Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 元件材料與異質整合學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98952
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛景中zh_TW
dc.contributor.advisorJing-Jong Shyueen
dc.contributor.author王嫚瑩zh_TW
dc.contributor.authorMan-Ying Wangen
dc.date.accessioned2025-08-20T16:24:48Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-15-
dc.identifier.citation(1) Liu, J.; Han, G.; Zhao, D.; Lu, K.; Gao, J.; Chung, T.-S. Self-Standing and Flexible Covalent Organic Framework (COF) Membranes for Molecular Separation. Sci. Adv 2020, 6, 1–8. https://doi.org/eabb1110.
(2) Colson, J. W.; Dichtel, W. R. Rationally Synthesized Two-Dimensional Polymers. Nat Chem 2013, 5, 453–465. https://doi.org/10.1038/NCHEM.1628.
(3) Diercks, C. S.; Yaghi, O. M. The Atom, the Molecule, and the Covalent Organic Framework. Science (1979) 2017, 355 (6328). https://doi.org/10.1126/science.aal1585.
(4) Hailian, L.; Eddaoudi, M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature 1999, 402 (November), 276–279.
(5) Weckhuysen, B. M.; Yu, J. Recent Advances in Zeolite Chemistry and Catalysis. Chem. Soc. Rev 2015, 44, 7022. https://doi.org/10.1039/c5cs90100f.
(6) Hayashi, H.; C ˆ Otéot, A. P.; Furukawa, H.; Yaghi, O. M. Zeolite A Imidazolate Frameworks. Nature 2007, 6, 501–506. https://doi.org/10.1038/nmat1927.
(7) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science (1979) 2013, 341 (6149). https://doi.org/10.1126/science.1230444.
(8) Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Chemistry: Porous, Crystalline, Covalent Organic Frameworks. Science (1979) 2005, 310 (5751), 1166–1170. https://doi.org/10.1126/SCIENCE.1120411/SUPPL_FILE/COTE.SOM.PDF.
(9) Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Two-Dimensional Sp 2 Carbon-Conjugated Covalent Organic Frameworks. Science 357, 2017, 357 (673–676), 673–676. https://doi.org/10.1126/science.aan0202.
(10) Spitler, E. L.; Dichtel, W. R. Lewis Acid-Catalysed Formation of Two-Dimensional Phthalocyanine Covalent Organic Frameworks. Nat Chem 2010, 2, 672–677. https://doi.org/10.1038/NCHEM.695.
(11) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature 1999, 402 (6759), 276–279. https://doi.org/10.1038/46248.
(12) Donglin, J. Exploration of stable, crystalline, porous covalent organic frameworks. Mocular Science. https://phys.org/news/2015-09-exploration-stable-crystalline-porous-covalent.html (accessed 2023-09-25).
(13) Song, Y.; Sun, Q.; Aguila, B.; Ma, S. Opportunities of Covalent Organic Frameworks for Advanced Applications. Advanced Science 2019, 6 (2). https://doi.org/10.1002/ADVS.201801410.
(14) Rodríguez-San-Miguel, D.; Montoro, C.; Zamora, F. Covalent Organic Framework Nanosheets: Preparation, Properties and Applications. Chem Soc Rev 2020, 49 (8), 2291–2302. https://doi.org/10.1039/C9CS00890J.
(15) Ding, S. Y.; Wang, W. Covalent Organic Frameworks (COFs): From Design to Applications. Chem Soc Rev 2012, 42 (2), 548–568. https://doi.org/10.1039/C2CS35072F.
(16) Machado, T. F.; Serra, M. E. S.; Murtinho, D.; Valente, A. J. M.; Naushad, M. Covalent Organic Frameworks: Synthesis, Properties and Applications—An Overview. Polymers (Basel) 2021, 13 (6), 970. https://doi.org/10.3390/POLYM13060970.
(17) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Designed Synthesis of 3D Covalent Organic Frameworks. Science (1979) 2007, 316 (5822), 268–272. https://doi.org/10.1126/SCIENCE.1139915/ASSET/492C2461-565C-4ACA-819D-68D9D64F3D45/ASSETS/GRAPHIC/316_268_F4.JPEG.
(18) Furukawa, H.; Yaghi, O. M. Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc. 2009, 131, 8875–8883. https://doi.org/10.1021/ja9015765.
(19) Huang, N.; Chen, X.; Krishna, R.; Jiang, D. Two-Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channel-Wall Functionalization. Angewandte Chemie - International Edition 2015, 54 (10), 2986–2990. https://doi.org/10.1002/ANIE.201411262.
(20) Xu, H.; Chen, X.; Wu, D.; ang Wu, Y.; Liu, H.; Gu, C.; Jiang, D.; Xu, F.; Xu, H.; Chen, X.; Wu, Y.; Gu, D. C.; Liu, H. Radical Covalent Organic Frameworks: A General Strategy to Immobilize Open-Accessible Polyradicals for High-Performance Capacitive Energy Storage. Angew.Chem 2015, 127 (6918–6922), 6918–5922. https://doi.org/10.1002/ange.201501706.
(21) Deblase, C. R.; Silberstein, K. E.; Truong, T.-T.; Abruñ, H. D.; Dichtel, W. R. β-Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage. J. Am. Chem. Soc 2013, 135. https://doi.org/10.1021/ja409421d.
(22) Linyi, B.; Soo ZengFiona, P.; Wei Qi, L. Nanoscale Covalent Organic Frameworks as Smart Carriers for Drug Delivery. Chem. Commun 2016, 52, 4128–4131. https://doi.org/10.1039/c6cc00853d.
(23) Fang, Q.; Wang, J.; Gu, S.; Kaspar, R. B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y. 3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery. J. Am. Chem. Soc 2015, 137, 2023. https://doi.org/10.1021/jacs.5b04147.
(24) Zhang, M.; Lu, M.; Lang, Z.; Liu, J.; Liu, M.; Chang, J.; Li, L.; Shang, L.; Wang, M.; Li, S.; Lan, Y. Semiconductor/Covalent‐Organic‐Framework Z‐Scheme Heterojunctions for Artificial Photosynthesis. Angewandte Chemie 2020, 132 (16), 6562–6568. https://doi.org/10.1002/ange.202000929.
(25) Feldblyum, J. I.; McCreery, C. H.; Andrews, S. C.; Kurosawa, T.; Santos, E. J. G.; Duong, V.; Fang, L.; Ayzner, A. L.; Bao, Z. Few-Layer, Large-Area, 2D Covalent Organic Framework Semiconductor Thin Films. Chemical Communications 2015, 51 (73), 13894–13897. https://doi.org/10.1039/C5CC04679C.
(26) Keller, N.; Bessinger, D.; Reuter, S.; Calik, M.; Ascherl, L.; Hanusch, F. C.; Auras, F.; Bein, T. Oligothiophene-Bridged Conjugated Covalent Organic Frameworks. J Am Chem Soc 2017, 139 (24), 8194–8199. https://doi.org/10.1021/JACS.7B01631/ASSET/IMAGES/LARGE/JA-2017-016315_0004.JPEG.
(27) Cao, X.; Ge, L.; Ning, J.; Li, S.; Hao, L. Optical Absorptions of Benzotrithiophene-Based Covalent Organic Frameworks Evolving with Amine-Building Blocks. 2021 3rd International Academic Exchange Conference on Science and Technology Innovation, IAECST 2021 2021, 1177–1181. https://doi.org/10.1109/IAECST54258.2021.9695644.
(28) Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. An Azine-Linked Covalent Organic Framework. J. Am. Chem. Soc 2013, 135 (17310–17313), 17310–17313. https://doi.org/10.1021/ja4103293.
(29) Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. ARTICLE A Tunable Azine Covalent Organic Framework Platform for Visible Light-Induced Hydrogen Generation. Nat Commun 2015. https://doi.org/10.1038/ncomms9508.
(30) Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO2 Reduction in Water. Science (1979) 2015, 349 (6253), 1208–1213. https://doi.org/10.1126/SCIENCE.AAC8343.
(31) Li, M.; Peng, Y.; Yan, F.; Li, C.; He, Y.; Lou, Y.; Ma, D.; Li, Y.; Shi, Z.; Feng, S. A Cage-Based Covalent Organic Framework for Drug Delivery. New Journal of Chemistry 2021, 45 (6), 3343–3348. https://doi.org/10.1039/D0NJ04941G.
(32) Amombo Noa, F. M.; Grape, E. S.; Brü, S. M.; Cheung, O.; Inge, A. K.; Mckenzie, C. J.; Hrströ, L. O. ̈. Metal−Organic Frameworks with Hexakis(4-Carboxyphenyl)Benzene: Extensions to Reticular Chemistry and Introducing Foldable Nets. Cite This: J. Am. Chem. Soc 2020, 142, 9471–9481. https://doi.org/10.1021/jacs.0c02984.
(33) Tiwari, S.; Bijwe, J. Surface Treatment of Carbon Fibers-A Review. Procedia Technology 2014, 14, 505–512. https://doi.org/10.1016/j.protcy.2014.08.064.
(34) Yang, Y.; Zhang, Y.; Zheng, H.; Zhang, B.; Zuo, Q.; Fan, K. Functionalized Dual Modification of Covalent Organic Framework for Efficient and Rapid Trace Heavy Metals Removal from Drinking Water. Chemosphere 2022, 290 (133215). https://doi.org/10.1016/j.chemosphere.2021.133215.
(35) Tan, W.; Zhou, B.; Lou, H.; Chu, L.; Zhou, W.; Dou, J.; Teng, X. Materials for Biology and Medicine A Diselenium-Bridged Covalent Organic Framework with PH/GSH/Photo-Triple-Responsiveness for Highly Controlled Drug Release toward Joint Chemo/Photothermal/Chemodynamic Cancer Therapy A Diselenium-Bridged Covalent Organic. J. Mater. Chem. B 2022, 10, 7955–7966. https://doi.org/10.1039/d2tb01015a.
(36) Rezvani Alanagh, H.; Iman Rostami, A.; Mohammad Taleb, B.; Xiaoqing Gao, A.; Yadong Zhang, A.; Muqsit Khattak, A.; He, X.; Li, L.; Tang, Z. Covalent Organic Framework Membrane for Size Selective Release of Small Molecules and Peptide in Vitro. J. Mater. Chem. B 2020, 8, 7899–7903. https://doi.org/10.1039/d0tb01416h.
(37) Liu, S.; Hu, C.; Liu, Y.; Zhao, X.; Pang, M.; Lin, J. One-Pot Synthesis of DOX@Covalent Organic Framework with Enhanced Chemotherapeutic Efficacy. Chem. Eur.J 2019, 25 (4315–4319), 4315–4319. https://doi.org/10.1002/chem.201806242.
(38) Lee, S.; Park, C. S.; Yoon, H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022, 23 (9). https://doi.org/10.3390/ijms23094949.
(39) Spitler, E. L.; Koo, B. T.; Novotney, J. L.; Colson, J. W.; Uribe-Romo, F. J.; Gutierrez, G. D.; Clancy, P.; Dichtel, W. R. A 2D Covalent Organic Framework with 4.7-Nm Pores and Insight into Its Interlayer Stacking. J. Am. Chem. Soc 2011, 133. https://doi.org/10.1021/ja206242v.
(40) Knighten, G. V; Weber, A.; Turner, R. D.; Smith, R. W.; Shen, Y. R.; Fitzgibbon, R.; Lax, B.; Evans, C. L.; Xie, X. S.; Dudovich, N.; Yelin, D.; Silberberg, Y.; Dudovich, N.; Yelin, D.; Silberberg, Y.; Caster, A. G.; Leone, S. R.; Zhao, H.; Cicerone, M. T.; Marko, K. A.; Rimai, L.; Otto, C.; Greve, J.; Hamaguchi, H.; Yakovlev, V. V; Bonn, M.; Muller, M.; Holzapfel, W.; Zinth, W.; Kaiser, W.; Lang, T.; Motzkus, M.; Roy, S.; Meyer, T. R.; Gord, J. R.; Dasari, R.; Feld, M.; Sperry, J. F.; Reintjes, J.; Manuccia, T. J.; Holton, G. R.; Xie, X. S.; Chen, S.; Dlott, D. D. Designed Synthesis of 3D Covalent. Science (1979) 2007, 13 (April), 268–273.
(41) Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klö, C.; O’keeffe, M.; Yaghi, O. M. A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. J. Am. Chem. Soc 2009, 131 (13), 4570–4571. https://doi.org/10.1021/ja8096256.
(42) Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki-Miyaura Coupling Reaction. J Am Chem Soc 2011, 133 (49), 19816–19822. https://doi.org/10.1021/JA206846P.
(43) Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline Covalent Organic Frameworks with Hydrazone Linkages-Tris(4-Formylphenyl)Benzene (Blue) to Form COF-42 and COF-43 (Cavity Sizes Are Indicated). J. Am. Chem. Soc 2011, 133, 37. https://doi.org/10.1021/ja204728y.
(44) Bojdys, M. J.; Jeromenok, J.; Thomas, A.; Antonietti, M. Rational Extension of the Family of Layered, Covalent, Triazine-Based Frameworks with Regular Porosity. Adv. Mater 2010, 22, 2202–2205. https://doi.org/10.1002/adma.200903436.
(45) Zeng, Y.; Zou, R.; Luo, Z.; Zhang, H.; Yao, X.; Ma, X.; Zou, R.; Zhao, Y. Covalent Organic Frameworks Formed with Two Types of Covalent Bonds Based on Orthogonal Reactions. J Am Chem Soc 2015, 137 (3), 1020–1023. https://doi.org/10.1021/JA510926W/SUPPL_FILE/JA510926W_SI_001.PDF.
(46) Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem Rev 2020, 120 (16), 8814–8933. https://doi.org/10.1021/acs.chemrev.9b00550.
(47) Kuhn, P.; Antonietti, M.; Thomas, A. Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angewandte Chemie - International Edition 2008, 47 (18), 3450–3453. https://doi.org/10.1002/ANIE.200705710;PAGEGROUP:STRING:PUBLICATION.
(48) Goldstein, E. Ueber Die Reflexion Electrischer Strahlen. Ann Phys 1882, 251 (2), 246–254. https://doi.org/10.1002/andp.18822510205.
(49) Thomson, J. J. Cathode Rays. Phil. Mag. 1897, 44 (5), 269–316.
(50) Smith George E. J.J Thomson and The Electron : 1897-1899 An Introduction. The chemical educator 1997, 2 (6), 1–42.
(51) Millikan, R. A. Rays Of Positive Electricity And Their Application To Chemical Analysis; 1921; Vol. 40. https://doi.org/10.1126/science.40.1022.174.a.
(52) Griffiths, I. W. J. J. Thomson — the Centenary of His Discovery of the Electron and of His Invention of Mass Spectrometry. Rapid Communications in Mass Spectrometry 1997, 11 (1), 2–16. https://doi.org/10.1002/(SICI)1097-0231(19970115)11:1<2::AID-RCM768>3.0.CO;2-V.
(53) Burlingame, A. L.; Whitney, J. O.; Russell, D. H. Mass Spectrometry:A Textbook, Third Edition; 1984; Vol. 56. https://doi.org/10.1021/ac00269a027.
(54) Hoffmann, E.; Stroobant, V. Mass Spectrometry Principles and Applications. J Chromatogr A 2016, 1040 (2), 1–389.
(55) HERZOG, R. F. K.; VIEHBOCK, F. P. Ion Source for Mass Spectrography. Phys. Rev. 1949, 76, 855. https://doi.org/https://doi.org/10.1103/PhysRev.76.855.
(56) Bhattacharjee, S. Introduction to Focused Ion Beams Instrumentation, Theory, Techniques and Practice; 2005. https://doi.org/10.1201/b16235-20.
(57) Vickerman, J. C. Impact of Mass Spectrometry in Surface Analysis. Analyst 1994, 119 (4), 513–523. https://doi.org/10.1039/AN9941900513.
(58) Kftiwil, S.; Cq, J. M.; Lbit, A.; Sc, T. Analysis of Monomolecular Layers of Solids by the Static Method of Secondary Ion Mass Spectroscopy (SIMS). Radioanalytical Chemistry 1972, 12, 95–99.
(59) Bertrand, P.; Lu-Tao, W. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). Microbeam and Nanobeam Analysis 1996, 167–182. https://doi.org/10.1007/978-3-7091-6555-3_8.
(60) Chait, B. T.; Standing, K. G. A Time-of-Flight Mass Spectrometer for Measurement of Secondary Ion Mass Spectra. International Journal of Mass Spectrometry and Ion Physics 1981, 40 (2), 185–193. https://doi.org/10.1016/0020-7381(81)80041-1.
(61) JOHN, M. Organic Chemistry: A Tenth Edition; 2023; Vol. 16.
(62) Verentchikov, A. N.; Yavor, M. I.; Hasin, Y. I.; Gavrik, M. A. Multireflection Planar Time-of-Flight Mass Analyzer. I: An Analyzer for a Parallel Tandem Spectrometer. Technical Physics 2005, 50 (1), 73–81. https://doi.org/10.1134/1.1854827/METRICS.
(63) Klitzke, C. F.; Corilo, Y. E.; Siek, K.; Binkley, J.; Patrick, J.; Eberlin, M. N. Petroleomics by Ultrahigh-Resolution Time-of-Flight Mass Spectrometry. Energy and Fuels 2012, 26 (9), 5787–5794. https://doi.org/10.1021/EF300961C/ASSET/IMAGES/LARGE/EF-2012-00961C_0009.JPEG.
(64) Toyoda, M. Development of Multi-Turn Time-of-Flight Mass Spectrometers and Their Applications. European Journal of Mass Spectrometry 2010, 16 (3), 397–406. https://doi.org/10.1255/EJMS.1076.
(65) Physical Electronics, Inc. (PHI). TOF-SIMS Surface Analysis Technique _ Physical Electronics (PHI). Physical Electronics, Inc. (PHI). http://www.phi.com/surface-analysis-techniques/tof-sims.html.
(66) Mahoney, C. M. Cluster Secondary Ion Mass Spectrometry: Principles and Applications; John Wiley and Sons, 2013. https://doi.org/10.1002/9781118589335,.
(67) Vickerman, J. C.; Gilmore, I. S. Surface Analysis - The Principal Techniques: Second Edition; 2009. https://doi.org/10.1002/9780470721582.
(68) Sillon, N.; Baptist, R. Micromachined Mass Spectrometer. Sens Actuators B Chem 2002, 83 (1–3), 129–137. https://doi.org/10.1016/S0925-4005(01)01070-X.
(69) Shen, Y.; Howard, L.; Yu, X. Y. Secondary Ion Mass Spectral Imaging of Metals and Alloys. Materials 2024, 17 (2), 528. https://doi.org/10.3390/MA17020528.
(70) Postawa, Z. Sputtering Simulations of Organic Overlayers on Metal Substrates by Monoatomic and Clusters Projectiles. Appl Surf Sci 2004, 231–232, 22–28. https://doi.org/10.1016/j.apsusc.2004.03.019.
(71) Cheng, J.; Kozole, J.; Hengstebeck, R.; Winograd, N. Direct Comparison of Au3+ and C60+ Cluster Projectiles in SIMS Molecular Depth Profiling. J Am Soc Mass Spectrom 2007, 18 (3), 406–412. https://doi.org/10.1016/J.JASMS.2006.10.017/METRICS.
(72) Harvey, S. P.; Zhang, F.; Palmstrom, A.; Luther, J. M.; Zhu, K.; Berry, J. J. Mitigating Measurement Artifacts in TOF-SIMS Analysis of Perovskite Solar Cells. ACS Appl Mater Interfaces 2019, 11 (34), 30911–30918. https://doi.org/10.1021/ACSAMI.9B09445/ASSET/IMAGES/LARGE/AM9B09445_0009.JPEG.
(73) Hou, C. H.; Hung, S. H.; Jhang, L. J.; Chou, K. J.; Hu, Y. K.; Chou, P. T.; Su, W. F.; Tsai, F. Y.; Shieh, J.; Shyue, J. J. Validated Analysis of Component Distribution Inside Perovskite Solar Cells and Its Utility in Unveiling Factors of Device Performance and Degradation. ACS Appl Mater Interfaces 2020, 12 (20), 22730–22740. https://doi.org/10.1021/acsami.9b22492.
(74) Harvey, S. P.; Messinger, J.; Zhu, K.; Luther, J. M.; Berry, J. J. Investigating the Effects of Chemical Gradients on Performance and Reliability within Perovskite Solar Cells with TOF-SIMS. Adv Energy Mater 2020, 10 (26). https://doi.org/10.1002/AENM.201903674.
(75) Cheng, J.; Wucher, A.; Winograd, N. Molecular Depth Profiling with Cluster Ion Beams. Journal of Physical Chemistry B 2006, 110 (16), 8329–8336. https://doi.org/10.1021/JP0573341/ASSET/IMAGES/LARGE/JP0573341F00008.JPEG.
(76) Gillen, G.; Simons, D. S.; Williams, P. Molecular Ion Imaging and Dynamic Secondary Ion Mass Spectrometry of Organic Compounds. Anal Chem 1990, 62 (19), 2122–2130. https://doi.org/10.1021/AC00218A014/ASSET/AC00218A014.FP.PNG_V03.
(77) Mahoney, C. M. Cluster Secondary Ion Mass Spectrometry of Polymers and Related Materials. Mass Spectrom Rev 2010, 29 (2), 247–293. https://doi.org/10.1002/MAS.20233;WGROUP:STRING:PUBLICATION.
(78) Mahoney, C. M. Cluster Secondary Ion Mass Spectrometry: Principles and Applications. Cluster Secondary Ion Mass Spectrometry: Principles and Applications 2013. https://doi.org/10.1002/9781118589335;JOURNAL:JOURNAL:BOOKS;WGROUP:STRING:PUBLICATION.
(79) Widiatmika, K. P. Fundamentals of Nanoscale Film Analysis; 2007; Vol. 16.
(80) Greene, J. E. Review Article: Tracing the Recorded History of Thin-Film Sputter Deposition: From the 1800s to 2017. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2017, 35 (5), 43. https://doi.org/10.1116/1.4998940/244891.
(81) Biersack, J. P. Computer Simulations of Sputtering. Nucl Instrum Methods Phys Res B 1987, 27 (1), 21–36. https://doi.org/10.1016/0168-583X(87)90005-X.
(82) Liau, Z. L.; Tsaur, B. Y.; Mauer, J. W. Influence of Atomic Mixing and Preferential Sputtering on Depth Profiles and Interfaces. J Vac Sci Technol 1979, 16 (2), 121–127. https://doi.org/10.1116/1.569883.
(83) Hofmann, S. Atomic Mixing, Surface Roughness and Information Depth in High‐resolution AES Depth Profiling of a GaAs/AlAs Superlattice Structure. Surface and Interface Analysis 1994, 21 (9), 673–678. https://doi.org/10.1002/SIA.740210912;PAGE:STRING:ARTICLE/CHAPTER.
(84) LIAU, Z. L.; MAYER, J. W. Ion Bombardment Effects on Material Composition. 1980, 18, 17–50. https://doi.org/10.1016/B978-0-12-341818-0.50008-5.
(85) Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M. Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks. Acc Chem Res 2005, 38 (3), 176–182. https://doi.org/10.1021/AR020022L/SUPPL_FILE/AR020022L_SA.PDF.
(86) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular Synthesis and the Design of New Materials. Nature 2003, 423 (6941), 705–714. https://doi.org/10.1038/nature01650.
(87) Wuttke, S. Introduction to Reticular Chemistry. Metal–Organic Frameworks and Covalent Organic Frameworks By Omar M. Yaghi, Markus J. Kalmutzki, and Christian S. Diercks. Angewandte Chemie International Edition 2019, 58 (40), 14024–14024. https://doi.org/10.1002/ANIE.201906230.
(88) Xiao, J.; Chen, J.; Liu, J.; Ihara, H.; Qiu, H. Synthesis Strategies of Covalent Organic Frameworks: An Overview from Nonconventional Heating Methods and Reaction Media. Green Energy & Environment 2023, 8 (6), 1596–1618. https://doi.org/10.1016/J.GEE.2022.05.003.
(89) Huang, T.; Zhang, W.; Yang, S.; Wang, L.; Yu, G. Imine-Linked Covalent Organic Frameworks: Recent Advances in Design, Synthesis, and Application. SmartMat 2024, 5 (6), e1309. https://doi.org/10.1002/SMM2.1309;SUBPAGE:STRING:FULL.
(90) Zhang, W.; Li, C.; Yuan, Y. P.; Qiu, L. G.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. Highly Energy- and Time-Efficient Synthesis of Porous Triazine -Based Framework: Microwave-Enhanced Ionothermal Polymerization and Hydrogen Uptake. J Mater Chem 2010, 20 (31), 6413–6415. https://doi.org/10.1039/C0JM01392G.
(91) Zhang, W.; Liang, F.; Li, C.; Qiu, L. G.; Yuan, Y. P.; Peng, F. M.; Jiang, X.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. Microwave-Enhanced Synthesis of Magnetic Porous Covalent Triazine-Based Framework Composites for Fast Separation of Organic Dye from Aqueous Solution. J Hazard Mater 2011, 186 (2–3), 984–990. https://doi.org/10.1016/J.JHAZMAT.2010.11.093.
(92) Mishra, B.; Alam, A.; Chakraborty, A.; Kumbhakar, B.; Ghosh, S.; Pachfule, P.; Thomas, A. Covalent Organic Frameworks for Photocatalysis. Advanced Materials 2024, 2413118. https://doi.org/10.1002/ADMA.202413118;REQUESTEDJOURNAL:JOURNAL:15214095;WGROUP:STRING:PUBLICATION.
(93) Wang, Z.; Zhang, S.; Chen, Y.; Zhang, Z.; Ma, S. Covalent Organic Frameworks for Separation Applications. Chem Soc Rev 2020, 49 (3), 708–735. https://doi.org/10.1039/C9CS00827F.
(94) Yusran, Y.; Li, H.; Guan, X.; Fang, Q.; Qiu, S. Covalent Organic Frameworks for Catalysis. EnergyChem 2020, 2 (3), 100035. https://doi.org/10.1016/J.ENCHEM.2020.100035.
(95) Li, R.; Chemcomm, /; Ghosh, P.; Banerjee, P. Drug Delivery Using Biocompatible Covalent Organic Frameworks (COFs) towards a Therapeutic Approach. Chemical Communications 2023, 59 (84), 12527–12547. https://doi.org/10.1039/D3CC01829F.
(96) Jiang, D.; Tan, V. G. W.; Gong, Y.; Shao, H.; Mu, X.; Luo, Z.; He, S. Semiconducting Covalent Organic Frameworks. Chem Rev 2025, 125, 6203–6308. https://doi.org/10.1021/ACS.CHEMREV.4C00950/ASSET/IMAGES/LARGE/CR4C00950_0047.JPEG.
(97) Yang, S. T.; Kim, J.; Cho, H. Y.; Kim, S.; Ahn, W. S. Facile Synthesis of Covalent Organic Frameworks COF-1 and COF-5 by Sonochemical Method. RSC Adv 2012, 2 (27), 10179–10181. https://doi.org/10.1039/C2RA21531D.
(98) Zeppuhar, A. N.; Rollins, D. S.; Huber, D. L.; Bazan-Bergamino, E. A.; Chen, F.; Evans, H. A.; Taylor, M. K. Linkage Transformations in a Three-Dimensional Covalent Organic Framework for High-Capacity Adsorption of Perfluoroalkyl Substances. ACS Appl Mater Interfaces 2023, 15, 55. https://doi.org/10.1021/ACSAMI.3C12826/ASSET/IMAGES/LARGE/AM3C12826_0006.JPEG.
(99) Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline Covalent Organic Frameworks with Hydrazone Linkages. J Am Chem Soc 2011, 133 (30), 11478–11481. https://doi.org/10.1021/JA204728Y/SUPPL_FILE/JA204728Y_SI_001.PDF.
(100) Prakash, K.; Deka, R.; Mobin, S. M. A Review on Covalent Organic Frameworks: Exploration of Their Growing Potential as Porous Materials in Photocatalytic Applications. Inorg Chem Front 2024, 11 (20), 6711–6752. https://doi.org/10.1039/D4QI01480D.
(101) Li, X. D.; Xie, Y. Y.; Zhang, H. D.; Huang, X. Y.; Liu, X. Y. Computational Design of Novel Highly Connected COFs for CH4/H2 Adsorption and Separation. Mater Today Commun 2024, 40, 109557. https://doi.org/10.1016/J.MTCOMM.2024.109557.
(102) Mu, X.; Cai, W.; Xiao, Y.; He, L.; Zhou, X.; Wang, H. J.; Guo, W.; Xing, W.; Song, L. A Novel Strategy to Prepare COFs Based BN Co-Doped Carbon Nanosheet for Enhancing Mechanical Performance and Fire Safety to PVA Nanocomposite. Compos B Eng 2020, 198, 108218. https://doi.org/10.1016/J.COMPOSITESB.2020.108218.
(103) Zhuang, Z.; Shi, H.; Kang, J.; Liu, D. An Overview on Covalent Organic Frameworks: Synthetic Reactions and Miscellaneous Applications. Mater Today Chem 2021, 22, 100573. https://doi.org/10.1016/j.mtchem.2021.100573.
(104) Vardhan, H.; Rummer, G.; Deng, A.; Ma, S. Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. Membranes 2023, Vol. 13, Page 696 2023, 13 (8), 696. https://doi.org/10.3390/MEMBRANES13080696.
(105) Kumar, S.; Ignacz, G.; Szekely, G. Synthesis of Covalent Organic Frameworks Using Sustainable Solvents and Machine Learning. Green Chemistry 2021, 23 (22), 8932–8939. https://doi.org/10.1039/D1GC02796D.
(106) Zhang, Q.; Huang, Y.; Dai, Z.; Li, Y.; Li, Z.; Lai, R.; Wei, F.; Shao, F. Covalent Organic Framework Membranes: Synthesis Strategies and Separation Applications. ACS Appl Mater Interfaces 2025, 17 (19), 27605–27628. https://doi.org/10.1021/ACSAMI.5C02556/ASSET/IMAGES/LARGE/AM5C02556_0017.JPEG.
(107) Qu, Y.; Zha, Y.; Du, X.; Xu, S.; Zhang, M.; Xu, L.; Jia, H. Interfacial Polymerization of Self-Standing Covalent Organic Framework Membranes at Alkane/Ionic Liquid Interfaces for Dye Separation. ACS Appl Polym Mater 2022, 4 (10), 7528–7536. https://doi.org/10.1021/ACSAPM.2C01209/ASSET/IMAGES/LARGE/AP2C01209_0008.JPEG.
(108) Liu, M.; Liu, Y.; Dong, J.; Bai, Y.; Gao, W.; Shang, S.; Wang, X.; Kuang, J.; Du, C.; Zou, Y.; Chen, J.; Liu, Y. Two-Dimensional Covalent Organic Framework Films Prepared on Various Substrates through Vapor Induced Conversion. Nat Commun 2022, 13 (1), 1–9. https://doi.org/10.1038/s41467-022-29050-9.
(109) Raby-Buck, S. E.; Devlin, J.; Gupta, P.; Battilocchio, C.; Baumann, M.; Polyzos, A.; Slater, A. G.; Browne, D. L. Continuous Flow Chemistry for Molecular Synthesis. Nature Reviews Methods Primers 2025, 5 (1), 1–19. https://doi.org/10.1038/s43586-025-00414-x.
(110) Singh, A.; Gogoi, R.; Sharma, K.; Kumar, R.; Siril, P. F. Continuous Flow Synthesis of Disordered Covalent Organic Framework for Ultra-High Removal of Industrial Pollutants in Flow. Sep Purif Technol 2023, 307, 122739. https://doi.org/10.1016/J.SEPPUR.2022.122739.
(111) Bhagwandin, D. D.; Dunlap, J. H.; Tran, L. D.; Reidell, A.; Austin, D.; Putnam-Neeb, A. A.; Loveday, M.; Rao, R.; Baldwin, L. A.; Glavin, N. R. Covalent Organic Framework Crystallization Using a Continuous Flow Packed-Bed Reactor. CrystEngComm 2023, 26 (1), 27–31. https://doi.org/10.1039/D3CE01030A.
(112) Li, Y.; Wu, Q.; Guo, X.; Zhang, M.; Chen, B.; Wei, G.; Li, X.; Li, X.; Li, S.; Ma, L. Laminated Self-Standing Covalent Organic Framework Membrane with Uniformly Distributed Subnanopores for Ionic and Molecular Sieving. Nat Commun 2020, 11 (1), 1–9. https://doi.org/10.1038/s41467-019-14056-7.
(113) Tao, Y.; Ji, W.; Ding, X.; Han, B. H. Exfoliated Covalent Organic Framework Nanosheets. J Mater Chem A Mater 2021, 9 (12), 7336–7365. https://doi.org/10.1039/D0TA12122C.
(114) Chen, L.; Huang, M.; Chen, B.; Gong, C.; Li, N.; Cheng, H.; Chen, Y.; Peng, Y.; Xu, G. Two-Dimensional Covalent Organic Framework Nanosheets: Synthesis and Energy-Related Applications. Chinese Chemical Letters 2022, 33 (6), 2867–2882. https://doi.org/10.1016/J.CCLET.2021.10.060.
(115) Luo, B.; Zhang, Y.; An, P.; Lan, F.; Wu, Y. Covalent Organic Framework Nanosheet Anchored with Highly Dispersed Au Nanoparticles as a Novel Nanoprobe for DNA Methylation Detection. J Colloid Interface Sci 2022, 626, 241–250. https://doi.org/10.1016/J.JCIS.2022.06.162.
(116) Tao, Y.; Ji, W.; Ding, X.; Han, B. H. Exfoliated Covalent Organic Framework Nanosheets. J Mater Chem A Mater 2021, 9 (12), 7336–7365. https://doi.org/10.1039/D0TA12122C.
(117) Wang, H.; Zeng, Z.; Xu, P.; Li, L.; Zeng, G.; Xiao, R.; Tang, Z.; Huang, D.; Tang, L.; Lai, C.; Jiang, D.; Liu, Y.; Yi, H.; Qin, L.; Ye, S.; Ren, X.; Tang, W. Recent Progress in Covalent Organic Framework Thin Films: Fabrications, Applications and Perspectives. Chem Soc Rev 2019, 48 (2), 488–516. https://doi.org/10.1039/C8CS00376A.
(118) Guan, Q.; Wang, G. B.; Zhou, L. Le; Li, W. Y.; Dong, Y. Bin. Nanoscale Covalent Organic Frameworks as Theranostic Platforms for Oncotherapy: Synthesis, Functionalization, and Applications. Nanoscale Adv 2020, 2 (9), 3656–3733. https://doi.org/10.1039/D0NA00537A.
(119) Wang, J.; Li, N.; Xu, Y.; Pang, H. Frontispiece: Two-Dimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry. Chemistry – A European Journal 2020, 26 (29), 6402–6422. https://doi.org/10.1002/CHEM.202082964.
(120) Yao, L.; Ma, C.; Sun, L.; Zhang, D.; Chen, Y.; Jin, E.; Song, X.; Liang, Z.; Wang, K. X. Highly Crystalline Polyimide Covalent Organic Framework as Dual-Active-Center Cathode for High-Performance Lithium-Ion Batteries. J Am Chem Soc 2022, 144 (51), 23534–23542. https://doi.org/10.1021/jacs.2c10534.
(121) Huang, W. H.; Li, X. M.; Yang, X. F.; Zhang, X. X.; Wang, H. H.; Wang, H. The Recent Progress and Perspectives on Metal- And Covalent-Organic Framework Based Solid-State Electrolytes for Lithium-Ion Batteries. Mater Chem Front 2021, 5 (9), 3593–3613. https://doi.org/10.1039/d0qm00936a.
(122) Zhang, Y.; Sheng, J.; Zhai, F.; Wang, X.; Chen, L.; Shi, C.; Chen, L.; He, L.; Bai, R.; Xie, J.; Chai, Z.; Diwu, J. Pioneering Iodine-125-Labeled Nanoscale Covalent Organic Frameworks for Brachytherapy. Bioconjug Chem 2021, 32 (4), 755–762. https://doi.org/10.1021/ACS.BIOCONJCHEM.1C00040/ASSET/IMAGES/LARGE/BC1C00040_0004.JPEG.
(123) Shen, X. ran; Wang, L. long; Li, H. jie; Zhang, H. li; Liu, J. wei; Zhou, C. zhe; Xu, Y.; Zhao, H. Z. Silver-Coordinated Covalent Organic Framework Membrane for Anti-Fouling Molecular Separation. J Memb Sci 2025, 718, 123695. https://doi.org/10.1016/J.MEMSCI.2025.123695.
(124) Xu, H.; Xia, S.; Li, C.; Li, Y.; Xing, W.; Jiang, Y.; Chen, X. Programming Tetrathiafulvalene-Based Covalent Organic Frameworks for Promoted Photoinduced Molecular Oxygen Activation. Angewandte Chemie - International Edition 2024, 63 (29), e202405476. https://doi.org/10.1002/ANIE.202405476;WGROUP:STRING:PUBLICATION.
(125) Zadehnazari, A.; Auras, F.; Altaf, A. A.; Zarei, A.; Khosropour, A.; Amirjalayer, S.; Abbaspourrad, A. Recycling E-Waste into Gold-Loaded Covalent Organic Framework Catalysts for Terminal Alkyne Carboxylation. Nature Communications 2024 15:1 2024, 15 (1), 1–17. https://doi.org/10.1038/s41467-024-55156-3.
(126) Wang, S.; Han, X.; Zhang, Y.; Tian, N.; Ma, T.; Huang, H. Inside‐and‐Out Semiconductor Engineering for CO 2 Photoreduction: From Recent Advances to New Trends . Small Struct 2021, 2 (1). https://doi.org/10.1002/sstr.202000061.
(127) Lan, X.; Li, H.; Liu, Y.; Zhang, Y.; Zhang, T.; Chen, Y. Covalent Organic Framework with Donor1-Acceptor-Donor2 Motifs Regulating Local Charge of Intercalated Single Cobalt Sites for Photocatalytic CO2 Reduction to Syngas. Angewandte Chemie International Edition 2024, 63 (31), e202407092. https://doi.org/10.1002/ANIE.202407092.
(128) Luo, B.; Chen, Y.; Zhang, Y.; Huo, J. Benzotrithiophene and Triphenylamine Based Covalent Organic Frameworks as Heterogeneous Photocatalysts for Benzimidazole Synthesis. J Catal 2021, 402, 52–60. https://doi.org/10.1016/J.JCAT.2021.08.005.
(129) Zhou, F.; Fang, Y.; Deng, C.; Zhang, Q.; Wu, M.; Shen, H. H.; Tang, Y.; Wang, Y. Templated Assembly of PH-Labile Covalent Organic Framework Hierarchical Particles for Intracellular Drug Delivery. Nanomaterials 2022, 12 (17). https://doi.org/10.3390/nano12173055.
(130) Gillen, G.; Roberson, S. Preliminary Evaluation of an SF5 Polyatomic Primary Ion Beam for Analysis of Organic Thin Films by Secondary Ion Mass Spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 1303–1312. https://doi.org/10.1002/(SICI)1097-0231(19981015)12:19<1303::AID-RCM330>3.0.CO;2-7.
(131) You, Y.-W.; Chang, H.-Y.; Lin, W.-C.; Kuo, C.-H.; Lee, S.-H.; Kao, W.-L.; Yen, G.-J.; Chang, C.-J.; Liu, C.-P.; Huang, C.-C.; Liao, H.-Y.; Shyue, J.-J. Molecular Dynamic-Secondary Ion Mass Spectrometry (D-SIMS) Ionized by Co-Sputtering with C 60 + and Ar +. Rapid Commun. Mass Spectrom 2011, 25, 2897–2904. https://doi.org/10.1002/rcm.5181.
(132) Wehbe, N.; Houssiau, L. Comparative Study of the Usefulness of Low Energy Cs Ions for Depth Profiling Amino-Acid and Sugar Films. Anal. Chem. 2010, 82 (24), 10052–10059. https://doi.org/10.1021/ac101696c.
(133) Hill, R.; Blenkinsopp, P.; Barber, A.; Everest, C. The Development of a Range of C60 Ion Beam Systems. Appl Surf Sci 2006, 252 (19), 7304–7307. https://doi.org/10.1016/J.APSUSC.2006.02.211.
(134) Kollmer, F. Cluster Primary Ion Bombardment of Organic Materials. Appl Surf Sci 2004, No. 231–232, 153–158. https://doi.org/10.1016/j.apsusc.2004.03.101.
(135) Davies, N.; Weibel, D. E.; Blenkinsopp, P.; Lockyer, N.; Hill, R.; Vickerman, J. C. Development and Experimental Application of a Gold Liquid Metal Ion Source. Appl Surf Sci 2003, No. 203–204, 223–227.
(136) Passarelli, M. K.; Ewing, A. G. Single-Cell Imaging Mass Spectrometry. Curr Opin Chem Biol 2013, 17, 854–859. https://doi.org/10.1016/j.cbpa.2013.07.017.
(137) Sheraz neé Rabbani, S.; Barber, A.; Fletcher, J. S.; Lockyer, N. P.; Vickerman, J. C. Enhancing Secondary Ion Yields in Time of Flight-Secondary Ion Mass Spectrometry Using Water Cluster Primary Beams. 2013. https://doi.org/10.1021/ac4013732.
(138) Paruch, R. J.; Garrison, B. J.; Mlynek, M.; Postawa, Z. On Universality in Sputtering Yields Due to Cluster Bombardment. J. Phys. Chem. Lett 2014, 5, 52. https://doi.org/10.1021/jz501545t.
(139) Sheraz neé Rabbani, S.; Berrueta Razo, I.; Kohn, T.; Lockyer, N. P.; Vickerman, J. C. Enhancing Ion Yields in Time-of-Flight-Secondary Ion Mass Spectrometry: A Comparative Study of Argon and Water Cluster Primary Beams. American Chemical Society 2015, 87, 2367–2374. https://doi.org/10.1021/ac504191m.
(140) Yu, Y.; Lin, W.-C.; Wang, W.-B.; Iida, S.-I.; Chen, S.-Z.; Liu, C.-Y.; Kuo, C.-H.; Lee, S.-H.; Kao, W.-L.; Yen, G.-J.; You, Y.-W.; Liu, C.-P.; Jou, J.-H.; Shyue, J.-J. Effect of Fabrication Parameters on Three-Dimensional Nanostructures of Bulk Heterojunctions Imaged by High-Resolution Scanning ToF-SIMS. American Chemical Society 2010, 4 (2), 833–840. https://doi.org/10.1021/nn9014449.
(141) Usiobo, O. J.; Kanda, H.; Gratia, P.; Zimmermann, I.; Wirtz, T.; Nazeeruddin, M. K.; Audinot, J.-N. Nanoscale Mass-Spectrometry Imaging of Grain Boundaries in Perovskite Semiconductors. J. Phys. Chem. C 2020, 124, 23230–23236. https://doi.org/10.1021/acs.jpcc.0c07464.
(142) Zhang, F.; Xiao, C.; Chen, X.; Larson, B. W.; Harvey, S. P.; Berry, J. J.; Zhu, K. Self-Seeding Growth for Perovskite Solar Cells with Enhanced Stability. Joule 2019, 3, 1452–1463. https://doi.org/10.1016/j.joule.2019.03.023.
(143) Chiang, P. H.; Hsieh, P.; Hou, C. H.; You, Y. W.; Wang, M. Y.; Yang, T. J.; Shyue, J. J. Determining the Distributions of Components inside Metal-Organic Framework Thin Films with an Ar-Gas Cluster Ion Beam (Ar1000,2500+) and Ar+ Cosputter via Secondary Ion Mass Spectrometry. ACS Appl Mater Interfaces 2025, 17, 38658–38668. https://doi.org/10.1021/ACSAMI.5C05778/ASSET/IMAGES/LARGE/AM5C05778_0007.JPEG.
(144) Fick, A. Ueber Diffusion. Ann Phys 1855, 170 (1), 59–86. https://doi.org/10.1002/andp.18551700105.
(145) Adibi, S. A. Intestinal Phase of Protein Assimilation in Man. American Journal of Clinical Nutrition 1976, 29 (2), 202–215. https://doi.org/10.1093/ajcn/29.2.205.
(146) Fick, A.; Diffusion, O. L.; Fick, A. FICK’S INSIGHTS ON LIQUID DIFFUSION; 1901; pp 1–7.
(147) Anna Eden, K. X-Ray Diffraction | Rigaku TTRAX III – the most powerful diffractometer for all types of solids | Chemical Research Support. https://www.weizmann.ac.il/ChemicalResearchSupport/units/x-ray-diffraction/instrumentation/rigaku-ttrax-iii-most-powerful-diffractometer-all-types (accessed 2025-06-29).
(148) Bruker Optics Vertex 70. Bruker Optics 2014, 3–4.
(149) Langstaff, D. P.; Bushell, A.; Chase, T.; Evans, D. A. A Fully Integrated Multi-Channel Detector for Electron Spectroscopy. Nucl Instrum Methods Phys Res B 2005, 238 (1–4), 219–223. https://doi.org/10.1016/J.NIMB.2005.06.187.
(150) Dey, K.; Pal, M.; Rout, K. C.; Kunjattu, S.; Das, A.; Mukherjee, R.; Kharul, U. K.; Banerjee, R. Selective Molecular Separation by Interfacially Crystallized Covalent Organic Framework Thin Films. J. Am. Chem. Soc. 2017, 139, 13083–13091. https://doi.org/10.1021/jacs.7b06640.
(151) Gale, G. W.; Cui, H.; Reinhardt, K. A. Aqueous Cleaning and Surface Conditioning Processes. Handbook of Silicon Wafer Cleaning Technology 2018, 185–252. https://doi.org/10.1016/B978-0-323-51084-4.00004-6.
(152) Werner, K.; David A., P. Cleaning Solutions Based on Hydrogen Peroxide for Silicon; RCA Review, 1970.
(153) Chen, Y. Y.; Yu, B. Y.; Wang, W. Ben; Hsu, M. F.; Lin, W. C.; Lin, Y. C.; Jou, J. H.; Shyue, J. J. X-Ray Photoelectron Spectrometry Depth Profiling of Organic Thin Films Using C60 Sputtering. Anal Chem 2008, 80 (2), 501–505. https://doi.org/10.1021/AC701899A/SUPPL_FILE/AC701899A-FILE003.PDF.
(154) Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A. H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L. A.; Shah, T.; Khan, I. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, Vol. 14, Page 242 2022, 14 (2), 242. https://doi.org/10.3390/W14020242.
(155) Güzel, F.; Sayǧili, H.; Sayǧili, G. A.; Koyuncu, F. Decolorisation of Aqueous Crystal Violet Solution by a New Nanoporous Carbon: Equilibrium and Kinetic Approach. Journal of Industrial and Engineering Chemistry 2014, 20 (5), 3375–3386. https://doi.org/10.1016/J.JIEC.2013.12.023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98952-
dc.description.abstract新型多孔有機奈米材料-共價有機框架(Covalent Organic Framework, COF),因具有完全的有機結構、可調孔徑和優異的耐熱性等,而逐漸引起人們的關注,可被應用在半導體元件、藥物傳遞、能源儲存及轉換、CO2減排或催化H2生成等領域上。COF內部分子的吸收、釋放、擴散亦或是傳輸是許多應用和決定分子性質的重要關鍵因素,然而,目前難以確定已負載物種的分佈以及合成改質後(Post-Synthetic Modification, PSM)分子結構的變化。儘管可通過分析技術(如:固態核磁共振)來確認已負載物質的存在,並根據化學位移確定吸附物種的化學環境,但很難直接測量外表面(Outer surface)和內部分子在尺度為奈米等級下的空間分佈差異。因此,尋找可成功辨識在奈米尺度下外表面及內部分子的空間分布差異以建構正確結構資訊之方法極為重要。
本研究首先透過掃描式電子顯微鏡(SEM)、高功率X光繞射分析儀(XRD)、傅立葉轉換紅外光譜儀(FTIR)及X光光電子能譜儀(XPS)來確認COF的表面形貌、晶相、官能基、化學組態及元素含量等資訊,挑選出一個最適合用於在ToF-SIMS分析中的COF製備參數。接著,使用高靈敏度之表面分析儀器-飛行時間-二次離子質譜儀(ToF-SIMS),透過各種不同的濺射離子源及不同能量密度的濺射參數調整,尋找出對於COF薄膜最佳的濺射參數,以建構正確的縱深資訊來分析COF之分子結構及其內部孔隙對於客體分子的擴散行為,期望透過此分析技術對於有機奈米框架結構-COF有更完整的了解。
於SIMS的研究中,我們使用C60+作為分析離子源,濺射離子源則以不同能量的Ar+、GCIB (Ar2500+)及C60+來分析,最終找到15 kV (E/n = 6) 或20 kV (E/n = 8)的GCIB (Ar2500+)為最適合分析COF薄膜的最佳濺射條件。接著本研究使用常見於汙水中的汙染物-甲基藍及結晶紫來做為客體分子,搭配適合客體分子之最佳濺射參數,研究其在COF孔隙中的擴散行為,經分析結果顯示,甲基藍(1.4 nm×1.0 nm, 長方形狀)在COF孔隙中的擴散率大於結晶紫(1.4 nm×1.4 nm, 正方形狀),顯示出客體分子在COF孔隙中會因為本身的分子大小與形狀,而影響其擴散率。
總結來說,本研究選擇一最適用於SIMS分析的COF製程條件,並找出適合COF薄膜分析的最佳濺射參數,為COF建構了良好的縱深分析資訊,且最後利用建構好的縱深分析參數搭配適合客體分子之最佳濺射參數,來分析客體分子於COF孔隙中的擴散行為,於此研究中,我們建立了一個正確、完整且有效的縱深分析資訊,為往後進行COF分析時提供一個可以參考的研究方向。
zh_TW
dc.description.abstractCovalent Organic Framework (COF), a novel porous organic nanomaterial, have garnered attention due to their fully organic structure, tunable pore sizes, and excellent thermal stability. COF hold potential in areas such as semiconductor devices, drug delivery, CO2 reduction, and catalytic H2 generation. Understanding the absorption, release, and transport of molecules within COF is critical for these applications. However, determining the spatial distribution of loaded species and post-synthetic modifications (PSM) remains challenging. While techniques like solid-state NMR can confirm the presence of substances and their chemical environment, they struggle to measure nanoscale spatial differences between surface and internal molecules.
In this study, SEM, XRD, FTIR, and XPS were first employed to examine the surface morphology, crystalline phase, functional groups, chemical composition, and elemental content of covalent organic framework (COF), in order to identify the most suitable synthesis conditions for subsequent ToF-SIMS analysis. A high-sensitivity surface analysis technique—time-of-flight secondary ion mass spectrometry (ToF-SIMS)—was then applied, utilizing various sputtering ion sources and energy densities to determine the optimal sputtering parameters for COF thin films. This enabled the construction of accurate depth profiles for analyzing the molecular structure of COF and investigating how their internal pores influence the diffusion behavior of guest molecules, thereby offering a more comprehensive understanding of these porous organic frameworks.
In the SIMS investigation, C60+ was used as the acquisition beam, while Ar+, GCIB (Ar2500+), and C60+ with varying energies were employed as sputtering ion sources. The optimal sputtering condition for COF thin films was determined to be GCIB (Ar2500+) at 15 kV (E/n = 6 eV/atom) or 20 kV (E/n = 8 eV/atom). Subsequently, methylene blue (MB) and crystal violet (CV), two commonly encountered pollutants in wastewater, were introduced as guest molecules. By combining optimized sputtering parameters specific to these guest molecules, the diffusion behavior within the COF nanopores was investigated. The results indicated that methylene blue (1.4 nm×1.0 nm, rectangular shape) exhibited a higher diffusion rate than crystal violet (1.4 nm×1.4 nm, square shape), suggesting that molecular size and geometry play a critical role in governing the diffusion efficiency of guest species in confined COF structures.
In summary, this study successfully identified the most suitable COF synthesis conditions for SIMS analysis and established the optimal sputtering parameters for COF thin film depth profiling. A reliable and accurate depth profiling strategy was developed and further utilized to evaluate the diffusion dynamics of guest molecules within COF nanopores. The methodology presented herein offers a comprehensive and validated framework for future investigations into COF systems and sets a valuable precedent for subsequent surface and interface studies involving organic frameworks.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:24:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:24:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
摘要 III
Abstract V
目次 VIII
圖次 XI
表次 XVI
第一章 緒論 1
1.1 多孔奈米材料發展現況 1
1.2 共價有機框架COF之發展與困境 2
1.3 研究動機與目的 4
第二章 文獻回顧 6
2.1 表面分析儀器-質譜儀(Mass Spectrometer, MS)/ 二次離子質譜儀(Secondary Ion Mass Spectrometer, SIMS) 6
2.1.1. 質譜儀(Mass Spectrometer, MS) 7
2.1.2. 二次離子質譜儀(Secondary Ion Mass Spectrometry, SIMS) 9
2.1.2.1. 動態二次離子質譜儀 12
2.1.2.2. 靜態二次離子質譜儀 13
2.2 飛行時間-二次離子質譜儀(Time-of-Flight Secondary Ion Mass Spectrometry, ToF-SIMS) 14
2.2.1 單原子、多原子及團簇離子源 18
2.2.1.1. 單原子、多原子、團簇離子源產生機制 18
2.2.1.2. 單原子、多原子、團簇離子源優劣分析及應用 22
2.2.2 縱深分析(Depth Profile) 25
2.2.2.1. 濺射率(Sputter Yield) 29
2.2.2.2. 損傷截面積(Damage Cross Section) 30
2.2.2.3. 縱深分析常見問題 32
2.3 共價有機框架(Covalent Organic Frameworks, COF) 36
2.3.1. 共價有機框架(COF)之歷史演進 36
2.3.2. 共價有機框架(COF)之種類介紹 37
2.3.3. 共價有機框架(COF)之應用 40
2.4 應用飛行時間-二次離子質譜(ToF-SIMS)研究多孔有機奈米框架結構(COF)中客體分子之擴散行為 41
2.5 菲克定律(Fick’s Law) 44
第三章 實驗方法及儀器介紹 47
3.1 實驗基材 47
3.2 實驗儀器 47
3.2.1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 47
3.2.2 高功率X光繞射分析儀 (X-Ray Diffractometer, XRD) 48
3.2.3 傅立葉轉換紅外光譜儀 (Fourier-Transform Infrared Spectroscopy, FTIR) 48
3.2.4 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 49
3.2.5 飛行時間-二次離子質譜儀 (Time-of-Flight Secondary Ion Mass Spectrometry, ToF-SIMS) 50
3.3 實驗流程 54
3.3.1 COF薄膜製備 54
3.3.2 試片製備 55
3.3.3 染劑製備與摻雜 56
(A) 亞甲藍液(Methylene Blue)製備 56
(B) 結晶紫(Crystal Violet) 製備 56
第四章 實驗結果與討論 57
4.1 COF材料之表徵 57
4.1.1 表面形貌(SEM) 57
4.1.2 晶體結構(XRD) 63
4.1.3 官能基與化學鍵結(FTIR) 63
4.1.4 化學鍵結與定量分析(XPS) 64
4.2 COF特徵破片的選用及正負離子模式之選定 65
4.2.1 COF之正離子模式及特徵破片的選用 66
4.2.2 COF之負離子模式及特徵破片的選用 69
4.3 ToF-SIMS濺射參數選擇-不同能量密度對COF之縱深分析影響 73
4.3.1 COF於負離子模式之縱深分析結果 73
4.3.2 COF於正離子模式之縱深分析結果 78
4.3.2.1. 濺射率(Sputter Yield) 81
4.3.2.2. 有效損傷截面積(Effective damage cross section, σeff) 83
4.3.2.3. 穩定狀態時的[C9O3N2H5]+相對訊號強度(Relative Intensity) 85
4.4 染劑分子於共價有機框架COF中之擴散行為分析 87
4.4.1 甲基藍(Methylene Blue)特徵破片及ToF-SIMS正負離子模式之選用 87
4.4.2 ToF-SIMS濺射參數選擇-不同能量密度對摻雜甲基藍(Methylene Blue)之COF的縱深分析影響 89
4.4.2.1. 濺射率(Sputter Yield) 91
4.4.2.2. 有效損傷截面積(Effective damage cross section, σeff) 93
4.4.3 甲基藍(Methylene Blue)於COF中的擴散行為探討 95
4.4.4 結晶紫(Crystal Violet)特徵破片及ToF-SIMS正負離子模式之選用 97
4.4.5 ToF-SIMS濺射參數選擇-不同能量密度對摻雜結晶紫(Crystal Violet)之COF的縱深分析影響 99
4.4.5.1 濺射率(Sputter Yield) 101
4.4.5.2 有效損傷截面積(Effective Damage Cross Section, σeff) 103
4.4.6 結晶紫(Crystal Violet)於COF中的擴散行為探討 105
4.4.7 甲基藍(Methylene Blue)及結晶紫(Crystal Violet)在COF中的擴散行為總結 106
第五章 結論 108
第六章 參考文獻 110
-
dc.language.isozh_TW-
dc.subject表面分析技術zh_TW
dc.subject共價有機框架(COF)zh_TW
dc.subject飛行時間-二次離子質譜儀(ToF-SIMS)zh_TW
dc.subject縱深分析zh_TW
dc.subject擴散zh_TW
dc.subject汙染物zh_TW
dc.subjectToF-SIMSen
dc.subjectSurface analysisen
dc.subjectpollutanten
dc.subjectdiffusionen
dc.subjectdepth profileen
dc.subjectCovalent Organic Framework (COF)en
dc.title應用飛行時間-二次離子質譜(ToF-SIMS)研究多孔有機奈米框架結構(COF)中客體分子之擴散行為zh_TW
dc.titleA Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) Study on the Diffusion Behavior of Guest Molecules in Covalent Organic Framework (COF)en
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林煒淳;王榮輝zh_TW
dc.contributor.oralexamcommitteeWei-Chun Lin;Jung-Hui Wangen
dc.subject.keyword表面分析技術,共價有機框架(COF),飛行時間-二次離子質譜儀(ToF-SIMS),縱深分析,擴散,汙染物,zh_TW
dc.subject.keywordSurface analysis,Covalent Organic Framework (COF),ToF-SIMS,depth profile,diffusion,pollutant,en
dc.relation.page124-
dc.identifier.doi10.6342/NTU202504077-
dc.rights.note未授權-
dc.date.accepted2025-08-15-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept元件材料與異質整合學位學程-
dc.date.embargo-liftN/A-
顯示於系所單位:元件材料與異質整合學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
6.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved