Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98977
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊啓伸zh_TW
dc.contributor.advisorChii-Shen Yangen
dc.contributor.author李冠毅zh_TW
dc.contributor.authorGuan-Yi Lien
dc.date.accessioned2025-08-20T16:30:36Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-15-
dc.identifier.citation1. Krogh, A., B. Larsson, G. von Heijne, and E.L. Sonnhammer, Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol, 2001. 305(3): p. 567-80.
2. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D., Molecular Biology of the Cell, ed. t. edition. 2002, New York: Garland Science.
3. Fendrihan, S., A. Legat, M. Pfaffenhuemer, C. Gruber, G. Weidler, F. Gerbl, and H. Stan-Lotter, Extremely halophilic archaea and the issue of long-term microbial survival. Reviews in Environmental Science and Bio/Technology, 2006. 5: p. 203-218.
4. Ghai, R., L. Pašić, A.B. Fernández, A.-B. Martin-Cuadrado, C.M. Mizuno, K.D. McMahon, R.T. Papke, R. Stepanauskas, B. Rodriguez-Brito, and F. Rohwer, New abundant microbial groups in aquatic hypersaline environments. Scientific reports, 2011. 1(1): p. 135.
5. Walsby, A.E., A square bacterium. Nature, 1980. 283(5742): p. 69-71.
6. Bolhuis, H., E.M.t. Poele, and F. Rodriguez‐Valera, Isolation and cultivation of Walsby's square archaeon. Environmental Microbiology, 2004. 6(12): p. 1287-1291.
7. Bolhuis, H., P. Palm, A. Wende, M. Falb, M. Rampp, F. Rodriguez-Valera, F. Pfeiffer, and D. Oesterhelt, The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC genomics, 2006. 7: p. 1-12.
8. Sudo, Y., K. Ihara, S. Kobayashi, D. Suzuki, H. Irieda, T. Kikukawa, H. Kandori, and M. Homma, A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. Journal of Biological Chemistry, 2011. 286(8): p. 5967-5976.
9. Wald, G., P.K. Brown, and P.H. Smith, Iodopsin. The Journal of general physiology, 1955. 38(5): p. 623-681.
10. Govorunova, E.G., O.A. Sineshchekov, H. Li, and J.L. Spudich, Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. Annual review of biochemistry, 2017. 86(1): p. 845-872.
11. Lozier, R.H., R.A. Bogomolni, and W. Stoeckenius, Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophysical journal, 1975. 15(9): p. 955.
12. Lanyi, J.K., Halorhodopsin, a light-driven electrogenic chloride-transport system. Physiological reviews, 1990. 70(2): p. 319-330.
13. Spudich, J.L. and R.A. Bogomolni, Sensory rhodopsin I: receptor activation and signal relay. Journal of bioenergetics and biomembranes, 1992. 24: p. 193-200.
14. Spudich, J.L. and H. Luecke, Sensory rhodopsin II: functional insights from structure. Current opinion in structural biology, 2002. 12(4): p. 540-546.
15. Lamarche, L.B., R.P. Kumar, M.M. Trieu, E.L. Devine, L.E. Cohen-Abeles, D.L. Theobald, and D.D. Oprian, Purification and characterization of RhoPDE, a retinylidene/phosphodiesterase fusion protein and potential optogenetic tool from the choanoflagellate Salpingoeca rosetta. Biochemistry, 2017. 56(43): p. 5812-5822.
16. Kim, S.Y., S.R. Yoon, S. Han, Y. Yun, and K.H. Jung, A role of A nabaena sensory rhodopsin transducer (ASRT) in photosensory transduction. Molecular microbiology, 2014. 93(3): p. 403-414.
17. Oesterhelt, D. and W. Stoeckenius, Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature new biology, 1971. 233(39): p. 149-152.
18. Henderson, R., J.M. Baldwin, T.A. Ceska, F. Zemlin, E. Beckmann, and K.H. Downing, Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. Journal of molecular biology, 1990. 213(4): p. 899-929.
19. Lanyi, J.K. and G. Váró, The photocycles of bacteriorhodopsin. Israel journal of chemistry, 1995. 35(3‐4): p. 365-385.
20. Luecke, H., B. Schobert, J.-P. Cartailler, H.-T. Richter, A. Rosengarth, R. Needleman, and J.K. Lanyi, Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. Journal of molecular biology, 2000. 300(5): p. 1237-1255.
21. Neutze, R., E. Pebay-Peyroula, K. Edman, A. Royant, J. Navarro, and E.M. Landau, Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2002. 1565(2): p. 144-167.
22. Luecke, H., B. Schobert, H.-T. Richter, J.-P. Cartailler, and J.K. Lanyi, Structure of bacteriorhodopsin at 1.55 Å resolution. Journal of molecular biology, 1999. 291(4): p. 899-911.
23. Matsuno-Yagi, A. and Y. Mukohata, Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochemical and biophysical research communications, 1977. 78(1): p. 237-243.
24. Duschl, A. and G. Wagner, Primary and secondary chloride transport in Halobacterium halobium. Journal of bacteriology, 1986. 168(2): p. 548-552.
25. Falb, M., F. Pfeiffer, P. Palm, K. Rodewald, V. Hickmann, J. Tittor, and D. Oesterhelt, Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome research, 2005. 15(10): p. 1336-1343.
26. Seki, A., S. Miyauchi, S. Hayashi, T. Kikukawa, M. Kubo, M. Demura, V. Ganapathy, and N. Kamo, Heterologous expression of pharaonis halorhodopsin in Xenopus laevis oocytes and electrophysiological characterization of its light-driven Cl− pump activity. Biophysical journal, 2007. 92(7): p. 2559-2569.
27. Arlt, T., S. Schmidt, W. Zinth, U. Haupts, and D. Oesterhelt, The initial reaction dynamics of the light-driven chloride pump halorhodopsin. Chemical physics letters, 1995. 241(5-6): p. 559-565.
28. Hegemann, P., D. Oesterhelt, and M. Steiner, The photocycle of the chloride pump halorhodopsin. I: Azidecatalyzed deprotonation of the chromophore is a side reaction of photocycle intermediates inactivating the pump. The EMBO journal, 1985. 4(9): p. 2347-2350.
29. Essen, L.-O., Halorhodopsin: light-driven ion pumping made simple? Current Opinion in Structural Biology, 2002. 12(4): p. 516-522.
30. Orekhov, P., A. Bothe, H.J. Steinhoff, K.V. Shaitan, S. Raunser, D. Fotiadis, R. Schlesinger, J.P. Klare, and M. Engelhard, Sensory rhodopsin I and sensory rhodopsin II form trimers of dimers in complex with their cognate transducers. Photochemistry and photobiology, 2017. 93(3): p. 796-804.
31. Gegner, J.A., D.R. Graham, A.F. Roth, and F.W. Dahlquist, Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell, 1992. 70(6): p. 975-982.
32. Schuster, S.C., R.V. Swanson, L.A. Alex, R.B. Bourret, and M.I. Simon, Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance. Nature, 1993. 365(6444): p. 343-347.
33. Orekhov, P.S., D. Klose, A.Y. Mulkidjanian, K.V. Shaitan, M. Engelhard, J.P. Klare, and H.-J. Steinhoff, Signaling and adaptation modulate the dynamics of the photosensoric complex of Natronomonas pharaonis. PLOS Computational Biology, 2015. 11(10): p. e1004561.
34. Bogomolni, R., W. Stoeckenius, I. Szundi, E. Perozo, K. Olson, and J. Spudich, Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I. Proceedings of the National Academy of Sciences, 1994. 91(21): p. 10188-10192.
35. Spudich, J.L., Protein-protein interaction converts a proton pump into a sensory receptor. Cell, 1994. 79(5): p. 747-750.
36. Blanck, A., D. Oesterhelt, E. Ferrando, E. Schegk, and F. Lottspeich, Primary structure of sensory rhodopsin I, a prokaryotic photoreceptor. The EMBO Journal, 1989. 8(13): p. 3963-3971.
37. Luecke, H., B. Schobert, J.K. Lanyi, E.N. Spudich, and J.L. Spudich, Crystal structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer interaction. Science, 2001. 293(5534): p. 1499-1503.
38. Sudo, Y. and J.L. Spudich, Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. Proceedings of the National Academy of Sciences, 2006. 103(44): p. 16129-16134.
39. Sudo, Y., Y. Furutani, H. Kandori, and J.L. Spudich, Functional importance of the interhelical hydrogen bond between Thr204 and Tyr174 of sensory rhodopsin II and its alteration during the signaling process. Journal of Biological Chemistry, 2006. 281(45): p. 34239-34245.
40. Ito, M., Y. Sudo, Y. Furutani, T. Okitsu, A. Wada, M. Homma, J.L. Spudich, and H. Kandori, Steric constraint in the primary photoproduct of sensory rhodopsin II is a prerequisite for light-signal transfer to HtrII. Biochemistry, 2008. 47(23): p. 6208-6215.
41. Ko, L.-N., G.Z. Lim, X.-R. Chen, C.-J. Cai, K.-T. Liu, and C.-S. Yang, HwMR is a novel magnesium-associated protein. Biophysical Journal, 2022. 121(14): p. 2781-2793.
42. Murata, K. and M. Wolf, Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochimica et Biophysica Acta (BBA)-General Subjects, 2018. 1862(2): p. 324-334.
43. Kampjut, D., J. Steiner, and L.A. Sazanov, Cryo-EM grid optimization for membrane proteins. Iscience, 2021. 24(3).
44. Marion, D., An introduction to biological NMR spectroscopy. Molecular & Cellular Proteomics, 2013. 12(11): p. 3006-3025.
45. Becker, W., K.C. Bhattiprolu, N. Gubensäk, and K. Zangger, Investigating protein–ligand interactions by solution nuclear magnetic resonance spectroscopy. ChemPhysChem, 2018. 19(8): p. 895-906.
46. Roberts, G.C.K., Protein NMR – Introduction, in Encyclopedia of Biophysics, G.C.K. Roberts, Editor. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 2027-2033.
47. Tugarinov, V., R. Muhandiram, A. Ayed, and L.E. Kay, Four-dimensional NMR spectroscopy of a 723-residue protein: chemical shift assignments and secondary structure of malate synthase g. Journal of the American Chemical Society, 2002. 124(34): p. 10025-10035.
48. Landau, E.M. and J.P. Rosenbusch, Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proceedings of the National Academy of Sciences, 1996. 93(25): p. 14532-14535.
49. Dauter, Z., Data-collection strategies. Acta Crystallographica Section D: Biological Crystallography, 1999. 55(10): p. 1703-1717.
50. McPhillips, T.M., S.E. McPhillips, H.-J. Chiu, A.E. Cohen, A.M. Deacon, P.J. Ellis, E. Garman, A. Gonzalez, N.K. Sauter, and R.P. Phizackerley, Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. Journal of synchrotron radiation, 2002. 9(6): p. 401-406.
51. Coquelle, N., A.S. Brewster, U. Kapp, A. Shilova, B. Weinhausen, M. Burghammer, and J.-P. Colletier, Raster-scanning serial protein crystallography using micro-and nano-focused synchrotron beams. Acta Crystallographica Section D: Biological Crystallography, 2015. 71(5): p. 1184-1196.
52. Yamashita, K., K. Hirata, and M. Yamamoto, KAMO: towards automated data processing for microcrystals. Biological Crystallography, 2018. 74(5): p. 441-449.
53. Kabsch, W., xds. Acta Crystallographica Section D: Biological Crystallography, 2010. 66(2): p. 125-132.
54. Foadi, J., P. Aller, Y. Alguel, A. Cameron, D. Axford, R.L. Owen, W. Armour, D.G. Waterman, S. Iwata, and G. Evans, Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 2013. 69(8): p. 1617-1632.
55. Evans, P., Scaling and assessment of data quality. Acta Crystallographica Section D: Biological Crystallography, 2006. 62(1): p. 72-82.
56. Winn, M.D., C.C. Ballard, K.D. Cowtan, E.J. Dodson, P. Emsley, P.R. Evans, R.M. Keegan, E.B. Krissinel, A.G. Leslie, and A. McCoy, Overview of the CCP4 suite and current developments. Acta Crystallographica Section D: Biological Crystallography, 2011. 67(4): p. 235-242.
57. Chiang, C.H., C.K. Chou, C.C. Tseng, Y.H. Chen, Y.C. Liu, C.Y. Huang, C.H. Chao, and C.H. Huang, Biopharmaceutical beamline TLS 15A1 for macromolecular crystallography at the National Synchrotron Radiation Research Center. Journal of the Chinese Chemical Society, 2024. 71(7): p. 721-731.
58. Chou, C.-K., C.-C. Tseng, C.-H. Chiang, Y.-H. Chen, Y.-C. Liu, C.-Y. Huang, C.-H. Chao, and C.-H. Huang, The current status and future prospects of the Synchrotron Radiation Protein Crystallography Core Facility at NSRRC: a focus on the TPS 05A, TPS 07A and TLS 15A1 beamlines. Synchrotron Radiation, 2025. 32(2).
59. Otwinowski, Z. and W. Minor, Processing of X-ray diffraction data collected in oscillation mode, in Methods in enzymology. 1997, Elsevier. p. 307-326.
60. Grosse-Kunstleve, R.W., N.K. Sauter, N.W. Moriarty, and P.D. Adams, The Computational Crystallography Toolbox: crystallographic algorithms in a reusable software framework. Applied Crystallography, 2002. 35(1): p. 126-136.
61. Greenacre, M., P.J. Groenen, T. Hastie, A.I. d’Enza, A. Markos, and E. Tuzhilina, Principal component analysis. Nature Reviews Methods Primers, 2022. 2(1): p. 100.
62. Ward Jr, J.H., Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 1963. 58(301): p. 236-244.
63. Giordano, R., R.M. Leal, G.P. Bourenkov, S. McSweeney, and A.N. Popov, The application of hierarchical cluster analysis to the selection of isomorphous crystals. Biological Crystallography, 2012. 68(6): p. 649-658.
64. Murtagh, F. and P. Legendre, Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? Journal of classification, 2014. 31: p. 274-295.
65. Karplus, P.A. and K. Diederichs, Linking crystallographic model and data quality. Science, 2012. 336(6084): p. 1030-1033.
66. Fu, Z.-Q., B.V. Geisbrecht, S. Bouyain, F. Dyda, J. Chrzas, P. Kandavelu, D.J. Miller, and B.-C. Wang, I/σI vs {Rmerg, Rmeas, Rpim, CC1/2} for Crystal Diffraction Data Quality Evaluation. bioRxiv, 2025: p. 2024.12. 10.627855.
67. Karplus, P.A. and K. Diederichs, Assessing and maximizing data quality in macromolecular crystallography. Current opinion in structural biology, 2015. 34: p. 60-68.
68. Diederichs, K. and P.A. Karplus, Better models by discarding data? Biological Crystallography, 2013. 69(7): p. 1215-1222.
69. Tukey, J.W., Exploratory data analysis. Reading/Addison-Wesley, 1977.
70. Liebschner, D., P.V. Afonine, M.L. Baker, G. Bunkóczi, V.B. Chen, T.I. Croll, B. Hintze, L.-W. Hung, S. Jain, and A.J. McCoy, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Biological Crystallography, 2019. 75(10): p. 861-877.
71. Vagin, A.A., R.A. Steiner, A.A. Lebedev, L. Potterton, S. McNicholas, F. Long, and G.N. Murshudov, REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Biological Crystallography, 2004. 60(12): p. 2184-2195.
72. Emsley, P. and K. Cowtan, Coot: model-building tools for molecular graphics. Biological crystallography, 2004. 60(12): p. 2126-2132.
73. Jumper, J., R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, and A. Potapenko, Highly accurate protein structure prediction with AlphaFold. nature, 2021. 596(7873): p. 583-589.
74. Meng, E.C., T.D. Goddard, E.F. Pettersen, G.S. Couch, Z.J. Pearson, J.H. Morris, and T.E. Ferrin, UCSF ChimeraX: Tools for structure building and analysis. Protein Science, 2023. 32(11): p. e4792.
75. Matsuura, H., N. Sakai, S. Toma-Fukai, N. Muraki, K. Hayama, H. Kamikubo, S. Aono, Y. Kawano, M. Yamamoto, and K. Hirata, Elucidating polymorphs of crystal structures by intensity-based hierarchical clustering analysis of multiple diffraction data sets. Acta Crystallographica Section D: Structural Biology, 2023. 79(10).
76. Takeda, K., Y. Matsui, N. Kamiya, S.-i. Adachi, H. Okumura, and T. Kouyama, Crystal structure of the M intermediate of bacteriorhodopsin: allosteric structural changes mediated by sliding movement of a transmembrane helix. Journal of molecular biology, 2004. 341(4): p. 1023-1037.
77. Nishikawa, T., M. Murakami, and T. Kouyama, Crystal structure of the 13-cis isomer of bacteriorhodopsin in the dark-adapted state. Journal of molecular biology, 2005. 352(2): p. 319-328.
78. Kumagai, S. and I. Kawamura, Solid-state NMR of the retinal protonated Schiff base in microbial rhodopsins. Magnetic Resonance Letters, 2024: p. 200132.
79. Kabsch, W., Integration, scaling, space-group assignment and post-refinement. Biological crystallography, 2010. 66(2): p. 133-144.
80. Lunin, V.V., E. Dobrovetsky, G. Khutoreskaya, R. Zhang, A. Joachimiak, D.A. Doyle, A. Bochkarev, M.E. Maguire, A.M. Edwards, and C.M. Koth, Crystal structure of the CorA Mg2+ transporter. Nature, 2006. 440(7085): p. 833-837.
81. Yabukarski, F., T. Doukov, D.A. Mokhtari, S. Du, and D. Herschlag, Evaluating the impact of X-ray damage on conformational heterogeneity in room-temperature (277 K) and cryo-cooled protein crystals. Biological Crystallography, 2022. 78(8): p. 945-963.
82. Neutze, R. and K. Moffat, Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges. Current opinion in structural biology, 2012. 22(5): p. 651-659.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98977-
dc.description.abstractHaloquadratum walsbyi 是一種嗜鹽古菌,其表現的微生物視紫紅質(HwMR)在序列上介於細菌視紫紅質與感光視紫紅質之間。由於其晶體體積小且可能存在內在構型異質性,使用傳統單晶 X 光晶體學技術只能獲得低解析度且不完整的繞射圖譜。為了解決此問題,我們採用多晶體策略,探討是否可藉由合併多個微晶體揭示潛在的構型異質性。
我們自超過 100 顆 HwMR 微晶體收集 X 光繞射圖譜,並以小角度策略進行資料擷取。完成初步處理後,採用兩種方式進行階層式叢集分析(HCA):一是依據晶胞參數、二是根據繞射圖樣的皮爾森相關係數。分析後將資料分群,並分別進行合併與結構精修,進一步比較不同分群策略的資料品質與結構差異。
兩種分群方式皆可產生可用於結構解析的資料簇,解析度可達約 2.5–2.7 Å。值得注意的是,相關係數為基礎的分群法提供了更細緻的分類,揭示了 HwMR 的不同構型狀態。部分資料簇所對應的結構模型中,視黃醛為全反式構型;另一些簇則須建模為 13-順式構型。這些視黃醛異構化的差異伴隨七條跨膜螺旋的明顯重排。在細胞外側視角中,C 到 G 螺旋在 13-順式構型中向外位移;在細胞質側,B、F 與 G 螺旋亦出現類似的外移現象。這些結果顯示 HwMR 在視黃醛異構化過程中會產生大尺度的構型轉變,反映其功能上的異質性。
為了證實這些構型差異並非由環境因素(如環境光)所致,我們以結構穩定、非光敏性的蛋白質 Lysozyme 為對照組進行負控制組實驗。利用相同的多晶體策略,我們共收集了 346 組 Lysozyme 的繞射圖譜,並進行分群與結構比對。所有解析出的結構之間差異極小(RMSD < 0.3 Å),顯示 HwMR 中觀察到的構型異質性確實源自於蛋白質本身的構象變化,而非實驗上的偏差或光照所致。
zh_TW
dc.description.abstractHaloquadratum walsbyi is a halophilic archaeon that expresses a microbial rhodopsin (HwMR) whose sequence lies between bacteriorhodopsin and sensory rhodopsin. Due to small crystal sizes and intrinsic conformational heterogeneity, HwMR crystals yielded only partial, low-resolution diffraction when analyzed by conventional single-crystal X-ray crystallography. To address this, we employed a multi-crystal strategy to assess whether structural heterogeneity could be detected by combining many micro-crystals.
We collected X-ray diffraction data from over 100 HwMR micro-crystals using a small-wedge synchrotron approach. After indexing and scaling, hierarchical clustering analysis (HCA) was performed using two approaches: unit-cell-based and correlation coefficient-based methods. The resulting dataset clusters were individually merged and used for structure refinement. This allowed us to compare clustering strategies and examine possible structural differences between clusters.
Both clustering strategies produced clusters suitable for structure determination, with diffraction data reaching ~2.5–2.7 Å resolution. Notably, correlation coefficient-based clustering offered finer classification, revealing distinct conformational states of HwMR. In particular, structural models showed that certain clusters contained retinal in the all-trans form, while others exhibited a 13-cis retinal configuration.
These isomerization differences were associated with prominent rearrangements in the seven-transmembrane helices. From the extracellular view, helices C through G were observed to shift outward in the 13-cis form. From the cytoplasmic view, helices B, F, and G also showed outward displacements. These findings demonstrate that HwMR undergoes large-scale structural transitions upon retinal isomerization, capturing its functional heterogeneity.
To confirm that these observed conformational differences were not caused by environmental conditions (e.g., ambient light), we conducted a negative control using lysozyme, a non-photosensitive protein with a stable conformation. Using the same multi-crystal protocol, we collected 346 lysozyme datasets and performed clustering and structure comparison. All resolved structures showed negligible differences (RMSD < 0.3 Å), confirming that the conformational heterogeneity observed in HwMR originates from intrinsic structural states rather than experimental artifacts.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:30:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:30:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
Contents iv
List of Figures vii
List of Tables ix
Introduction 1
1.1 Overview of membrane proteins 1
1.1.1 The importance and roles of membrane proteins 1
1.1.2 Challenges in membrane protein structure determination 3
1.2 Haloquadratum walsbyi 4
1.3 Microbial rhodopsin 5
1.3.1 Photocycle of microbial rhodopsin 7
1.3.2 Bacteriorhodopsin 7
1.3.3 Halorhodopsin 9
1.3.4 Sensory rhodopsin 11
1.3.5 Middle rhodopsin 13
1.4 Structural Biology Techniques for Protein Structure Determination 14
1.4.1 X-ray crystallography 14
1.4.2 Cryo-electron microscopy (Cryo-EM) 14
1.4.3 Nuclear magnetic resonance (NMR) 15
1.5 Lipid Cubic Phase Method 16
1.5.1 Lipid cubic phase for membrane proteins crystallization 16
1.6 X-ray Diffraction Data Collection 17
1.6.1 Single-crystal data collection 17
1.6.2 Multi-crystal small-wedge strategy 17
1.7 KAMO: A Key Tool for Multi-Crystal Data Processing 19
1.7.1 Overview of the KAMO protocol 19
1.8 Purpose of This Study 21
Chapter 2 Materials and Methods 23
2.1 Materials 23
2.1.1 Chemical reagents 23
2.1.2 Bacteria strains 24
2.1.3 Plasmids 24
2.2 Equipment and Apparatus 25
2.2.1 Centrifugation 25
2.2.2 UV-VIS spectrophotometer 25
2.2.3 Protein purification and crystallization 25
2.2.4 NSRRC protein crystallography beamline 25
2.2.5 Miscellaneous 26
2.3 Methods 27
2.3.1 Membrane protein overexpression and purification 27
2.3.2 Protein Crystallization 29
2.3.3 X-ray diffraction data collection and processing 30
2.4 Hierarchical Cluster Analysis 33
2.4.1 Software and metrics for HCA 34
2.4.2 HCA based on unit-cell parameters 34
2.4.3 HCA based on correlation coefficient 34
2.4.4 Evaluated clustering results 35
2.5 XRD Datasets Processing and Structure Determination 37
2.5.1 Multi-crystal XRD datasets processing 37
2.5.2 Structure determination 38
Chapter 3 Results 39
3.1 Crystallization of Membrane Proteins 39
3.1.1 Crystalized condition of membrane proteins 39
3.2 Results from Single-Crystal Data 41
3.2.1 XRD dataset collection and processing 41
3.2.2 Structure determination using single-crystal data 42
3.3 Results from Multi-Crystal Data 44
3.3.1 XRD dataset collection from multi-crystal 44
3.3.2 Comparative analysis of HCA methods 45
3.4 Final Merging Results and Structure Determination 50
3.4.1 Merging results from HCA clustering 50
3.4.2 Final Structure Determination 56
3.5 Atomic Structure Insights 59
3.5.1 Comparison of Single-Crystal and Multi-Crystal Structures 59
3.5.2 Structural Variations Among CC-Based Clusters 63
3.6 Conclusions 74
Chapter 4 Discussions 75
4.1 Multi-Crystal Strategies as a Complement to Single-Crystal Diffraction 75
4.2 Effectiveness of CC-Based Clustering Compared to Unit-Cell Clustering 76
4.3 Structural Heterogeneity Revealed by Multi-Crystal Clustering 78
4.3.1 Retinal conformational heterogeneity originates from pre-existing states 78
4.3.2 Merged dataset composition determines Mg²⁺ detectability 79
4.4 Conformational Heterogeneity Modulates Mg²⁺ Accessibility in HwMR 82
4.4.1 Conformational States Reveal Distinct Mg²⁺-Associated Sites in HwMR 82
4.4.2 Retinal-induced helical shift creates a transient Mg²⁺-accessible state 83
4.5 Negative Control Using Lysozyme to Validate Conformational Heterogeneity in HwMR 85
4.6 Advancing Multi-crystal XRD for Time-Resolved Studies 87
4.6.1 Room-temperature XRD for photocycle studies 87
4.6.2 Laser-activated time-resolved XRD at synchrotrons 87
4.6.3 Multi-crystal strategies for enhanced data collection 88
4.7 Future Perspectives 90
Supplementary Data 92
Reference 95
-
dc.language.isoen-
dc.subjectHaloquadratum walsbyizh_TW
dc.subject微生物視紫紅質zh_TW
dc.subject多晶體 X 光晶體學zh_TW
dc.subject構型異質性zh_TW
dc.subject視黃醛異構化zh_TW
dc.subjectmulti-crystal X-ray crystallographyen
dc.subjectHaloquadratum walsbyien
dc.subjectretinal isomerizationen
dc.subjectconformational heterogeneityen
dc.subjectmicrobial rhodopsinen
dc.title利用多晶體分群分析法解析光敏微生物視紫紅質在環境光下的構型異質性zh_TW
dc.titleMulti-Crystal Cluster Analysis under Ambient Light Reveals Conformational Heterogeneity in Photosensitive Microbial Rhodopsinen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭貽生 ;詹迺立;徐駿森zh_TW
dc.contributor.oralexamcommitteeYi-Sheng Cheng;Nei-Li Chan;Chun-Hua Hsuen
dc.subject.keywordHaloquadratum walsbyi,微生物視紫紅質,多晶體 X 光晶體學,構型異質性,視黃醛異構化,zh_TW
dc.subject.keywordHaloquadratum walsbyi,microbial rhodopsin,multi-crystal X-ray crystallography,conformational heterogeneity,retinal isomerization,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202503756-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf5.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved