Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98955
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉宗德zh_TW
dc.contributor.advisorTsung-Te Liuen
dc.contributor.author林侑城zh_TW
dc.contributor.authorYu-Cheng Linen
dc.date.accessioned2025-08-20T16:25:31Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-15-
dc.identifier.citation[1] https://www.medclub.com.tw/product_1599691.html
[2] https://zh-tw.eirgenix.com/covid-19-antigen-rapid-test
[3] https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=1426b6f2-7939-4df9-bbe8-87ec7a527dbd
[4] Erh-Chia Yeh et al., Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci. Adv.3,e1501645(2017).DOI:10.1126/sciadv.1501645
[5] https://www.cgu.edu.tw/inscorelab/Contents/?nodeId=10335#tag2
[6] Manohar, S. M., Shah, P., & Nair, A. (2021). Flow Cytometry: Principles, Applications and Recent Advances. Bioanalysis, 13(3), 181–198. https://doi.org/10.4155/bio-2020-0267
[7] Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol. 2017 Mar;37(2):163-176. doi: 10.3109/07388551.2015.1128876
[8] J. Yan, C. Wang, Y. Fu, J. Guo, and J. Guo, "3D printed microfluidic Coulter counter for blood cell analysis," Analyst, vol. 147, no. 14, pp. 3225-3233, Jul 12 2022, doi: 10.1039/d2an00633b.
[9] C. Zhu, J. Maldonado and K. Sengupta, "CMOS-Based Electrokinetic Microfluidics With Multi-Modal Cellular and Bio-Molecular Sensing for End-to-End Point-of-Care System," in IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 6, pp. 1250-1267, Dec. 2021, doi: 10.1109/TBCAS.2021.3136165.
[10] Tao Sun, Catia Bernabini, and Hywel Morgan, “Single-Colloidal Particle Impedance Spectroscopy: Complete Equivalent Circuit Analysis of Polyelectrolyte Microcapsules”, Langmuir 2010 26 (6), 3821-3828
[11] Carminati M, Ferrari G, Vahey MD, Voldman J, Sampietro M. Miniaturized Impedance Flow Cytometer: Design Rules and Integrated Readout. IEEE Trans Biomed Circuits Syst. 2017 Dec;11(6):1438-1449. doi: 10.1109/TBCAS.2017.2748158.
[12] David Holmes et al “Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry,” Lab Chip, 2009,9, 2881-2889 doi.org/10.1039/B910053A
[13] J. C. Chien, A.Ameri, E. C.Yeh,A. N. Killilea, M.Anwar, and A. M. Niknejad,"A high-throughput flow cytometry-on-a-CMOS platform for single-celldielectric spectroscopy at microwave frequencies," Lab Chip, vol. 18, no. 14, pp.2065-2076,Jul 10 2018,doi:10.1039/c8lc00299a.
[14] Harpaldas H, Arumugam S, Campillo Rodriguez C, Kumar BA, Shi V, Sia SK. Point-of-care diagnostics: recent developments in a pandemic age. Lab Chip. 2021 Nov 25;21(23):4517-4548. doi: 10.1039/d1lc00627d.
[15] Larkins MC, Thombare A. Point-of-Care Testing. [Updated 2023 May 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK592387/
[16] Burrow DT, Heggestad JT, Kinnamon DS, Chilkoti A. Engineering Innovative Interfaces for Point-of-Care Diagnostics. Curr Opin Colloid Interface Sci. 2023 Jun 8:101718. doi: 10.1016/j.cocis.2023.101718.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98955-
dc.description.abstract本論文提出一個用於細胞阻抗檢測的體外流式細胞儀,該流式細胞儀結合採用180奈米CMOS (互補式金屬氧化物半導體)製程的阻抗感測晶片,以及採用具生物相容性質的PDMS (polydimethylsiloxane, 聚二甲基矽氧烷) 所製成的微流道結構,本論文設計之阻抗感測晶片,包含晶片上的刺激訊號生成電路結構,可藉由調整外部控制電壓調整生成的刺激訊號頻率,另外也包含了晶片上的阻抗感測電路架構,晶片設計包含晶片上的跨阻放大器 (TIA),將待測物藉由微流道通道流過電極時的電流變化轉換為電壓變化,以及晶片上的差分放大器,用於扣除背景基線訊號,減少後端電路動態範圍的需求,並採用I/Q正交訊號進行阻抗解調變,取得待測物體之阻抗訊號。
本論文設計之晶片亦包含晶片上的感測電極,透過最小寬度為2微米寬度的晶片上電極,可以以小於細胞或模擬細胞之塑膠微珠直徑對細胞進行阻抗量測,提升對於目標物阻抗量測的空間解析度,能夠在一定程度上得知細胞的輪廓,本晶片也設計了包含多個電極尺寸以及多通道,以滿足不同需要量測的目標之需求,本論文提出之流式細胞儀主要刺激頻率操作在1 MHz,頻寬最高可至約3 MHz,用於I/Q解調的低通濾波頻率為100 kHz,跨阻放大器之回授電阻為200k歐姆,我們也提出了一套將微流道系統與CMOS晶片以及印刷電路(printed circuit board, PCB)板結合的方法,解決微流道系統與晶片結合的困難,本論文在模擬中對於懸浮在磷酸鹽緩衝生理鹽水(PBS) 1X 溶液中的10 μm 聚苯乙烯塑膠微珠,在刺激訊號 = 0.95 Vpp,1 MHz的情況下,在差動輸出的單端取得了~300 mV的訊號,訊雜比(SNR) ~ 43.5 dB. 對於懸浮在PBS 1X 溶液中的3 μm 聚苯乙烯塑膠微珠,在差動輸出的單端取得了~33 mV的訊號,SNR ~ 24.3 dB。
zh_TW
dc.description.abstractThis paper presents an in vitro flow cytometry system for cell impedance detection. The system integrates an impedance sensing chip fabricated using a 180 nm CMOS (Complementary Metal-Oxide-Semiconductor) process with a microfluidic structure made of PDMS (polydimethylsiloxane), a material known for its biocompatibility. The proposed impedance sensing chip includes an on-chip excitation signal generation circuit, where the frequency of the generated signal can be adjusted by tuning an external control voltage. The chip also incorporates an on-chip impedance sensing circuit, including a transimpedance amplifier (TIA) that converts current changes—caused by target particles passing through the microfluidic channel—into voltage changes, and a differential amplifier that suppresses background baseline signals to reduce the dynamic range requirements of subsequent circuits. The system performs impedance demodulation using in-phase and quadrature-phase (I/Q) signals to extract the impedance information of the target.
The chip also includes on-chip sensing electrodes, with minimum electrode widths of 2 μm, allowing impedance measurement of cells or polystyrene beads with diameters larger than the electrode width. This improves the spatial resolution of impedance detection, enabling partial profiling of the cell shape. Multiple electrode sizes and multi-channel structures are implemented to meet the measurement requirements of different targets. The proposed flow cytometry system operates mainly at an excitation frequency of 1 MHz, with a maximum bandwidth of approximately 3 MHz. The low-pass filter used in I/Q demodulation has a cutoff frequency of 100 kHz, and the feedback resistor of the TIA is 200 kΩ.
Additionally, we propose a method for integrating the microfluidic system with the CMOS chip and a printed circuit board (PCB), addressing the challenges of aligning and bonding the microfluidic structure to the chip. In simulation, for a 10 μm polystyrene bead suspended in 1× phosphate-buffered saline (PBS), with an excitation signal of 0.95 Vpp at 1 MHz, a single-ended signal of approximately 300 mV was obtained from the differential output, with a signal-to-noise ratio (SNR) of approximately 43.5 dB. For a 3 μm polystyrene bead under the same conditions, a single-ended output of approximately 33 mV was observed, with an SNR of approximately 24.3 dB.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:25:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:25:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Point-of-Care Diagnostics 1
1.2 Introduction to Lab-on-a-Chip 4
1.3 Flow Cytometry 6
1.3.1 Optical and Fluidic System 7
1.3.2 Electrostatic cell sorting 9
1.4 Impedance-Based Flow Cytometry 10
Chapter 2 CMOS / Microfluidics Impedance Sensing System 14
2.1 Proposed Electrode Sensing Concept 14
2.2 Proposed System Concept 16
2.3 Build Microfluidic Channel and Bead RC Model 19
2.4 Frequency Determination 23
2.5 Proposed System Block Diagram 30
2.5.1 Excitation Signal Chain 30
2.5.2 Readout Signal Chain 31
2.6 Design of Ring VCO and Divider 32
2.7 Design of TX Low-Pass Filter 35
2.8 Design of Transimpedance Amplifier 37
2.8.1 Design of OTA Used in Transimpedance Amplifier 37
2.8.2 Design of Transimpedance Amplifier 40
2.9 Design of Pseudo-Differential Difference Amplifier 40
2.10 Design of Mixer 42
2.11 Design of RX Differential Low-Pass Filter 43
2.12 Design of RX Buffer 45
2.13 System Difference Mode Simulation 46
2.14 System Impedance Mode Simulation 47
2.15 System Simulation 48
2.16 Chip Photo 51
2.17 PCB Board Design 51
2.18 Microfluidics and Chip Integration 54
2.18.1 Fabrication of a Coplanar Surface of Chip and PCB 54
2.18.2 Epoxy Planarization of the PCB 55
2.18.3 Wire Bond Protection 58
2.18.4 Microfluidic System 60
2.18.5 Assembly of the Microfluidic System and the PCB 61
2.19 System Integration 61
Chapter 3 Conclusion 63
Chapter 4 Future Works 64
REFERENCE 65
-
dc.language.isoen-
dc.subject微流道zh_TW
dc.subject微流道系統zh_TW
dc.subject細胞儀zh_TW
dc.subject阻抗檢測zh_TW
dc.subject流式細胞儀zh_TW
dc.subjectMicrofluidicen
dc.subjectImpedance Sensing Systemen
dc.subjectMicrofluidic systemen
dc.subjectCytometryen
dc.subjectFlow Cytometryen
dc.title應用於體外流式細胞儀之結合積體電路與微流道之細胞阻抗檢測系統zh_TW
dc.titleA CMOS/Microfluidic Cell Impedance Sensing System for in vitro Flow Cytometry Applicationsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor簡俊超zh_TW
dc.contributor.coadvisorJun-Chau Chienen
dc.contributor.oralexamcommittee陳信樹;廖育德zh_TW
dc.contributor.oralexamcommitteeHsin-Shu Chen;Yu-Te Liaoen
dc.subject.keyword微流道系統,微流道,流式細胞儀,阻抗檢測,細胞儀,zh_TW
dc.subject.keywordMicrofluidic,Impedance Sensing System,Flow Cytometry,Cytometry,Microfluidic system,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202504324-
dc.rights.note未授權-
dc.date.accepted2025-08-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved