Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98962
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊明仁zh_TW
dc.contributor.advisorMing-Jen Yangen
dc.contributor.author繆炯恩zh_TW
dc.contributor.authorJyong-En Miaoen
dc.date.accessioned2025-08-20T16:27:04Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-12-
dc.identifier.citationBanacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351–366, doi:10.1175/WAF858.1.
Bell, Michael, Michael Dixon, Wen-Chau Lee, Brenda Javornik, Jennifer DeHart, Ting-Yu Cha, and Alex DesRosiers. (2022). nsf-lrose/lrose-topaz: lrose-topaz stable final release 20220222 (lrose-topaz-2022022). Zenodo. https://doi.org/10.5281/zenodo.6909479.
Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 3197–3222.
Bodine, D. J., and K. L. Rasmussen, 2017: Evolution of Mesoscale Convective System Organizational Structure and Convective Line Propagation. Mon. Wea. Rev., 145, 3419–3440.
Bringi, V. N., K. Knupp, A. Detwiler, L. Liu, I. J. Caylor, and R. A. Black, 1997: Evolution of a Florida thunderstorm during the Convection and Precipitation/Electrification Experiment: The case of 9 August 1991. Mon. Wea. Rev., 125, 2131–2160.
Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effects on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 2760–2774.
Browning, K. A., and F. H. Ludlum, 1962: Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117–135.
Bryan, G. H., & Fritsch, J. M. (2000). Moist absolute instability: The sixth static stability state. Bulletin of the American Meteorological Society, 81(6), 1207–1230.
Bryan, G. H., and M. D. Parker, 2010: Observations of a squall line and its near environment using high-frequency Rawinsonde launches during VORTEX2, Mon. Wea. Rev., 138, 4076–4097, doi:10.1175/2010MWR3359.1.
Caracena, F., R. A. Maddox, L. R. Hoxit, and C. F. Chappell, 1979: Mesoanalysis of the Big Thompson Storm. Mon. Wea. Rev., 107, 1–17.
Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 2687–2710.
Cha, T., and M. M. Bell, 2023: Three-dimensional variational multi-Doppler wind retrieval over complex terrain. J. Atmos. Oceanic Technol., 40, 1381–1405, https://doi.org/10.1175/JTECH-D-23-0019.1.
Chang, P., and Coauthors, 2021: An Operational Multi-Radar Multi-Sensor QPE System in Taiwan. Bull. Amer. Meteor. Soc., 102, E555–E577, https://doi.org/10.1175/BAMS-D-20-0043.1.
Chang, W., W. Lee, and Y. Liou, 2015: The kinematic and microphysical characteristics and associated precipitation efficiency of subtropical convection during SoWMEX/TiMREX. Mon. Wea. Rev., 143, 317–340, https://doi.org/10.1175/MWR-D-14-00081.1.
Chen, C., and C. Liu, 2014: The definition of urban stormwater tolerance threshold and its conceptual estimation: an example from Taiwan. Nat. Hazards, 73, 173–190. https://doi.org/10.1007/s11069-013-0645-7
Chen, G. T.-J., H.-C. Chou, T. C. Chang, and C. S. Liu, 2001: Frontal and non-frontal convection over northern Taiwan in mei-yu season (in Chinese with English abstract). Atmos. Sci., 29, 37–52.
Chen, G., K. Zhao, L. Wen, M. Wang, H. Huang, M. Wang, Z. Yang, G. Zhang, P. Zhang, and W.-C. Lee, 2019: Microphysical Characteristics of Three Convective Events with Intense Rainfall Observed by Polarimetric Radar and Disdrometer in Eastern China. Remote Sensing, 11, 2004, https://doi.org/10.3390/rs11172004.
Chen, J., T. Tsai, M. Tzeng, C. Liao, H. Kuo, and J. Hong, 2022: Microphysical Perturbation Experiments and Ensemble Forecasts on Summertime Heavy Rainfall over Northern Taiwan. Wea. Forecasting, 37, 1641–1659.
Chen, P.-Y., and C.-M. Wu., 2025: Identifying Cold Pool Scales Over Complex Topography Using TaiwanVVM Simulations. Journal of the Meteorological Society of Japan, 103, 453–468.
Chen, T.-C., J. Tsay, and E. S. Takle, 2016: A forecast advisory for afternoon thunderstorm occurrence in the Taipei basin during summer developed from diagnostic analysis. Wea. Forecasting, 31, 531–552.
Chen, T.-C., S.-Y. Wang, and M.-C. Yen, 2007: Enhancement of afternoon thunderstorm activity by urbanization in a valley: Taipei. J. Appl. Meteor. Climatol., 46, 1324–1340.
Chen, X., F. Zhang, and K. Zhao, 2017: Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the Mei-Yu season coastal rainfall over South China. J. Atmos. Sci., 74, 2835–2856, https://doi.org/10.1175/JAS-D-17-0081.1.
Choi, H.-Y., Ha, J.-H., Lee, D.-K., & Kuo, Y.-H. (2011). Analysis and simulation of mesoscale convective systems accompanying heavy rainfall: The goyang case. Asia-Pacific Journal of Atmospheric Sciences, 47(3), 265–279.
Clyne, J., and M. Rast, 2005: A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations, Proceedings of Visualization and Data Analysis, 284–294.
Clyne, J., P. Mininni, A. Norton, and M. Rast, 2007: Interactive desktop analysis of high-resolution simulations: Application to turbulent plume dynamics and current sheet formation, New Journal of Physics, 9, 301.
Cornejo, I. C., A. K. Rowe, K. L. Rasmussen, and J. C. DeHart, 2024: Orographic controls on extreme precipitation associated with a Mei-Yu front. Mon. Wea. Rev., 152, 531–551, https://doi.org/10.1175/MWR-D-23-0170.1.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.
DeHart, J., Dixon, M., Javornik, B., Bell, M., Cha, T.-Y., DesRosiers, A., & Lee, W.-C. (2024). nsf-lrose/lrose-releases: lrose-jade-20230814 (lrose-jade-20230814). [Software] Zenodo. https://doi.org/10.5281/zenodo.11479603.
Doswell, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581.
Du, Y., G. Chen, B. Han, L. Bai, and M. Li, 2020: Convection initiation and growth at the coast of south China. Part II: Effects of the terrain, coastline, and cold pools. Mon. Wea. Rev., 148, 3871–3892, https://doi.org/10.1175/MWR-D-20-0090.1.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.
Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.
Fawbush, E. J., and R. C. Miller, 1954: The types of airmasses in which North American tornadoes form. Bull. Amer. Meteor. Soc., 35, 154–165.
Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, 357–381.
Foerster, A.M.; Bell, M.M. Thermodynamic retrieval in rapidly rotating vortices from multiple-Doppler radar data. J. Atmos. Ocean. Technol. 2017, 34, 2353–2374.
Foster, D. S., 1958: Thunderstorm gusts compared with computed downdraft speeds. Mon. Wea. Rev., 86, 91–94.
French, M. M., and D. M. Kingfield, 2021: Tornado Formation and Intensity Prediction Using Polarimetric Radar Estimates of Updraft Area. Wea. Forecasting, 36, 2211–2231, https://doi.org/10.1175/WAF-D-21-0087.1.
Gilmore, M. S., and L. J. Wicker, 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943–958
Glenn, I. B., and S. K. Krueger, 2017: Connections matter: Updraft merging in organized tropical deep convection. Geophys. Res. Lett., 44, 7087–7094.
Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., and Stier, P.: tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets, Geosci. Model Dev., 12, 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019, 2019.
Helmus, J. J., and S. M. Collis, 2016: The Python ARM radar toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Softw., 4, e25, https://doi.org/10.5334/jors.119.
Hohenegger, C. and Bretherton, C. S.: Simulating deep convection with a shallow convection scheme, Atmos. Chem. Phys., 11, 10389–10406, https://doi.org/10.5194/acp-11-10389-2011, 2011.
Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322–2339.
Houze, R. A., Jr., 2014: Cloud Dynamics, 2nd Ed., Elsevier/Academic Press, Oxford, 432 pp.
Houze, R. A. Jr., 2012: Orographic effects on precipitating clouds, Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.
Hua, S., Xu, X., & Chen, B. (2020). Influence of multiscale orography on the initiation and maintenance of a precipitating convective system in North China: A case study. Journal of Geophysical Research: Atmospheres, 125, e2019JD031731.
Huang, Y., Liu, Y., Liu, Y., Li, H., and J. C. Knievel, 2019: Mechanisms for a record-breaking rainfall in the coastal metropolitan city of Guangzhou, China: Observation analysis and nested very large eddy simulation with the WRF model. J. of Geophys. Res. Atmos, 124, 1370–1391, https://doi.org/10.1029/2018JD029668
Illingworth, A. J., W. Goddard, and S. Cherry, 1987: Polarization radar studies of precipitation development in convective storms. Quart. J. Roy. Meteor. Soc., 113, 469–489.
James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140–161, https://doi.org/10.1175/2009MWR3018.1.
James, R. P., Fritsch, J. M., & Markowski, P. M. (2005). Environmental distinctions between cellular and slabular convective lines. Monthly Weather Review, 133, 2669–2691.
Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588–612.
Johnson, R. H., and J. F. Breach, 1991: Diagnosed characteristics of precipitation systems over Taiwan during the May-June 1987 TAMEX. Mon. Wea. Rev., 119, 2540–2557.
Jou, B. J.-D., 1994: Mountain-originated mesoscale precipitation system in northern Taiwan: A case study of 21 June 1991. Terr. Atmos. Oceanic Sci., 5, 169–197.
Jou, B. J.-D., Y.-C. Kao, R.-G. R. Hsiu, C.-J. U. Jung, J. R. Lee, and H. C. Kuo, 2016: Observational characteristics and forecast challenge of Taipei flash flood afternoon thunderstorm: Case study of 14 June 2015 (in Chinese with English abstract). Atmos. Sci., 44, 57–82.
Jung, C., and B. J. Jou, 2023: Bulk microphysical characteristics of a heavy-rain complex thunderstorm system in the Taipei basin. Mon. Wea. Rev., 151, 877–896, https://doi.org/10.1175/MWR-D-22-0078.1.
Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–177.
Kain, J. S., and J. M. Fritsch, 1990: A one dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47 , 2784–2802.
Kerns, B. W. J., Y.-L. Chen, and M.-Y. Chang, 2010: The diurnal cycle of winds, rain, and clouds over Taiwan during the Mei-yu, summer, and autumn rainfall regimes. Mon. Wea. Rev., 138, 497–516.
Khairoutdinov MF, Randall D. 2006. High‐resolution simulation of shallow to deep convection transition over land. J. Atmos. Sci., 63, 3421–3436.
Khairoutdinov, M. F., S. K. Krueger, C.-H. Moeng, P. A. Bogenschutz, D. Randall, 2009: Large‐eddy simulation of maritime deep tropical convection. J. Adv. Model Earth Syst. 1: Art. 15, DOI: 10.3894/JAMES.2009.1.15.
Kirshbaum, D.J.; Adler, B.; Kalthoff, N.; Barthlott, C.; Serafin, S. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes. Atmosphere 2018, 9, 80. https://doi.org/10.3390/atmos9030080
Klaus, V., H. Rieder, and R. Kaltenböck, 2023: Insights in Hailstorm Dynamics through Polarimetric High-Resolution X-Band and Operational C-Band Radar: A Case Study for Vienna, Austria. Mon. Wea. Rev., 151, 913–929, https://doi.org/10.1175/MWR-D-22-0185.1.
Kuang, Z., and C. S. Bretherton, 2006: A mass‐flux scheme view of a high‐resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 1895–1909.
Kumjian, M. R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A. V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 1820–1843.
Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric Signatures in Supercell Thunderstorms. J. Appl. Meteorol. Climatol., 47, 1940–1961.
Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 2042–2060.
Kumjian, M. R., and O. P. Prat, 2014: The impact of raindrop collisional processes on the polarimetric radar variables. J. Atmos. Sci., 71, 3052–3067. https://doi.org/10.1175/JAS-D-13-0357.1
Kumjian, M. R., O. P. Prat, K. J. Reimel, M. van Lier-Walqui, and H. C. Morrison, 2022: Dual-Polarization Radar Fingerprints of Precipitation Physics: A Review. Remote Sensing, 14, 3706.
Kuo, K.-T., and C.-M. Wu, 2019: The precipitation hotspots of afternoon thunderstorms over the Taipei basin: Idealized numerical simulations. J. Meteor. Soc. Japan, 97, 501–517, https://doi.org/10.2151/jmsj.2019-031.
Kurowski, M. J., K. Suselj, W. W. Grabowski, and J. Teixeira, 2018: Shallow-to-deep transition of continental moist convection: Cold pools, surface fluxes, and mesoscale organization. J. Atmos. Sci., 75, 4071–4090, https://doi.org/10.1175/JAS-D-18-0031.1.
Kuster, C. M., J. C. Snyder, T. J. Schuur, T. T. Lindley, P. L. Heinselman, J. C. Furtado, J. W. Brogden, and R. Toomey, 2019: Rapid-update radar observations of ZDR column depth and its use in the warning decision process. Wea. Forecasting, 34, 1173–1188, https://doi.org/10.1175/WAF-D-19-0024.1.
Lee, M.-T., P.-L. Lin, W.-Y. Chang, B. K. Seela, and J. Janapati, 2019: Microphysical characteristics and types of precipitation for different seasons over North Taiwan. J. Meteor. Soc. Japan, 97, 841–865, https://doi.org/10.2151/jmsj.2019-048.
Li, H., Y. Huang, S. Hu, N. Wu, X. Liu, and H. Xiao, 2021: Roles of terrain, surface roughness, and cold pool outflows in an extreme rainfall event over the coastal region of South China. J. Geophys. Res. Atmos. 126, e2021JD035556. https://doi.org/10.1029/2021JD035556
Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612.
Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan island. Wea. Forecasting, 26, 44-60.
Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2012: Objective predication of warm season afternoon thunderstorms in northern Taiwan using a fuzzy logic approach. Wea. Forecasting, 27, 1178-1197.
Loney, M. L., D. S. Zrnić, J. M. Straka, and A. V. Ryzhkov, 2002: Enhanced polarimetric radar signatures above the melting level in a supercell storm. J. Appl. Meteor., 41, 1179–1194.
Maddox, R. A., L. R. Hoxit, C. F. Chappell, and F. Caracena, 1978: Comparison of meteorological aspects of the Big Thompson flood and Rapid City flash floods. Mon. Wea. Rev., 106, 375–389.
Mechem, D. B., Houze, R. A., Jr., & Chen, S. S. (2002). Layer inflow into precipitating convection over the western tropical Pacific. Quarterly Journal of the Royal Meteorological Society, 128(584), 1997–2030.
Medina, S., R. A. Houze Jr., A. Kumar, and D. Niyogi, 2010: Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quart. J. Roy. Meteor. Soc., 136, 593–616.
Miao, J.-E., and M.-J. Yang, 2018: Cell merger and heavy rainfall of the severe afternoon thunderstorm event at Taipei on 14 June 2015. Atmos. Sci., 46, 427–453 (in Chinese with English abstract). https://doi.org/10.3966/025400022018124604004
Miao, J.-E., and M.-J. Yang, 2020: A modeling study of the severe afternoon thunderstorm event at Taipei on 14 June 2015: The roles of sea breeze, microphysics, and terrain. J. Meteor. Soc. Japan, 98, 129–152, https://doi.org/10.2151/jmsj.2020-008.
Miao, J.-E., and M.-J. Yang, 2022: The impacts of midlevel moisture on the structure, evolution, and precipitation of afternoon thunderstorms: A real-case modeling study at Taipei on 14 June 2015. J. Atmos. Sci., 79, 1837–1857, https://doi.org/10.1175/JAS-D-21-0257.1.
Miao, J.-E., M.-J. Yang, K. L. Rasmussen, M. M. Bell, H.-C. Kuo, and T.-Y. Cha, 2025: Microphysical and Kinematical Characteristics of Merged and Isolated Convective Cells over the Complex Terrain of the Taipei Basin. J. Geophys. Res. Atmos., conditionally accepted with minor revision.
Mlawer E. J., S. J. Taubman, P. D. Brown, M. J. Iocono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682.
Morrison, H., M. van Lier-Walqui, A. M. Fridlind, W. W. Grabowski, J. Y. Harrington, and C. Hoose, 2020: Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Sys., 12, e2019MS001689. https://doi.org/10.1029/2019MS001689
Moseley, C., C. Hohenegger, P. Berg, and J. O. Haerter, 2016: Intensification of convective extremes driven by cloud–cloud interaction. Nat. Geosci., 9, 748–752, https://doi.org/10.1038/ngeo2789.
Nair, U. S., M. R. Hjelmfelt, and Pielke R. A. Sr., 1997: Numerical simulation of the 9–10 June 1972 Black Hills Storm using CSU RAMS. Mon. Wea. Rev., 125, 1753–1766.
Naka, N., & Takemi, T. (2023). Characteristics of the environmental conditions for the occurrence of recent extreme rainfall events in northern Kyushu, Japan. Scientific Online Letters on the Atmosphere, 19A(Special_Edition), 9–19.
NCAR/EOL S-Pol Team. 2023. PRECIP: NCAR S-Pol radar moments data. Version 1.0. [Dataset] UCAR/NCAR - Earth Observing Laboratory. https://doi.org/10.26023/QA4M-CDHH-MY0Z. Accessed 12 Aug 2024.
Parsons, D. B., J.-L. Redelsperger, and K. Yoneyama, 2000: The evolution of the tropical western Pacific atmosphere‐ocean system following the arrival of a dry intrusion. Q.J.R. Meteorol. Soc., 126, 517–548, doi:10.1002/qj.49712656307
Pauley, P. M., and X. Wu, 1990: The Theoretical, Discrete, and Actual Response of the Barnes Objective Analysis Scheme for One- and Two-Dimensional Fields. Mon. Wea. Rev., 118, 1145–1164.
Picca, J., and A. Ryzhkov, 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma city extreme hailstorm. Mon. Wea. Rev., 140, 1385–1403, https://doi.org/10.1175/MWR-D-11-00112.1.
PRECIP, 2022: Prediction of rainfall extremes campaign in the Pacific. Accessed 21 July 2024, http://precip.org/.
Rasmussen, K. L., and R. A. Houze Jr., 2011: Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 2399–2420.
Rasmussen, K. L., and R. A. Houze Jr., 2012: A flash flooding storm at the steep edge of high terrain: Disaster in the Himalayas. Bull. Amer. Meteor. Soc., 93, 1713–1724, doi:10.1175/BAMS-D-11-00236.1.
Rasmussen, K. L., and R. A. Houze, 2016: Convective Initiation near the Andes in Subtropical South America. Mon. Wea. Rev., 144, 2351–2374.
Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43 , 2708–2718.
Richardson, Y. P., K. K. Droegemeier, and R. P. Davies‐Jones, 2007: The influence of horizontal environmental variability on numerically simulated convective storms. Part I: Variations in vertical shear, Mon. Wea. Rev., 135, 3429–3455.
Rocque, M. N., and K. L. Rasmussen, 2022: The Impact of Topography on the Environment and Life Cycle of Weakly and Strongly Forced MCSs during RELAMPAGO. Mon. Wea. Rev., 150, 2317–2338.
Rolph, G., A. Stein, and B. Stunder, 2017: Real-time environmental applications and display system: READY. Environmental Modelling & Software, 95, 210–228, https://doi.org/10.1016/j.envsoft.2017.06.025
Romatschke, U., and R. A. Houze Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 3761–3791, doi:10.1175/2010JCLI3465.1.
Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall line. J. Atmos. Sci., 45, 463–485.
Ryzhkov, A. V., and D. S. Zrnic, 2007: Depolarization in ice crystals and its effect on radar polarimetric measurements. J. Atmos. Ocean. Tech., 24, 1256–1267.
Ryzhkov, A. V., and D. S. Zrnić, 2019: Radar Polarimetry for Weather Observations. 1st ed. Springer, 486 pp.
Schumacher, R. S., and J. M. Peters, 2017: Near-surface thermodynamic sensitivities in simulated extreme-rain-producing mesoscale convective systems, Mon. Wea. Rev., 145, 2177–2200.
Schumacher, R. S., and R. H. Johnson, 2008: Mesoscale Processes Contributing to Extreme Rainfall in a Midlatitude Warm-Season Flash Flood. Mon. Wea. Rev., 136, 3964–3986, https://doi.org/10.1175/2008MWR2471.1.
Segall, J. H., M. M. French, D. M. Kingfield, S. D. Loeffler, and M. R. Kumjian, 2022: Storm-Scale Polarimetric Radar Signatures Associated with Tornado Dissipation in Supercells. Wea. Forecasting, 37, 3–21, https://doi.org/10.1175/WAF-D-21-0067.1.
Shusse, Y., and K. Tsuboki, 2006: Dimension characteristics and precipitation efficiency of cumulonimbus clouds in the region far south from the mei-yu front over the eastern Asian continent. Mon. Wea. Rev., 134, 1942–1953.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751STR, 113 pp.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., et al. (2019). A description of the advanced research WRF model version 4. NCAR Technical Note NCAR/TN-556+STR.145.
Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. Khain, and J. C. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 1819–1844, doi:10.1175/WAF-D-15-0068.1.
Stalker, J. R., and K. R. Knupp, 2003: Cell merger potential in multicell thunderstorms of weakly sheared environments: Cell separation distance versus planetary boundary layer depth. Mon. Wea. Rev., 131, 1678–1695.
Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bull. Amer. Meteor. Soc., 96, 2059–2077, http://dx.doi.org/10.1175/BAMS-D-14-00110.1
TAHOPE, 2022: Taiwan-area heavy rain observation and prediction experiment. Accessed 21 July 2024, https://rain.as.ntu.edu.tw/TAHOPE/TAHOPE-home.html.
Takemi, T., & Unuma, T. (2020). Environmental factors for the development of heavy rainfall in the eastern part of Japan during Typhoon Hagibis (2019). SOLA, 16, 30–36.
Takemi, T., O. Hirayama, and C. Liu, 2004: Factors responsible for the vertical development of tropical oceanic cumulus convection, Geophys. Res. Lett., 31, L11109, doi:10.1029/2004GL020225.
Tam, F. I.-H., M.-J. Yang, and W.-C. Lee, 2022: Polarimetric size sorting signatures in the convective regions of mesoscale convective systems in PECAN: Implications on kinematics, thermodynamics, and precipitation pathways. J. Geophys. Res. Atmos., 127, e2021JD035822. https://doi.org/10.1029/2021JD035822
Tao, W.-K., and J. Simpson, 1989: A further study of cumulus interactions and mergers: Three-dimensional simulations with trajectory analyses. J. Atmos. Sci., 46, 2974–3004.
tobac Community, Brunner, K., Freeman, S. W., Jones, W. K., Kukulies, J., Senf, F., Bruning, E., Stier, P., van den Heever, S. C., Heikenfeld, M., Marinescu, P. J., Collis, S. M., Lettl, K., Pfeifer, N., Raut, B. A., Zhang, X., and Sokolowsky, G. A., 2023: tobac – Tracking and Object-based Analysis of Clouds. [Software] Zenodo. https://doi.org/10.5281/zenodo.8164675.
Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 1650–1672.
T-PARCII, 2022: Tropical cyclones-Pacific Asian research campaign for Improvement of intensity estimations/forecasts. Accessed 21 July 2024, http://rain.hyarc.nagoya-u.ac.jp/~tsuboki/kibanS2/index_kibanS_eng.html.
Tsuji, H., Takayabu, Y. N., Shibuya, R., Kamahori, H., & Yokoyama, C. (2021). The role of free-tropospheric moisture convergence for summertime heavy rainfall in western Japan. Geophysical Research Letters, 48, e2021GL095030.
Tsujino, S., H.-C. Kuo, H. Yu, B.-F. Chen, and K. Tsuboki, 2021: Effects of mid-level moisture and environmental flow on the development of afternoon thunderstorms in Taipei. Terr. Atmos. Ocean. Sci., 32, 497-518.
Tuttle, J. D., V. N. Bringi, H. D. Orville, and F. J. Kopp, 1989: Multiparameter radar study of a microburst: Comparison with model results. J. Atmos. Sci., 46, 601–620.
Van Den Broeke, M. S., 2017: Polarimetric Radar Metrics Related to Tornado Life Cycles and Intensity in Supercell Storms. Mon. Wea. Rev., 145, 3671–3686, https://doi.org/10.1175/MWR-D-16-0453.1.
Van Den Broeke, M. S., 2020: A preliminary polarimetric radar comparison of pretornadic and nontornadic supercell storms. Mon. Wea. Rev., 148, 1567–1584, https://doi.org/10.1175/MWR-D-19-0296.1.
Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnic, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381–388.
Wang, S., and A. H. Sobel, 2017: Factors controlling rain on small tropical islands: Diurnal cycle, large-scale wind speed, and topography. J. Atmos. Sci., 74, 3515–3532.
Westcott, N., 1984: A historical perspective on cloud mergers. Bull. Amer. Meteor. Soc., 65, 219-226.
Wilson, M. B., and M. S. Van Den Broeke, 2021: Using the Supercell Polarimetric Observation Research Kit (SPORK) to examine a large sample of pretornadic and nontornadic supercells. Electronic J. Severe Storms Meteor., 17(2), 1–38.
Wu, Y.-J., Y.-C. Liou, Y.-C. Liou, S.-L. Tai, S.-F. Chang, and J. Sun, 2021: Precipitation processes of a thunderstorm occurred on 19 August 2014 in northern Taiwan documented by using a high resolution 4DVar data assimilation system. J. Meteor. Soc. Japan, 99, 1023–1044.
Xu, W., E. J. Zipser, Y. Chen, C. Liu, Y. Liou, W. Lee, and B. J.-D. Jou, 2012: An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 2555–2574, https://doi.org/10.1175/MWR-D-11-00208.1.
Yang, M.-J., and R. A. Houze, Jr., 1995: Sensitivity of squall-line rear inflow to ice microphysics and environmental humidity. Mon. Wea. Rev., 123, 3175–3193.
Yang, S., Y. Chang, H. Cheng, K. Lin, Y. Tsai, J. Hong, and Y. Li, 2024: Improving afternoon thunderstorm prediction over complex terrain with the assimilation of dense ground-based observations: Four cases in the Taipei basin. Wea. Forecasting, 39, 541–561, https://doi.org/10.1175/WAF-D-23-0149.1.
Yu, S., Y. Luo, C. Wu, D. Zheng, X. Liu, and W. Xu, 2022: Convective and microphysical characteristics of extreme precipitation revealed by multisource observations over the Pearl River Delta at monsoon coast. Geophys. Res. Lett., 49, e2021GL097043. https://doi.org/10.1029/2021GL097043
Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941–1963.
Zhang, M., K. L. Rasmussen, Z. Meng, and Y. Huang, 2022: Impacts of Coastal Terrain on Warm-Sector Heavy-Rain-Producing MCSs in Southern China. Mon. Wea. Rev., 150, 603–624.
Zou, X., Cordeira, J. M., Bartlett, S. M., Kawzenuk, B., Roj, S., Castellano, C., et al. (2023). Mesoscale and synoptic scale analysis of narrow cold frontal rainband during a landfalling atmospheric river in California during January 2021. Journal of Geophysical Research: Atmospheres, 128, e2023JD039426. https://doi.org/10.1029/2023JD039426.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98962-
dc.description.abstract預測山區雷暴是一項極具挑戰性的工作,這是由於多種大氣過程之間的多尺度交互作用,包含太陽加熱、熱力驅動氣流、冷池作用、雲微物理過程與地形效應等。本論文旨在深化對午後雷暴於弱綜觀與強綜觀環境下,導致地形極端降雨之物理機制的理解。透過先進的雷達觀測與數值模擬,本研究針對兩個在台北盆地造成極端降雨的午後雷暴案例進行分析:一個為弱綜觀環境下的個案(2015年6月14日),另一個則為強綜觀環境下的個案(2022年5月31日)。
第二章 探討中層相對濕度如何影響弱綜觀午後雷暴的發展。以 2015 年 6 月 14 日個案為例,環境中層乾燥空氣增強了蒸發冷卻效應,使得冷池增強,進而增強低層輻合與垂直舉升。這些條件有利於形成較大的霰粒子與更強的高層潛熱釋放,導致對流系統的範圍與強度提升。對流上升氣流的內部區域受到周圍濕空氣包覆,使整體的逸入作用顯著降低。此外,台北盆地的“盆地限制效應(basin confinement effect)”進一步強化了低層輻合並促進對流發展。
第三章分析TAHOPE/PRECIP IOP 2(2022年5月31日)發生的強綜觀午後雷暴,使用資料包含雙偏極雷達觀測與多都卜勒風場反演。分析結果指出,ZDR 柱增寬、多重胞合併與後續上升氣流加強與強降水之間存在潛在關聯。寬廣的 ZDR 柱(超過 8 公里寬)可能可以作為判斷對流組織與降水劇烈程度的有用指標。
第四章 探討TAHOPE/PRECIP IOP 2 個案中,濕絕對不穩定層(MAUL)之形成機制,並透過雲解析模式模擬分析其與地形降雨的關聯。模擬結果顯示,地形與西南季風交互作用顯著增強雪山山脈一帶的低層水氣通量輻合,且支持中尺度氣層舉升,進而促成深厚的 MAUL 形成。相較之下,移除地形的模擬中僅產生淺層、氣塊的抬升。MAUL 體積與下一小時降雨強度之間呈現正相關,顯示 MAUL 相關的診斷指標可能具備預測極端降水潛勢的應用潛力。
綜合而言,本研究結果指出,地形對午後雷暴演變的影響高度依賴於其所處的綜觀背景與熱力環境場。本論文強調,若欲改善短延時強降雨的預報與風險評估,應採納跨尺度的分析架構。
zh_TW
dc.description.abstractPredicting thunderstorms over mountainous regions is challenging due to the multiscale interactions of various atmospheric processes, including solar heating, thermally driven airflow, cold pool, cloud microphysics and topographic effect. This dissertation aims to enhance our understanding of the physical mechanisms leading to orographic extreme rainfall in afternoon thunderstorms (ATSs) under both weak and strong synoptic environments. Using novel radar observations and numerical experiments, this study investigates a weakly-forced ATS case (14 June 2015) and a strongly-forced ATS case (31 May 2022), both of which produced extreme rainfall over the Taipei Basin.
Chapter 2 explores how midlevel relative humidity may influence the evolution of weakly forced ATSs. In the 14 June 2015 case, drier midlevel conditions enhanced evaporative cooling, strengthened cold pool outflows, and promoted more pronounced low-level convergence and vertical lifting. These factors favor the formation of larger graupel particles and stronger latent heating aloft, resulting in broader and more intense convective systems. The inner portion of the updrafts was shielded by surrounding moist air, leading to a notable reduction in bulk entrainment rate. Terrain effects—particularly the “basin confinement” within the Taipei Basin—further contributed to sustained low-level convergence and enhanced convective development.
Chapter 3 investigates the strongly forced ATSs during the TAHOPE/PRECIP IOP 2 using polarimetric radar observations and multi-Doppler wind retrievals. The analysis suggests a potential link between the widening of ZDR columns, multiple cell mergers, and the intensification of updrafts and precipitation. Broad ZDR columns (exceeding 8 km) may serve as useful diagnostics for identifying convective organization and storm severity in complex terrain.
Chapter 4 focuses on the formation of moist absolutely unstable layers (MAULs) in relation to orographic rainfall, based on simulations of the same IOP 2 event. Terrain interactions with southwesterly monsoonal flow enhanced low-level moisture flux convergence along the Snow Mountain Range, supporting mesoscale layer lifting and the development of deep MAULs. In contrast, terrain-removed simulations exhibited shallower, parcel-based ascent with limited instability. A positive correlation was found between MAUL volume and next-hour rainfall, suggesting that MAUL-related diagnostics could be explored further as indicators of extreme precipitation potential.
Together, these findings demonstrate that topographic effects on ATSs are highly sensitive to the background synoptic and thermodynamic environments. The work emphasizes the need for multiscale frameworks to improve forecasting and risk assessment of short-duration extreme rainfall in mountainous regions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:27:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:27:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgments i
中文摘要 iii
Abstract v
Table of Contents vii
List of Figures x
List of Tables xxi
Chapter 1 Introduction 1
Chapter 2 Environmental and Orographic Control on Weakly-Forced ATSs 10
2.1 Background 10
2.2 ATS occurrence criteria revisited 13
2.3 Numerical model and experimental design 17
2.3.1 WRF configuration 17
2.3.2 Sensitivity experiments on mid-level RH 18
2.4 Results 20
2.4.1 Convection evolution and precipitation 20
2.4.2 Evolution of updraft, downdraft and entrainment rate 25
2.4.3 Cold pool and CAPE consumed 29
2.4.4 Significance of mid-level dry air 38
2.5 Response of ATS to mid-level RH in the absence of Taiwan terrain 40
2.6 Discussion and summary 45
Chapter 3 Storm Organization and Microphysics in Strongly-Forced ATSs 51
3.1 Background 51
3.2 Data and methodology 53
3.2.1 Polarimetric measurements from S-Pol 53
3.2.2 Kinematic field retrieval from SAMURAI-TERRAIN 54
3.2.3 Tracking algorithm for ZDR columns 56
3.2.4 Measurement of ZDR Column Width 57
3.3 Case overview 58
3.3.1 Mesoscale environment 58
3.3.2 Storm evolution 61
3.4 Results 65
3.4.1 Episode 1: Multiple cell merger (MCM) 65
3.4.2 Episode 2: Isolated convective cells 71
3.4.3 Evolution of ZDR column and updraft 74
3.4.4 Evolution of microphysical processes 76
3.5 Discussion and summary 81
Chapter 4 Orographic Control on Strongly-Forced ATSs 87
4.1 Background 87
4.2 Numerical model and experimental design 90
4.2.1 Model configuration and validation 90
4.2.2 Moisture flux convergence (MFC) 95
4.2.3 Moist absolutely unstable layer (MAUL) 96
4.3 Results 96
4.3.1 Terrain enhanced MFC and induced MAUL over northern Taiwan 96
4.3.2 The relationship between MAUL and extreme rainfall 104
4.4 Discussion and summary 107
Chapter 5 Conclusions and Future Work 111
REFERENCE 116
APPENDIX Additional cases of ATS: 23/24 June 2022 134
-
dc.language.isoen-
dc.subject極端降雨zh_TW
dc.subject地形效應zh_TW
dc.subject雲微物理zh_TW
dc.subject中尺度過程zh_TW
dc.subject午後雷雨zh_TW
dc.subjectCloud microphysicsen
dc.subjectOrographic effectsen
dc.subjectMesoscale processesen
dc.subjectExtreme rainfallen
dc.subjectAfternoon thunderstormsen
dc.title多重尺度交互作用對於複雜地形午後雷暴極端降雨之影響zh_TW
dc.titleMultiscale Interactions Contributing to Orographic Extreme Rainfall in Afternoon Thunderstorms over Complex Terrainen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisorKristen L. Rasmussenzh_TW
dc.contributor.coadvisorKristen L. Rasmussenen
dc.contributor.oralexamcommitteeMichael M. Bell;林沛練;游政谷;陳正平;郭鴻基zh_TW
dc.contributor.oralexamcommitteeMichael M. Bell;Pay-Liam Lin;Cheng-Ku Yu;Jen-Ping Chen;Hung-Chi Kuoen
dc.subject.keyword午後雷雨,極端降雨,中尺度過程,雲微物理,地形效應,zh_TW
dc.subject.keywordAfternoon thunderstorms,Extreme rainfall,Mesoscale processes,Cloud microphysics,Orographic effects,en
dc.relation.page140-
dc.identifier.doi10.6342/NTU202504233-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf10.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved