supraleitfähigkeit. Naturwissenschaften, 1933, 21.44: 787-788.
[27] BARDEEN, John; COOPER, Leon N.; SCHRIEFFER, J. Robert. Microscopic theory of superconductivity. Physical Review, 1957, 106.1: 162.
[28] BEDNORZ, J. George; MÜLLER, K. Alex. Possible high T c superconductivity in the Ba− La− Cu− O system. Zeitschrift für Physik B Condensed Matter, 1986, 64.2: 189-193.
[29] WU, Maw-Kuen, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical review letters, 1987, 58.9: 908.
[30] MAEDA, Hiroshi, et al. A new high-Tc oxide superconductor without a rare earth element. Japanese Journal of Applied Physics, 1988, 27.2A: L209.
[31] KAMIHARA, Yoichi, et al. Iron-based layered superconductor: LaOFeP. Journal of the American Chemical Society, 2006, 128.31: 10012-10013.
[32] KITTEL, Charles; MCEUEN, Paul. Introduction to solid state physics. John Wiley & Sons, 2018.
[33] KOZHEVNIKOV, Vladimir. Meissner effect: History of development and novel aspects. Journal of Superconductivity and Novel Magnetism, 2021, 34.8: 1979-2009.
[34] LONDON, Fritz; LONDON, Heinz. The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1935, 149.866: 71-88.
[35] GORTER, Cornelis Jacobus; CASIMIR, Hendrik. On supraconductivity I. Physica, 1934, 1.1-6: 306-320.
[36] GINZBURG, Vitaly L.; GINZBURG, Vitaly Lazarevich; LANDAU, L. D. On the theory of superconductivity. Springer Berlin Heidelberg, 2009.
[37] ABRIKOSOV, Aleksej A. Nobel Lecture: Type-II superconductors and the vortex lattice. Reviews of modern physics, 2004, 76.3: 975-979.
[38] POOLE, Charles P., et al. Superconductivity. Elsevier, 2014.
[39] 張裕恆、李玉芝。超導物理, (2009)。
[40] KIM, Y. B.; HEMPSTEAD, C. F.; STRNAD, A. R. Flux creep in hard superconductors. Physical Review, 1963, 131.6: 2486.
[41] SAINT-JAMES, Daniel; GENNES, PG de. Onset of superconductivity in decreasing fields. Physics Letters, 1963, 7.5: 306-308.
[42] SHARMA, Ram Gopal. Superconductivity: Basics and applications to magnets. Springer Nature, 2021.
[43] LANDAU, I. L.; PARSHIN, I. A. Increase in the superconducting transition temperature of thin films as a result of a normal metal deposition on their surface. Physica B: Condensed Matter, 1994, 194: 2339-2340.
[44] BEREZINSKII, VL314399. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems. Sov. Phys. JETP, 1971, 32.3: 493-500.
[45] BEREZINSKII, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. Sov. Phys. JETP, 1972, 34.3: 610-616.
[46] KOSTERLITZ, John Michael; THOULESS, David James. Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C: Solid State Physics, 1973, 6.7: 1181.
[47] BRAHLEK, Matthew, et al. Transport properties of topological insulators: Band bending, bulk metal-to-insulator transition, and weak anti-localization. Solid State Communications, 2015, 215: 54-62.
[48] LU, Hai-Zhou; SHEN, Shun-Qing. Finite-temperature conductivity and magnetoconductivity of topological insulators. Physical review letters, 2014, 112.14: 146601.
[49] KIM, Heon-Jung, et al. Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena. Physical review letters, 2013, 111.24: 246603.
[50] JAIN, Neelesh K., et al. Metal deposition: Plasma-based processes. Encyclopedia of Plasma Technology, 2016, 2.
[51] BRAGG, William Henry; BRAGG, William Lawrence. The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1913, 88.605: 428-438.
[52] https://wiki.anton-paar.com/cz-cs/x-ray-diffraction-xrd/
[53] https://en.wikipedia.org/wiki/Transmission_electron_microscopy
[54] https://www.hic.ch.ntu.edu.tw/EM%E5%8C%96/em7.html
[55] https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy
[56] 陳大衞. Bi/NbSe2 界面中的二維超導與反鄰近效應. 國立臺灣大學物理學系學位論文, 2024, 1-66.
[57] WERTHAMER, N. R.; HELFAND, Eugene; HOHENBERG, Pierre C. Temperature and purity dependence of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects. Physical Review, 1966, 147.1: 295.
[58] SINGH, Jaskaran, et al. Possible multigap type-I superconductivity in the layered boride RuB2. Physical Review B, 2018, 97.5: 054506.
[59] FUJIMORI, Yasunobu, et al. Superconducting and normal state properties of NiBi3. Journal of the Physical Society of Japan, 2000, 69.9: 3017-3026.
[60] WEBB, G. W.; MARSIGLIO, F.; HIRSCH, J. E. Superconductivity in the elements, alloys and simple compounds. Physica C: Superconductivity and its applications, 2015, 514: 17-27.
[61] LEI, Hechang, et al. Iron chalcogenide superconductors at high magnetic fields. Science and Technology of Advanced Materials, 2012.
[62] FEIGEL’MAN, M. V., et al. Theory of collective flux creep. Physical review letters, 1989, 63.20: 2303.
[63] HALPERIN, B. I.; NELSON, David R. Resistive transition in superconducting films. Journal of low temperature physics, 1979, 36.5: 599-616.
[64] ABRIKOSOV, A. A. Quantum magnetoresistance. Physical Review B, 1998, 58.5: 2788.
[65] ABRIKOSOV, A. A. Quantum magnetoresistance of layered semimetals. Physical Review B, 1999, 60.6: 4231.
[66] SIVA, Vantari, et al. Superconducting proximity effect in NiBi3-Ni-NiBi3 trilayer system with sharp superconductor-ferromagnet boundaries. Journal of Applied Physics, 2016, 119.6.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98986-
dc.description.abstract本研究首先利用磁控濺鍍製備出Bi/Ni雙層薄膜,並確定最佳條件為在基板溫度250˚C濺鍍Ni薄膜和在室溫下濺鍍Bi薄膜,並以80˚C退火。之後製備出Au/Bi/Ni多層薄膜以研究Au層和Bi/Ni雙層薄膜之間的介面。接著使用X光繞射儀(XRD)、穿透式電子顯微鏡(TEM)和能量色散X射線譜(EDS)對樣品進行分析,確認了Bi/Ni雙層薄膜中NiBi3的存在並觀察到Au/Bi/Ni多層薄膜中Au層部分擴散至Bi層中。
接下來取兩個Bi層厚度不同的Bi/Ni雙層薄膜和取兩個Au層厚度不同的Au/Bi/Ni多層薄膜樣品進行電性量測,透過R-T分析得到樣品的H_(c2,⊥) (0)、H_(c2,∥) (0)、ξ_⊥ (0)、ξ_∥ (0)和d_sc值,並且發現樣品Au20/Bi100中出現二次轉變,代表出現了NiBi3以外的未知超導來源;分析表面超導(Hc3)和H_(c2,∥) (0)的比值觀測不同厚度的Bi層和Au層對表面超導的影響;量測釘扎位能U/k_B 對外加磁場H之間的關係以及測量系統的Bereeinskii-Kosterlite-Thouless (BKT)相變來證明樣品(包含未知超導來源)的二維材料特性;量測磁阻發現所有樣品在低溫下具有弱反局域(Weak Anti-Localization,WAL)效應,所有Bi/Ni雙層薄膜在高溫下還同時具有一次方線性不飽和磁阻,證實NiBi3薄膜可能具有二維拓樸超導性質。
zh_TW
dc.description.abstractThis study first prepared Bi/Ni bilayer films using magnetron sputtering, with optimal conditions determined as Ni film deposition at 250°C substrate temperature and Bi film deposition at room temperature, followed by 80°C annealing. Subsequently, Au/Bi/Ni multilayer films were fabricated to investigate the interface between Au layer and Bi/Ni bilayer. Through X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS) analyses, the presence of NiBi3 in Bi/Ni bilayer films was confirmed, and partial diffusion of Au layer into Bi layer was observed in Au/Bi/Ni multilayers.
Electrical measurements were conducted on two Bi/Ni bilayer films with different Bi thicknesses and two Au/Bi/Ni multilayers with varying Au thicknesses. R-T analysis revealed parameters including H_(c2,⊥) (0), H_(c2,∥) (0), ξ_⊥ (0), ξ_∥ (0) and d_sc. A secondary transition was observed in the Au20/Bi100 sample, indicating an unknown superconducting source beyond NiBi3. The ratio of surface superconductivity (Hc3) to H_(c2,∥) (0) was analyzed to investigate the influence of Bi and Au layer thicknesses on surface superconductivity. Measurements of pinning potential U/k_B versus magnetic field H and Bereeinskii-Kosterlite-Thouless (BKT) transition characterization demonstrated two-dimensional material properties in all samples (including those with unknown superconducting sources). Magnetoresistance measurements revealed weak antilocalization (WAL) effects at low temperatures in all samples, while Bi/Ni bilayers additionally exhibited linear unsaturated magnetoresistance proportional to the first power at high temperatures, suggesting potential two-dimensional topological superconducting properties in NiBi3 films.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:32:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:32:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 vi
圖次 ix
表次 xvii
第一章 緒論 1
1.1拓樸超導體(Topological Superconductor,TSC) 1
1.2三鉍化鎳(NiBi3)簡介 2
1.3金(Au)簡介 3
1.4 Bi/Ni雙層/多層薄膜之文獻回顧 4
1.5研究動機 18
第二章 理論背景與原理簡介 19
2.1超導體之發展背景 19
2.2超導體特性 21
2.2.1零電阻(Zero Resistence) 21
2.2.2邁斯納效應(Meissner Effect, Perfect Diamagnetism) 22
2.2.3臨界電流(critical current)及臨界磁場(critical magnetic field) 23
2.3 超導體原理 26
2.3.1倫敦穿隧深度(London penetration depth) 26
2.3.2二流體模型(two-fluid model) 28
2.3.3相干長度(coherence length) 29
2.3.4渦旋態(vortex state)和釘扎效應(Pinning Effect) 32
2.3.5安德森-金磁通蠕動模型(Anderson-Kim Flux Creep Model) 35
2.3.6表面超導(Surface Superconductivity,Hc3) 37
2.3.7磁冷(Field Cooling,FC)與零磁冷(Zero Field Cooling,ZFC) 39
2.3.8鄰近效應(Proximity Effect,PE)與反鄰近效應(Inverse Proximity Effect,IPE) 40
2.4 BKT相變(Bereeinskii-Kosterlite-Thouless transition) 42
2.5弱局域效應(Weak Localization,WL)與弱反局域效應(Weak Anti-Localization,WAL) 43
第三章 實驗方法 46
3.1研究架構 46
3.2薄膜製備系統 47
3.2.1濺鍍原理 47
3.2.2 Ni濺鍍系統 48
3.2.3 Bi濺鍍系統 49
3.2.4薄膜製程 50
3.4量測系統 53
3.4.1 X光繞射儀(X-ray Diffractometer,XRD) 53
3.4.2 SQUID量測系統 54
3.4.3穿透式電子顯微鏡(Transmission electron microscope,TEM) 55
3.4.4能量散射X射線譜(Energy-dispersive X-ray spectroscopy,EDS) 56
第四章 實驗結果與討論 57
4.1薄膜特性分析 57
4.1.1 Ni薄膜特性分析 57
4.1.2 Bi薄膜特性分析 58
4.1.3 Bi/Ni雙層薄膜特性分析 58
4.2微觀結構分析結果 61
4.2.1 XRD分析 61
4.2.2 TEM和EDS分析 63
4.3電性量測結果 73
4.3.1電阻率與溫度變化圖 73
4.3.2外加磁場垂直於樣品之R-T分析 74
4.3.3外加磁場平行於樣品之R-T分析 78
4.3.4釘扎位能與磁場之關係 84
4.3.5表面超導量測分析(Hc3) 96
4.4 BKT相變分析 100
4.5磁阻(MR)分析 110
第五章 結論 128
Reference 130
-
dc.language.isozh_TW-
dc.subjectNiBi3zh_TW
dc.subject第二類超導zh_TW
dc.subject釘扎效應zh_TW
dc.subjectBKT 相變zh_TW
dc.subjectHc3zh_TW
dc.subject二維材料zh_TW
dc.subject拓樸超導體zh_TW
dc.subjectType-II superconductorsen
dc.subjectTopological superconductorsen
dc.subjectTwo-dimensional materialsen
dc.subjectHc3en
dc.subjectBKT transitionen
dc.subjectPinning effecten
dc.subjectNiBi3en
dc.title鉍/鎳雙層薄膜和金/鉍/鎳三層薄膜之超導介面特性研究zh_TW
dc.titleSuperconducting Interface Properties of Bi/Ni Bilayer Films and Au/Bi/Ni Trilayer Filmsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee尤孝雯;陳昭翰zh_TW
dc.contributor.oralexamcommitteeHsiao-Wen Yu;Jau-Han Chenen
dc.subject.keywordNiBi3,第二類超導,釘扎效應,BKT 相變,Hc3,二維材料,拓樸超導體,zh_TW
dc.subject.keywordNiBi3,Type-II superconductors,Pinning effect,BKT transition,Hc3,Two-dimensional materials,Topological superconductors,en
dc.relation.page136-
dc.identifier.doi10.6342/NTU202504230-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用物理研究所-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
11.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved