請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98978完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 關秉宗 | zh_TW |
| dc.contributor.advisor | Biing T. Guan | en |
| dc.contributor.author | 何弘國 | zh_TW |
| dc.contributor.author | Hong-Guo He | en |
| dc.date.accessioned | 2025-08-20T16:30:51Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-15 | - |
| dc.identifier.citation | 王松永、丁昭義 (1984)。林產學上冊。臺北:台灣商務印書館。
王思皓 (2013)。應用合歡山冷杉樹輪穩定氧同位素重建臺灣高山232年氣候。國立臺灣大學森林環境暨資源學研究所,碩士論文,頁1–64。 王震哲、陳志雄、張和明、劉淑娟、呂長澤、郭淑妙、黃嘉龍 (2000)。棲蘭山檜木林區植物資源調查研究。內政部營建署太魯閣國家公園管理處委託。 內政部(2018)。大鬼湖重要濕地(國家級)保育利用計畫書。中華民國內政部。 邱景星 (1994)。臺灣玉山冷杉樹輪中穩定碳同位素組成變化之初步研究。國立中山大學海洋地質研究所,碩士論文,頁1–82。 李素華 (1995)。世界檜木類。郭寶章編。中華林業叢書956號。台灣貴重針葉五木。中華林學會。頁3–13。。 林振榮、林世宗、鍾智昕 (2010)。棲蘭山天然更新台灣扁柏林分樹輪及材質之研究。中華林學季刊,43(1):131–145。 林湘玲、郭幸榮 (2003)。紅檜與臺灣扁柏種子在不同水逆境模式下之發芽。台灣林業科學,18(1),13–24。 柳榗 (1975) 台灣檜木林之生態。台灣林業 1(13):24–27。 郭寶章 (1995) 檜木類之生育地。郭寶章編。中華林業叢書 956 號。台灣貴重針葉五木。中華林學會。台北。頁 14–18。 張世振 (2006)。臺灣西南部大武山氣候對樹輪寬度之影響。輔英科技大學環境工程與科學系碩士班,碩士論文,頁 1–87。 康仲霖 (2020)。以棲蘭山區臺灣扁柏樹輪最大密度重建過往800年溫度。國立臺灣大學森林環境暨資源學研究所,碩士論文,頁1–81。 張琇慧 (2000)。台灣北部昆欄樹樹輪對氣候因子之反映。國立臺灣大學地質學研究所,碩士論文,頁 1–85。 陳盈如、張上鎮 (2017)。臺灣檜木之分布與特徵比較。台灣林業科學,32(1),71–86。 陳姿彤 (2011)。以臺灣中部雲杉樹輪重建三百年古氣候:利用傳統樹輪及總體經驗模態分解法。國立臺灣大學地質科學研究所,碩士論文,頁 1–116。 陳信豪 (2015)。利用樹輪穩定氧同位素重建台灣霧林帶歷史氣候變異。國立成功大學生命科學系,碩士論文,頁1–64。 許晃雄、王嘉琪、陳正達、李明旭、詹士樑 (2024)。國家氣候變遷科學報告2024:現象、衝擊與調適 [許晃雄、李明旭 主編]。國家科學及技術委員會與環境部聯合出版。 黃進和 (1995)。森林開發處之檜木林分布與經營。郭寶章編。中華林業叢書956號。台灣貴重針葉五木。中華林學會,台北。頁 181–198。 游旨价 (2023)。《橫斷臺灣:追尋臺灣高山植物地理起源》。台北:春山出版。 程膺 (1999)。棲蘭山區樹木年輪和氣候關係之研究。國立東華大學自然資源管理研究所,碩士論文,頁 1–76。 詹明勳、王亞男、王松永 (2004)。Soft X-ray 影像分析法應用於天然林台灣櫸、樟樹及烏心石樹輪寬度及密度分析之研究。中華林學季刊,37(4),379–392。 詹明勳、王亞男、葉永廉 (2005)。台灣中部塔塔加地區台灣雲杉樹輪氣候學研究過去245年氣溫與降雨量趨勢。中華林學季刊,38(1):67–82。 鄒佩珊 (1998)。臺灣山區近五百年的氣候變化:樹輪寬度的證據。國立臺灣大學地質研究所,博士論文,頁 1–181。 齊元義 (2024)。以塔塔加地區臺灣雲杉樹輪最大密度重建過往300年溫度。國立臺灣大學森林環境暨資源學系,碩士論文,頁1–74。 劉昭民 (1994)。中國歷史上氣候之變遷。臺北:臺灣商務印書館。 蔣麗雪 (2011)。臺灣中部威氏帝杉樹輪寬變化與當地氣候及中太平洋海面溫度之關係。國立臺灣大學森林環境暨資源學研究所,碩士論文,頁1–91。 鄭可風(2020)。以臺灣黃杉早材重建過去200年來七家灣溪溪流量。國立臺灣大學森林環境暨資源學研究所,碩士論文,頁1–105。 賴宜鈴 (2006)。光環境對臺灣棲蘭山區亞熱帶雲霧林內兩種檜木小苗生長與建立之影響。國立臺灣大學生態學與演化生物學研究所,博士論文,頁 1–128。 Anchukaitis, K. J., Evans, M. N., Wheelwright, N. T., & Schrag, D. P. (2008). Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. Journal of Geophysical Research: Biogeosciences, 113(G3).doi:10.1029/2007JG000613 Andreu-Hayles, L., Tejedor, E., D’Arrigo, R., Locosselli, G. M., Rodríguez-Catón, M., Daux, V., Oelkers, R., Pacheco-Solana, A., Paredes-Villanueva, K., & Rodríguez-Morata, C. (2023). Dendrochronological advances in the tropical and subtropical Americas: Research priorities and future directions. Dendrochronologia, 77, 126124. doi:10.1016/j.dendro.2023.126124 Ashok, K., Behera, S. K., Rao, S. A., Weng, H., & Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. Journal of Geophysical Research: Oceans, 112(C11), C11007. doi:10.1029/2006JC003798 Bauer, E., Claussen, M., Brovkin, V., & Huenerbein, A. (2003). Assessing climate forcings of the Earth system for the past millennium. Geophysical Research Letters, 30(6), 1276. doi:10.1029/2002GL016639 Bouriaud, O., Bréda, N., Le Moguedec, G., & Nepveu, G. (2004). Modelling variability of wood density in beech as affected by ring age, radial growth and climate.Trees, 18(3), 264–276. doi:10.1007/s00468-003-0303-x Brienen, R. J., Lebrija-Trejos, E., Van Breugel, M., Pérez-García, E. A., Bongers, F., Meave, J. A., & Martínez-Ramos, M. (2009). The potential of tree rings for the study of forest succession in southern Mexico. Biotropica, 41(2), 186–195.doi:10.1111/j.1744-7429.2008.00462.x Briffa, K., Bartholin, T., Eckstein, D., Jones, P., Karlen, W., Schweingruber, F., & Zetterberg, P. (1990). A 1,400-year tree-ring record of summer temperatures in Fennoscandia. Nature, 346, 434–439. doi:10.1038/346434a0 Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Jones, P. D., Shiyatov, S. G., & Vaganov, E. A. (2002). Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals. The Holocene, 12(6), 737–757.doi:10.1191/0959683602hl587rp Briffa, K. R., Schweingruber, F. H., Jones, P. D., Osborn, T. J., Harris, I. C., Shiyatov, S. G., Vaganov, E. A., & Grudd, H. (2001). Low-frequency temperature variations from a northern tree ring density network. Journal of Geophysical Research: Atmospheres, 106(D3), 2929–2941. doi:10.1029/2000JD900617 Buckley, B. M., Hansen, K. G., Griffin, K. L., Schmiege, S., Oelkers, R., D'Arrigo, R. D., Stahle, D. K., Davi, N., Nguyen, T. Q. T., Le, C. N., & Wilson, R. J. S. (2018). Blue intensity from a tropical conifer's annual rings for climate reconstruction: An ecophysiological perspective. Dendrochronologia, 50, 10–22. doi:10.1016/j.dendro.2018.04.003 Büntgen, U., Frank, D., Grudd, H., & Esper, J. (2008). Long-term summer temperature variations in the Pyrenees. Climate Dynamics, 31(6), 615–631. doi:10.1007/s00382-008-0390-x Büntgen, U., Frank, D. C., Nievergelt, D., & Esper, J. (2006). Summer temperature variations in the European Alps, A.D. 755–2004. Journal of Climate, 19(21), 5606–5623. doi:10.1175/JCLI3917.1 Büntgen, U., Urban, O., Krusic, P. J., Rybníček, M., Kolář, T., Kyncl, T., Ač, A., Koňasová, E., Čáslavský, J., Esper, J., Wagner, S., Saurer, M., Tegel, W., Dobrovolný, P., Cherubini, P., Reinig, F., & Trnka, M. (2021). Recent European drought extremes beyond Common Era background variability. Nature Geoscience, 14(3), 190–196. doi:10.1038/s41561-021-00698-0 Bunn, A. G. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26, 115–124. doi:10.1016/j.dendro.2008.01.002 Buras, A. (2017). A comment on the expressed population signal. Dendrochronologia, 44, 130–132. doi:10.1016/j.dendro.2017.03.005 Campbell, R., McCarroll, D., Loader, N. J., Grudd, H., Robertson, I., & Jalkanen, R. (2007). Blue intensity in Pinus sylvestris tree-rings: developing a new palaeoclimate proxy. The Holocene, 17(6), 821–828. doi:10.1177/0959683607080523 Chen, F., Gagen, M. H., Zhang, H., Chen, Y., Fan, Z., & Chen, F. (2021). Warm season temperature in the Qinling Mountains (north-central China) since 1740 CE recorded by tree-ring maximum latewood density of Shensi fir. Climate Dynamics, 57(12), 2653–2667. doi:10.1007/s00382-021-05827-4 Cole-Dai, J. (2010). Volcanoes and climate. WIREs Climate Change, 1(6), 824–839. doi:10.1002/wcc.76 Cook, E. R. (1985). A time series analysis approach to tree-ring standardization (Doctoral dissertation). University of Arizona. Cook, E. R., & Holmes, R. L. (1996). Guide for computer program ARSTAN. Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University. Cook, E. R., & Kairiukstis, L. A. (Eds.). (1990). Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer Academic Publishers. Cook, E. R., Krusic, P. J., Anchukaitis, K. J., Buckley, B. M., Nakatsuka, T., & Sano, M. (2013). Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 CE. Climate Dynamics, 41(11–12), 2957–2972.doi:10.1007/s00382-012-1611-x Cook, E. R., & Peters, K. (1981). The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin, 41, 45–53. Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A., & Funkhouser, G. (1995). The segment length curse in long tree-ring chronology development for palaeoclimatic studies. The Holocene, 5(2), 229–237.doi:10.1177/095968369500500211 Cook, E. R., Meko, D. M., Stahle, D. W., & Cleaveland, M. K. (1999). Drought reconstructions for the continental United States. Journal of Climate, 12(4), 1145–1162. doi: 10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2 Crowley, T. J. (2000). Causes of climate change over the past 1000 years. Science, 289(5477), 270–277. doi:10.1126/science.289.5477.270 Douglass, A. E. (1922). Some aspects of the use of the annual rings of trees in climatic study. The Scientific Monthly, 15(1), 5–21. http://www.jstor.org/stable/6253 D'Arrigo, R., Buckley, B., Kaplan, S., & Woollett, J. (2003). Interannual to multidecadal modes of Labrador climate variability inferred from tree rings. Climate Dynamics, 20(2–3), 219–228. doi:10.1007/s00382-002-0275-3 Enfield, D. B., Mestas-Nuñez, A. M., & Trimble, P. J. (2001). The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, 28(10), 2077–2080. doi:10.1029/2000GL012745 Esper, J., Cook, E. R., & Schweingruber, F. H. (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science, 295(5563), 2250–2253. doi:10.1126/science.1066208 Esper, J., Düthorn, E., Krusic, P. J., Timonen, M., & Büntgen, U. (2014). Northern European summer temperature variations over the Common Era from integrated tree-ring density records. Journal of Quaternary Science, 29(5), 487–494. doi:10.1002/jqs.2726 Esper, J., Schneider, L., Krusic, P. J., Luterbacher, J., Büntgen, U., Timonen, M., Sirocko, F., & Zorita, E. (2013). European summer temperature response to annually dated volcanic eruptions over the past nine centuries. Bulletin of Volcanology, 75(7), 736. doi:10.1007/s00445-013-0736-z Fan, Z., Bräuning, A., Cao, K., & Zeng, X. (2008). Tree ring based drought reconstruction in the central Hengduan Mountains region (China) since A.D. 1655. International Journal of Climatology, 28(9), 1149–1161. doi:10.1002/joc.1601 Fichtler, E., Trouet, V., Beeckman, H., Coppin, P., & Worbes, M. (2004). Climatic signals in tree rings of Burkea africana and Pterocarpus angolensis from semiarid forests in Namibia. Trees, 18(4), 442–451. doi:10.1007/s00468-004-0324-0 Fischer, E. M., Luterbacher, J., Zorita, E., Tett, S. F. B., Casty, C., & Wanner, H. (2007). European climate response to tropical volcanic eruptions over the last half millennium. Geophysical Research Letters, 34(5), L05707. doi:10.1029/2006GL027992 Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression (3rd ed.). Sage. Fritts, H. C. (1976). Tree Rings and Climate. Academic Press. doi:10.1016/C2013-0-06144-9 Fritz, S. C. (2008). Deciphering climatic history from lake sediments. Journal of Paleolimnology, 39(1), 5–16. doi:10.1007/s10933-007-9134-x Gagen, M., McCarroll, D., & Edouard, J. L. (2006). Combining ring width, density and stable carbon isotope proxies to enhance the climate signal in tree-rings: An example from the southern French Alps. Climatic Change, 78, 363–379. doi:10.1007/s10584-006-9097-3 Gindl, W., Grabner, M., & Wimmer, R. (2000). The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 14(7), 409–414. doi:10.1007/s004680000057 Gou, X., Deng, Y., Chen, F., Yang, M., Fang, K., Gao, L., Yang, T., & Zhang, F. (2010). Tree ring based streamflow reconstruction for the Upper Yellow River over the past 1234 years. Chinese Science Bulletin, 55, 4179–4186. doi:10.1007/s11434-010-4215-z Graumlich, L. J. (1993). A 1000-year record of temperature and precipitation in the Sierra Nevada. Quaternary Research, 39(2), 249–255. doi:10.1006/qres.1993.1029 Groenendijk, P., Sass-Klaassen, U., Bongers, F., & Zuidema, P. A. (2014). Potential of tree-ring analysis in a wet tropical forest: A case study on 22 commercial tree species in central Africa. Forest Ecology and Management, 323, 65–78.doi:10.1016/j.foreco.2014.03.037 Grudd, H. (2008). Torneträsk tree-ring width and density AD 500–2004: A test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Climate Dynamics, 31(7–8), 843–857. doi:10.1007/s00382-007-0358-2 Guan, B. T., Wright, W. E., Chiang, L. H., & Cook, E. R. (2018a). A dry season streamflow reconstruction of the critically endangered Formosan landlocked salmon habitat. Dendrochronologia, 52, 152–161. doi:10.1016/j.dendro.2018.10.008 Guan, B. T., Wright, W. E., & Cook, E. R. (2018b). Ensemble empirical mode decomposition as an alternative for tree-ring chronology development. Tree-Ring Research, 74(1), 28–38. doi:10.3959/1536-1098-74.1.28 Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D., & McCulloh, K. A. (2001).Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126(4), 457–461. doi:10.1007/s004420100628 Hansen, J., Sato, M., Russell, G., & Kharecha, P. (2013). Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2001), 20120294. doi:10.1098/rsta.2012.0294 Hegerl, G. C., Crowley, T. J., Hyde, W. T., & Frame, D. J. (2006). Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature, 440(7087), 1029–1032. doi:10.1038/nature04679 Hietz, P., Horsky, M., Prohaska, T., Lang, I., & Grabner, M. (2015). High-resolution densitometry and elemental analysis of tropical wood. Trees, 29(2), 487–497.doi:10.1007/s00468-014-1126-7 Holmes, R. L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69–95. Holmes, R. L. (1992). Program COFECHA: A Computer Program for Checking Tree-Ring Data and Chronologies. Laboratory of Tree-Ring Research, University of Arizona. Hughes, M. K., Swetnam, T. W., & Diaz, H. F. (2010). Dendroclimatology: Progress and Prospects (Vol. 11). Springer. doi:10.1007/978-1-4020-5725-0 Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. doi:10.1098/rspa.1998.0193 Huang, N. E., & Wu, Z. (2008). A review on Hilbert–Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46(2).doi:10.1029/2007RG000228 Huang, R., Yin, H., Zhu, H., Liang, E., Ullah, A., Meier, W. J.-H., Asad, F., & Bräuning, A. (2025). A late summer temperature reconstruction based on tree-ring maximumlatewood density since AD 1246 on the southeastern Tibetan Plateau. Quaternary Science Reviews, 319, 109266. doi:10.1016/j.quascirev.2025.109266 Hutton, J. (1788). Theory of the Earth; or an investigation of the laws observable in the composition, dissolution, and restoration of land upon the globe. Transactions of the Royal Society of Edinburgh, 1(2), 209–304. doi:10.1017/S0080456800029227 IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. doi:10.1017/9781009157896 Jacquin, P., Longuetaud, F., Leban, J.-M., & Mothe, F. (2017). X-ray microdensitometry of wood: A review of existing principles and devices. Dendrochronologia, 42, 42–50. doi:10.1016/j.dendro.2017.01.004 Jacoby, G. C., D'Arrigo, R. D., & Davaajamts, T. (1996). Mongolian tree rings and 20th-century warming. Science, 273(5276), 771–773. doi:10.1126/science.273.5276.771 Khan, A., Chen, F., Saleem, S., Chen, Y., Zhang, H., & Bakhtiyorov, Z. (2024). Tree-ring maximum latewood density reveals unprecedented warming and long-term summer temperature in the upper Indus Basin, northern Pakistan. Science of The Total Environment, 916, 173126. doi:10.1016/j.scitotenv.2024.173126 Kug, J.-S., Jin, F.-F., & An, S.-I. (2009). Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. Journal of Climate, 22(6), 1499–1515. doi:10.1175/2008JCLI2624.1 Lin, Y., Oey, L.-Y., & Orfila, A. (2019). Two 'faces' of ENSO-induced surface waves during the tropical cyclone season. Progress in Oceanography, 175, 222–239. doi:10.1016/j.pocean.2019.03.004 Liu, Y., Li, C. Y., Sun, C., Song, H., Li, Q., Cai, Q., & Liu, R. (2019). Temperature variation at the low-latitude regions of East Asia recorded by tree rings during the past six centuries. International Journal of Climatology, 39(5), 2543–2555. doi:10.1002/joc.6287 Lough, J. M. (2010). Climate records from corals. Wiley Interdisciplinary Reviews: Climate Change, 1(3), 318–331. doi:10.1002/wcc.39 Luukko, P. J. J., Helske, J., & Räsänen, E. (2016). Introducing libeemd: A program package for performing the ensemble empirical mode decomposition. Computational Statistics, 31, 545–557. doi:10.1007/s00180-015-0603-9 Lyell, C. (1830). Principles of Geology: Being an Attempt to Explain the Former Changes of the Earth's Surface, by Reference to Causes Now in Operation (Vol. 1). London: John Murray. Mann, M. E., & Lees, J. M. (1996). Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33(3), 409–445. doi:10.1007/BF00142586 Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., Ammann, C., Faluvegi, G., & Ni, F. (2009). Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326(5957), 1256–1260. doi:10.1126/science.1177303 Marcott, S. A., Shakun, J. D., Clark, P. U., & Mix, A. C. (2013). A reconstruction of regional and global temperature for the past 11,300 years. Science, 339(6124), 1198–1201. doi:10.1126/science.1228026 Mauri, A., Davis, B. A. S., Collins, P. M., & Kaplan, J. O. (2015). The climate of Europe during the Holocene: A gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews, 112, 109–127. doi:10.1016/j.quascirev.2015.01.013 Maxwell, R. S., & Larsson, L.-Å. (2021). Measuring tree-ring widths using the CooRecorder software application. Dendrochronologia, 68, 125841.doi:10.1016/j.dendro.2021.125841 McCarroll, D., & Loader, N. J. (2004). Stable isotopes in tree rings. Quaternary Science Reviews, 23(7–8), 771–801. doi:10.1016/j.quascirev.2003.06.017 Melvin, T. M., & Briffa, K. R. (2008). A "signal-free" approach to dendroclimatic standardisation. Dendrochronologia, 26(2), 71–86.doi:10.1016/j.dendro.2007.12.001 Meyers, S. R. (2014). astrochron (Version 1.5) [Computer software]. Comprehensive R Archive Network (CRAN). https://cran.r-project.org/package=astrochron Miao, J., Yang, D., Zhang, Q., Jiang, Y., & Fraedrich, K. (2022). Multidecadal variations in East Asian winter temperature since 1880: Internal variability versus external forcing. Geophysical Research Letters, 49(19), e2022GL099597. doi:10.1029/2022GL099597 Neukom, R., Steiger, N. J., Gómez-Navarro, J. J., Wang, J., Werner, J. P., & PAGES 2k Consortium. (2019). No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature, 571(7766), 550–554. doi:10.1038/s41586-019-1401-2 Newhall, C. G., & Self, S. (1982). The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research: Oceans, 87(C2), 1231–1238. doi:10.1029/JC087iC02p01231 Nguyen, D. C., Chen, Y.-G., Chiang, H.-W., Shen, C.-C., Wang, X., Doan, L. D., Yuan, S., Lone, M. A., Yu, T.-L., Lin, Y., & Kuo, Y.-T. (2020). A decadal-resolution stalagmite record of strong Asian summer monsoon from northwestern Vietnam over the Dansgaard–Oeschger events 2–4. Journal of Asian Earth Sciences, 196, 104365. doi:10.1016/j.jseaes.2020.104365 Noble, P. J., Ball, G. I., Zimmerman, S. H., Maloney, J., Smith, S. B., Kent, G., Adams, K. D., Karlin, R. E., & Driscoll, N. (2016). Holocene paleoclimate history of Fallen Leaf Lake, CA., from geochemistry and sedimentology of well-dated sediment cores. Quaternary Science Reviews, 138, 1–17. doi:10.1016/j.quascirev.2015.12.007 PAGES 2k Consortium. (2019). Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nature Geoscience, 12, 643–649. doi:10.1038/s41561-019-0400-0 Pancost, R. D., & Boot, C. S. (2004). The palaeoclimatic utility of terrestrial biomarkers in marine sediments. Marine Chemistry, 92(1–4), 239–261. doi:10.1016/j.marchem.2004.06.011 Pinheiro J. C., & Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. Springer. doi:10.1007/b98882 Poussart, P. F., Evans, M. N., & Schrag, D. P. (2004). Resolving seasonality in tropical trees: Multi-decade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth and Planetary Science Letters, 218(3–4), 301–316.doi:10.1016/S0012-821X(03)00638-1 Robock, A. (2000). Volcanic eruptions and climate. Reviews of Geophysics, 38(2), 191–219. doi:10.1029/1998RG000054 Rozendaal, D. M. A., & Zuidema, P. A. (2011). Dendroecology in the tropics: A review. Trees, 25, 3–16. doi:10.1007/s00468-010-0480-3 Rydval, M., Larsson, L.-Å., McGlynn, L., Gunnarson, B. E., Loader, N. J., Young, G. H., & Wilson, R. (2014). Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland. Dendrochronologia, 32(3), 191–204. doi:10.1016/j.dendro.2014.04.003 Sakamoto, Y., Ishiguro, M., & Kitagawa, G. (1986). Akaike Information Criterion Statistics. D. Reidel Publishing Company. Saurer, M., Siegwolf, R. T. W., & Schweingruber, F. H. (2004). Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology, 10(12), 2109–2120. doi:10.1111/j.1365-2486.2004.00869.x Schweingruber, F. H. (1983). Tree Rings: Basics and Applications ofDendrochronology. Springer. Schweingruber, F. H. (2007). Wood Structure and Environment. Springer Science & Business Media. Schweingruber, F. H., Bartholin, T., Schaur, E., & Briffa, K. R. (1988). Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas, 17(4), 559–566. doi:10.1111/j.1502-3885.1988.tb00569.x Schweingruber, F. H., & Briffa, K. R. (1996). Tree-ring density networks for climate reconstruction. In P. D. Jones, R. S. Bradley, & J. Jouzel (Eds.), Climatic variations and forcing mechanisms of the last 2000 years (NATO ASI Series, vol. 41, pp. 63–91). Springer. doi:10.1007/978-3-642-61113-1_3 Shapiro, A. I., Schmutz, W. K., Rozanov, E. V., Schoell, M., Haberreiter, M., Shapiro, A. V., & Nyeki, S. (2011). A new approach to long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astronomy & Astrophysics, 529, A67. doi:10.1051/0004-6361/201016173 Shi, F., Yang, B., von Gunten, L., Qin, C., & Wang, Z. (2012). Ensemble empirical mode decomposition for tree-ring climate reconstructions. Theoretical and Applied Climatology, 109(1–2), 233–243. doi:10.1007/s00704-011-0576-8 Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G., Ludlow, F., Büntgen, U., Caffee, M., Chellman, N., Dahl Jensen, D., Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F., Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M., … Woodruff, T. E. (2015). Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523(7562), 543–549. doi:10.1038/nature14565 Speer, J. H. (2010). Fundamentals of Tree-ring Research. University of Arizona Press. Stahle, D. W., Cook, E. R., Cleaveland, M. K., Therrell, M. D., Meko, D. M., Grissino-Mayer, H. D., & Luckman, B. H. (2000). Tree-ring data document 16th century megadrought over North America. Eos, Transactions American Geophysical Union, 81(12), 121–125. doi:10.1029/00EO00076 Steinhilber, F., Beer, J., & Fröhlich, C. (2009). Total solar irradiance during the Holocene. Geophysical Research Letters, 36(19), L19704. doi:10.1029/2009GL040142 Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S., Guiot, J., Luckman, B. H., Oppenheimer, C., Lebas, N., Beniston, M., & Masson-Delmotte, V. (2015). Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nature Geoscience, 8, 784–788. doi:10.1038/ngeo2526 Stokes, M. A., & Smiley, T. L. (1968). An Introduction to Tree-ring Dating. University of Arizona Press. Thompson, L. G. (2000). Ice core evidence for climate change in the tropics: Implications for our future. Quaternary Science Reviews, 19(1–5), 19–35. doi:10.1016/S0277-3791(99)00052-9 Usoskin, I. G., Hulot, G., Gallet, Y., Roth, R., & Licht, A. (2013). Evidence for distinct modes of solar activity. Astronomy & Astrophysics, 562, L10. doi:10.1051/0004-6361/201423391 Trouet, V., & van Oldenborgh, G. J. (2013). KNMI Climate Explorer: A web-based research tool for high-resolution paleoclimatology. Tree-Ring Research, 69(1), 3–13. doi:10.3959/1536-1098-69.1.3 Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (4th ed.). Springer. doi:10.1007/978-0-387-21706-2 Wigley, T. M. L., Briffa, K. R., & Jones, P. D. (1984). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology and Climatology, 23(2), 201–213. doi:10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2 Wilson, R., Anchukaitis, K., Briffa, K. R., Büntgen, U., Cook, E., D'Arrigo, R., Davi, N., Esper, J., Frank, D., Gunnarson, B., Hegerl, G., Helama, S., Klesse, S., Krusic, P. J., Linderholm, H. W., Myglan, V., Osborn, T. J., Rydval, M., Schneider, L., ... Zorita, E. (2016). Last millennium Northern Hemisphere summer temperatures from tree rings: Part I: The long term context. Quaternary Science Reviews, 134, 1–18. doi:10.1016/j.quascirev.2015.12.005 Wright, W., Guan, B., Tseng, Y.-H., Cook, E., Wei, K.-Y., & Chang, S.-T. (2015). Reconstruction of the springtime East Asian Subtropical Jet and Western Pacific pattern from a millennial-length Taiwanese tree-ring chronology. Climate Dynamics, 44(5–6), 1645–1659. doi:10.1007/s00382-014-2402-3 Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1–41. doi:10.1142/S1793536909000047 Xu, C., Sano, M., & Nakatsuka, T. (2013). A 400-year record of hydroclimate variability and local ENSO history in northern Southeast Asia inferred from tree-ring δ¹⁸O. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 588–598.doi:10.1016/j.palaeo.2013.06.025 Xu, G., Liu, X., Zhang, Q., Zhang, Q., Hudson, A., & Trouet, V. (2019). Century-scale temperature variability and onset of industrial-era warming in the eastern Tibetan Plateau. Climate Dynamics, 53(7), 4569–4590. doi:10.1007/s00382-019-04807-z Yin, H., Liu, H., Linderholm, H. W., & Sun, Y. (2015). Tree ring density-based warm-season temperature reconstruction since AD 1610 in the eastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 426, 112–120. doi:10.1016/j.palaeo.2015.03.003 Zhang, D. D., Brecke, P., Lee, H. F., He, Y. Q., & Zhang, J. (2007). Global climate change, war, and population decline in recent human history. Proceedings of the National Academy of Sciences, 104(49), 19214–19219. doi:10.1073/pnas.0703073104 Zhang, D. D., Lee, H. F., Wang, C., Li, B., Pei, Q., Zhang, J., & An, Y. (2011). The causality analysis of climate change and large-scale human crisis. Proceedings of the National Academy of Sciences, 108(42), 17296–17301. doi:10.1073/pnas.1104268108 Zhang, Y., Wallace, J. M., & Battisti, D. S. (1997). ENSO-like interdecadal variability: 1900–93. Journal of Climate, 10(5), 1004–1020. doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98978 | - |
| dc.description.abstract | 樹輪氣候學已廣泛應用於重建具高時間解析度的長期氣候紀錄,有助於釐清區域氣候變異,以及自然與人為氣候驅動因子的相對影響。然而,相較於中高緯度地區,東亞低緯地區之重建年表仍相對稀缺。臺灣位於熱帶與副熱帶交界,地形陡峻,擁有豐富高山環境與適合建構年表之針葉樹種,具備發展長期高解析度氣候重建的潛力。
本研究以臺灣棲蘭山區所採集之臺灣扁柏(Chamaecyparis obtusa var. formosana)樹輪最大密度(Maximum Density)資料為基礎,透過叢集經驗模態分解法(Ensemble Empirical Mode Decomposition)移除非氣候訊號與分離資料所含的內秉模態函數(Intrinsic Mode Functions, IMFs),並經由各IMF之聚合,嘗試重建以臺北氣象站所代表的臺灣北部地區的年均溫距平序列。研究結果顯示,IMF1–6與IMF789組合可最佳地反映臺北氣象站實測自1897至2020的年均溫距平(以1961至1990年平均為基準)的變異,繼而重建自公元1064年至2020年,長達957年臺灣北部地區年均溫距平序列。 重建結果指出,臺灣北部在11世紀中葉至12世紀中葉與小冰期期間(約公元1650年至1900年)出現顯著冷期,與北半球高緯地區之氣候變異趨勢一致。此外,公元1256年至1414年間則呈現極端高溫現象,多數年份年均溫距平值超過重建模式兩倍RMSE的門檻,顯示極端高溫事件亦可能源於自然氣候變異。 進一步探討重建溫度與外在自然因子的關聯性,顯示Maunder與Dalton等太陽極小期與重建冷期具有一致性,火山爆發事件如1257年Samalas及1600年Huaynaputina火山爆發後亦對應短期降溫現象。遙相關(Teleconnections)分析亦指出,重建序列與歐亞大陸大部分地區、西太平洋暖池與黑潮延伸區等區域呈正相關,顯示可反映東亞季風系統與熱帶海洋熱輸變化。相較之下,與聖嬰南方振盪代表指標Niño4之相關性空間結構較零散,推測其氣候影響可能具非線性與時間滯後特性;而與大西洋多年代際振盪則呈現顯著之「領先」關係,顯示臺灣北部地區氣候變異可能與大西洋跨洋遙相關機制有所關聯。 綜上所述,本研究不僅建立目前臺灣最長的高解析溫度重建序列,亦初步釐清低緯度地區氣候與太陽活動、火山事件及海氣交互作用之關聯,對理解東亞低緯度地區的長期氣候變異具有一定應用價值。 | zh_TW |
| dc.description.abstract | Dendroclimatology has been widely applied to reconstruct long-term climate variability with high temporal resolution, contributing to the understanding of regional climate change and the relative roles of natural versus anthropogenic forcing. However, high-resolution tree-ring-based climate reconstructions remain scarce in the low-latitude regions of East Asia. Taiwan, situated at the boundary of the tropics and subtropics and characterized by steep topography and abundant coniferous forests in high mountain areas, holds great potential for long-term climate reconstruction.
This study presents a high-resolution temperature reconstruction for northern Taiwan spanning 957 years (1064–2020 CE) based on maximum latewood density data from tree-rings of Chamaecyparis obtusa var. formosana collected in the Chilan Mountain Area. This study applied the ensemble empirical mode decomposition (EEMD) technique to remove non-climatic trends and isolate different intrinsic mode functions (IMFs). The combination of IMF1–6 and IMF789 best reflected the variability of the mean annual temperature anomaly (relative to the average of 1961 to 1990 annual means) at Taipei Station between 1897 and 2020. This study thus used the combination to reconstruct the annual temperature anomaly between 1064 and 2020 CE for northern Taiwan. The reconstructed series captured major climate episodes. The reconstruction results indicated two pronounced cooling periods, one in the mid-11th to the mid-12th centuries and the other one in the Little Ice Age (ca. 1650–1900 CE), which aligned closely with other reconstructed temperature anomalies in high-latitude regions of the Northern Hemisphere. Additionally, a distinct warm phase was also detected between 1256 and 1414 CE, during which the mean annual temperature anomalies for most years exceeded the two times reconstruction model's RMSE threshold, underscoring the role of natural climate variability. Examinations of external forcing factors revealed a clear correspondence between the reconstructed series and solar activity minima (e.g., Maunder and Dalton), suggesting that solar activity may influence the climate of low latitudes. Short-term cooling periods were also observed following certain significant volcanic eruptions (e.g., the 1257 Samalas eruption and the 1600 Huaynaputina eruption), although the responses appeared regionally heterogeneous and inconsistent. Teleconnections revealed that the reconstructed temperature series were positively associated with most of the Eurasia regions, the western Pacific warm pool, and the Kuroshio Extension, indicating that the reconstruction reflected the coupled dynamics of ocean-atmosphere systems. In contrast, correlations with Niño4 region sea surface temperature were spatially weak and fragmented, suggesting a nonlinear and time-lagged El Niño-Southern Oscillation influence on northern Taiwan. A significant leading relationship was observed with the Atlantic Multidecadal Oscillation, indicating a possible trans-basin teleconnection. In summary, this study presents the longest high-resolution temperature reconstruction for Taiwan to date, offering new insights into the relationships between low-latitude climate variability, solar forcing, volcanic activity, and ocean-atmosphere interactions. The findings enhance the understanding of long-term climate variability in East Asia. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:30:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:30:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv 目次 vi 圖次 ix 表次 xi 第一章 緒論 1 1.1研究背景 1 1.2研究目的 4 第二章 文獻回顧 5 2.1樹輪氣候學研究發展 5 2.2樹輪與氣候關係之理論基礎 5 2.2.1樹輪形成 5 2.2.2樹輪變異 6 2.2.3樹輪學基本原理 10 2.3樹輪氣候學之研究方法 13 2.3.1樹木生長線性聚合模型 13 2.3.2傳統年表建立與標準化方法 14 2.3.2經驗模態分解法與叢集經驗模態分解法 15 2.4近年樹輪氣候學研究進展與挑戰 17 2.4.1全球樹輪氣候學研究發展 17 2.4.2臺灣樹輪氣候學研究發展 18 2.5樹輪密度於氣候研究之應用 19 第三章 研究材料與方法 21 3.1研究材料 21 3.2研究樣區概況 23 3.2.1地點 23 3.2.2氣候 24 3.3氣象資料 25 3.4研究工作流程 26 3.4.1野外採樣 27 3.4.2室內樣本前處理 27 3.4.3初步交叉定年 28 3.4.4輪寬量測 28 3.4.5統計交叉定年 29 3.4.6挑選樣本 30 3.4.7 X-ray影像掃描前處理 30 3.4.8 X-ray微密度量測 30 3.4.9影像分析 31 3.4.10建立樹輪密度年表 32 3.4.11分析樹輪與氣候之關係 35 3.4.12重建氣候 36 第四章 結果 40 4.1樹輪特徵值年表 40 4.2萃取前後樹輪密度之差異 42 4.3樹輪特徵值年表間的差異 42 4.4樹輪密度原始年表之MTM與EEMD分解結果 44 4.5樹輪密度年表與臺北測站年均溫距平之關聯性分析 49 4.6年均溫距平重建模式建立與驗證 50 4.6.1 GLS模型檢定與驗證 51 4.6.2臺北測站年均溫距平重建結果與極端事件分析 55 4.6.3遙相關(Teleconnections) 58 第五章 討論 60 5.1臺灣扁柏樹輪年表 60 5.2臺灣扁柏樹輪密度與溫度之關係 61 5.3重建溫度與歷史記載之比較 62 5.4本研究重建溫度與其他重建溫度之比較 64 5.4.1與其他地區重建溫度之比較 64 5.4.2與臺灣其他重建溫度之比較 66 5.5影響全球溫度變化之自然因素 67 5.5.1太陽輻射變化 68 5.5.2火山活動 70 5.5.3海洋與大氣的交互作用 72 第六章 結論 74 參考文獻 76 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 臺灣扁柏 | zh_TW |
| dc.subject | 樹輪氣候學 | zh_TW |
| dc.subject | 叢集經驗模態分解法 | zh_TW |
| dc.subject | 樹輪最大密度 | zh_TW |
| dc.subject | 溫度重建 | zh_TW |
| dc.subject | Temperature reconstruction | en |
| dc.subject | Ensemble empirical mode decomposition | en |
| dc.subject | Tree-ring maximum density | en |
| dc.subject | Chamaecyparis obtusa var. formosana | en |
| dc.subject | Dendroclimatology | en |
| dc.title | 以棲蘭山區臺灣扁柏樹輪最大密度重建臺灣北部近千年年均溫 | zh_TW |
| dc.title | A Millennial Reconstruction of Northern Taiwan Annual Temperature Using Tree-ring Maximum Density of Chamaecyparis obtusa var. formosana from the Chilan Mountain | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 魏國彥;林政道 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Yen Wei;cheng-Tao Lin | en |
| dc.subject.keyword | 樹輪氣候學,臺灣扁柏,樹輪最大密度,叢集經驗模態分解法,溫度重建, | zh_TW |
| dc.subject.keyword | Dendroclimatology,Chamaecyparis obtusa var. formosana,Tree-ring maximum density,Ensemble empirical mode decomposition,Temperature reconstruction, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU202502401 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| dc.date.embargo-lift | 2026-09-01 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
