請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98950完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王名儒 | zh_TW |
| dc.contributor.advisor | Min-Zu Wang | en |
| dc.contributor.author | 林傑澄 | zh_TW |
| dc.contributor.author | Jie-Cheng Lin | en |
| dc.date.accessioned | 2025-08-20T16:24:20Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-15 | - |
| dc.identifier.citation | [1] T. Abe et al., Belle II Technical Design Report (Nov. 2010). arXiv:1011.0352, doi:10.48550/arXiv.1011.0352.
[2] M. Yamauchi, Super KEKB, a high luminosity upgrade of KEKB, Nuclear Physics B – Proceedings Supplements 111 (1–3) (2002) 96–105. doi:10.1016/S0920-5632(02)01690-0. [3] P. Lewis et al., First measurements of beam backgrounds at SuperKEKB, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 914 (2019) 69–144. doi:10.1016/j.nima.2018.05.071. [4] N. Taniguchi, Central Drift Chamber for Belle-II, Journal of Instrumentation 12 (06) (2017) C06014–C06014. doi:10.1088/1748-0221/12/06/C06014. [5] T. Uchida et al., Readout Electronics for the Central Drift Chamber of the Belle II Detector, in: 2011 IEEE Nuclear Science Symposium Conference Record, IEEE, Valencia, Spain, 2011, pp. 694–698. doi:10.1109/NSSMIC.2011.6154084. [6] N. Taniguchi et al., All-in-one readout electronics for the Belle-II Central Drift Chamber, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 732 (2013) 540–542. doi:10.1016/j.nima.2013.06.096. [7] Chia-Te Chen, The Energy Correction of Belle II ECL detector by Using Convolutional Neural Network, Master’s thesis, National Taiwan University (2019). doi:10.6342/NTU201900280. [8] R. Itoh et al., Data Flow and High Level Trigger of Belle II DAQ System, IEEE Transactions on Nuclear Science 60 (5) (2013) 3720–3724. doi:10.1109/TNS.2013.2273091. [9] Y.-T. Lai et al., Development of the Level-1 track trigger with Central Drift Chamber detector in Belle II experiment and its performance in SuperKEKB 2019 Phase 3 operation, Journal of Instrumentation 15 (06) (2020) C06063–C06063. doi:10.1088/1748-0221/15/06/C06063. [10] Y.-T. Lai et al., Design of the Global Reconstruction Logic in the Belle II Level-1 Trigger system, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1078 (2025) 170577. doi:10.1016/j.nima.2025.170577. [11] D.-W. Lan, The Stability Study of High Speed Data Transmission on High Energy Experiments Based on FPGA, Master’s thesis, National United University (2019). [12] Yun-Tsung Lai, Search for D0 → νν̄ at Belle, and Belle II CDCTRG system firmware design., Ph.D. thesis, National Taiwan University (Feb. 2017). doi:10.6342/NTU201601179. [13] K.-T. Kim, Development of Track Segment Finder for Central Drift Chamber Based Level-1 Trigger System in the Belle II Experiment, Ph.D. thesis, Korea University (2021). [14] Tzu-An Sheng, Implementing the 2D track reconstruction for the Level 1 trigger of the Belle II experiment, Master’s thesis, National Taiwan University (2018). doi:10.6342/NTU201802022. [15] S. hyung Lee, Development of a real time framework for the Belle II at the SuperKEKB, Master’s thesis, Korea University (2010). [16] C.-H. Huang, CDC 2-D Track finding at Belle-II experiment, Master’s thesis, Fu Jen Catholic University (2011). [17] H.-P. Chiu, 2D Track Reconstruction for Central Drift Chamber (CDC) at Belle-II: VHDL Firmware Design, Master’s thesis, Fu Jen Catholic University (2013). [18] Y.-F. Kuo, 2D Track Reconstruction for Central Drift Chamber (CDC) at Belle II: TSIM Design, Master’s thesis, Fu Jen Catholic University (2014). [19] K.-Y. Chen, Updated 2D Tracker TSIM Design for Central Drift Chamber at Belle-II, Master’s thesis, Fu Jen Catholic University (2015). [20] Z.-X. Chen, Updated 2D Tracker Firmware Design for Central Drift Chamber at Belle-II, Master’s thesis, Fu Jen Catholic University (2016). [21] S. Pohl, Track Reconstruction at the First Level Trigger of the Belle II Experiment, Ph.D. thesis, Ludwig-Maximilians-Universität München (Apr. 2018). doi:10.5282/edoc.22085. [22] Ping Ni, Upgrade of Two Dimensional Track Trigger on Central Drift Chamber aimed for Belle II Targeted Luminosity, Master’s thesis, The University of Tokyo (Aug. 2022). [23] J. bak Kim, A 3-dimensional fast fitter for central drift chamber based level 1 trigger system in the Belle II experiment, Master’s thesis, Korea University (2012). [24] E. Won et al., Three-dimensional fast tracker for the central drift chamber based level-1 trigger system in the Belle II experiment, Journal of the Korean Physical Society 72 (1) (2018) 33–37. doi:10.3938/jkps.72.33. [25] J. Kim et al., A software framework for pipelined arithmetic algorithms in field programmable gate arrays, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 883 (2018) 83–89. doi:10.1016/j.nima.2017.11.064. [26] Hiroto Sudo, Development of the Three-Dimensional Track Reconstruction Algorithm for the Belle II Level-1 Trigger, Master’s thesis (Jan. 2024). [27] J.-N. Chang, Trigger Efficiency Logic Study on the Belle II Experiment, Master’s thesis, Korea University (2024). [28] Pei-Cheng Lu, B+ → pΛK+K− and B+ → pΛK+K+, Ph.D. thesis, National Taiwan University (2020). doi:10.6342/NTU202000406. [29] Kuan-Po Lin, Monte Carlo Study of the Decay B+ → p(1520) at Belle, Master’s thesis, National Taiwan University (2017). doi:10.6342/NTU201700568. [30] Y.-H. Hsu, The Study of B0 → J/ψ η in the Belle II Experiment at KEK, Master’s thesis, Fu Jen Catholic University (2021). [31] Wei-Che Lin, MC study for B0 → ϕK0_L decay at Belle II, Master’s thesis, National Taiwan University (2025). doi:10.6342/NTU202500482. [32] Jheng-Hao Su, The study of K0_L identification with ECL information at the Belle II experiment, Master’s thesis, National Taiwan University (2023). doi:10.6342/NTU202301289. [33] Yuan-Ru Lin, The Study of Antineutron Identification at Belle Experiment, Master’s thesis, National Taiwan University (2021). doi:10.6342/NTU202103402. [34] Wei-Ling Yeh, The Study of proton identification At Belle, Master’s thesis, National Taiwan University (2009). doi:10.6342/NTU.2009.01730. [35] B. Aubert et al., Evidence for B+ → J/ψ p Λ̅ and search for B0 → J/ψ p p̅, Physical Review Letters 90 (23) (2003) 231801. doi:10.1103/PhysRevLett.90.231801. [36] S. L. Zang et al., Search for B− → J/ψ Λ p̅ decay, Physical Review D 69 (1) (2004) 017101. doi:10.110.1103/PhysRevD.69.017101. [37] Q. L. Xie et al., Observation of B− → J/ψ Λ p̅ and searches for B− → J/ψ Σ0 p̅ and B0 → J/ψ p p̅ decays, Physical Review D 72 (5) (2005) 051105. doi:10.1103/PhysRevD.72.051105. [38] The CMS collaboration et al., Study of the B+ → J/ψ Λp decay in proton–proton collisions at √s = 8 TeV, Journal of High Energy Physics 2019 (12) (2019) 100. doi:10.1007/JHEP12(2019)100. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98950 | - |
| dc.description.abstract | Belle II實驗位於SuperKEKB電子對撞機,是一項高亮度的B工廠實驗,旨在精確研究B介子的罕見衰變;其一級(L1)觸發系統需要即時從大量背景事件中快速篩選出物理感興趣的碰撞事例。我們為該觸發系統研發了一種新穎的三維軌跡重建(3D tracker)算法,可在中央漂移室內對帶電粒子的軌跡進行三維重建, 並將處理延遲控制在亞微秒以內。該3D重建算法利用漂移室軸向和立體層的探測訊號,通過幾何變換和線性回歸擬合計算每條軌跡的縱向頂點z(即交點位置)和極角θ。模擬結果表明,幾何算法(geo-finder)的3D追蹤相較於原有的2D追蹤,可將束流引起的背景觸發率降低約38%,同時在對|z₀|<35 cm的軌跡施加篩選時仍保留約97%的真實信號事例。此外,我們實現了一種基於查找表的算法(LUT-finder), 透過遍歷所有立體層擊中組合以最小化軌跡擬合的χ2,進一步 提高了z₀重建精度並增強了背景抑制能力。
在物理研究方面,我們利用蒙地卡羅(Monte Carlo)模擬分析了一種罕見的重子型B介子衰變模式B̅⁰→J/ψ Λ⁰n̅(其中J/ψ →e+e−或µ+µ−,Λ⁰→ p π−)。該衰變末態包含一個粲偶素態(J/ψ)和一個中性反重子(反中子), 屬於顏色抑制的重子衰變過程,為研究重味物理中的強子產生動力學提供了獨特的檢驗機會。我們對模擬事件採用了專為Belle II電磁量能器(ECL)開發的 多變量分析(MVA)反中子粒子鑑別算法,從電磁量能器的簇射訊號中識別中子候選體。基於相當於積分亮度200 fb−1的模擬樣本(假設該衰變的分支比約為 10−4),我們預測了此衰變模式的信號產額,並將其與通過擬合B介子質心系動量分佈(P∗ B)提取得到的信號產額進行比較。結果顯示,擬合得到的信號事件數(約67件)與預期值(約63件)在統計誤差範圍內一致,驗證了反中子鑑別方法 的有效性;同時也表明,在當前Belle II數據下觀測該衰變是可行的。 | zh_TW |
| dc.description.abstract | Belle II at the SuperKEKB collider is a high-luminosity e⁺e⁻ experiment designed to study rare B⁻ meson decays; its Level-1 (L1) trigger system must rapidly distinguish signal events from background in real time. To meet this challenge, we developed a novel three-dimensional (3D) track reconstruction algorithm for the Belle II L1 trigger that operates within sub-microsecond latency and uses geometric transformations with linear regression fits to determine each track’s longitudinal z-vertex and polar angle θ. By combining the drift chamber’s axial and stereo wire information, the 3D tracker greatly improves background rejection over the existing 2D trigger. In simulation, a geometry-based 3D tracking algorithm (“geo-finder”) reduced beam-induced background triggers by 38% relative to the standard 2D tracking, while retaining 97% of genuine signal tracks for vertices within |z₀| < 35 cm. Additionally, a lookup-table algorithm (“LUT-finder”) that scans all stereo hit combinations to minimize track-fit χ² further improves z₀ resolution and background suppression.
For physics analysis, we investigated the rare baryonic B⁻ meson decay B̅⁰→J/ψ Λ⁰n̅, where J/ψ → e⁺e⁻ or μ⁺μ⁻ and Λ⁰ → p π⁻. This decay mode, featuring a charmonium state (J/ψ) and a neutral anti-baryon (n̅) in the final state, is a color-suppressed channel providing a unique probe of baryonic decay dynamics. We applied a multivariate analysis (MVA)-based anti-neutron particle identification (PID) algorithm, developed for the Belle II electromagnetic calorimeter (ECL), to identify neutron-candidate clusters in simulated events. Using samples corresponding to an integrated luminosity of 200 fb⁻¹ (assuming a ∼10⁻⁴ branching fraction), we estimated the expected signal yield for this decay and compared it to the yield extracted from fits to the B⁻ meson’s center-of-mass momentum distribution (P*B). The fitted yield (67 events) agreed with the expected yield (63 events) within uncertainties, demonstrating the anti-neutron PID method’s effectiveness; this agreement suggests that this decay mode can be observed with the current Belle II dataset. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:24:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:24:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書i
Acknowledgments ii 中文摘要iii Abstract iv Contents v List of Figures ix List of Tables xv 1 Introduction 1 1.1 Standard Model and Flavor Physics . . . . . . . . . . . . . . . . . . . 1 1.2 Quark Mixing and Cabibbo-Kobayashi-Maskawa Matrix . . . . . . . 2 1.3 Charge⁻Parity Violation and Matter–Antimatter Asymmetry . . . . . 3 1.4 B Physics as a Laboratory for Charge⁻Parity Violation . . . . . . . . 3 1.5 Research Objectives and Thesis Structure . . . . . . . . . . . . . . . 4 2 Belle II Experiment 6 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 SuperKEKB Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Belle II Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Online System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 Level-1 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.3 High Level Trigger . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.4 Data Acquisition System . . . . . . . . . . . . . . . . . . . . . 28 2.5 Data Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7.3 Particle Identification . . . . . . . . . . . . . . . . . . . . . . . 34 2.7.4 Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.8 Belle Analysis Framework 2 . . . . . . . . . . . . . . . . . . . . . . . 36 2.8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.8.2 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.8.3 Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.8.4 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.8.5 Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.8.6 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.8.7 Trigger Simulation . . . . . . . . . . . . . . . . . . . . . . . . 39 3 2D Tracker 41 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.7 Debugging and Validation . . . . . . . . . . . . . . . . . . . . . . . . 50 3.7.1 Signal Desynchronization and Truncation . . . . . . . . . . . . 50 3.7.2 Track Fitting Failure at Coincidence Equals Four . . . . . . . 51 3.7.3 Validation of 2D Fitter . . . . . . . . . . . . . . . . . . . . . . 54 3.8 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4 3D Tracker 62 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4.2 Geo-Finder and Snake⁻Finder . . . . . . . . . . . . . . . . . . 67 4.4.3 LUT-Finder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.6.1 Serializer and Deserializer in Firmware . . . . . . . . . . . . . 70 4.6.2 LUT-Finder in Firmware . . . . . . . . . . . . . . . . . . . . . 71 4.6.3 Bitmap in Firmware . . . . . . . . . . . . . . . . . . . . . . . 72 4.6.4 Improvement of Software . . . . . . . . . . . . . . . . . . . . . 73 4.7 Debugging and Validation . . . . . . . . . . . . . . . . . . . . . . . . 74 4.7.1 LUT Underflow . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.7.2 Signal Desynchronization and Drift-Time Miscalculation . . . 77 4.7.3 Readout Window Misalignment . . . . . . . . . . . . . . . . . 78 4.7.4 Missing Track Segment Hits in 3D Finder . . . . . . . . . . . 80 4.7.5 Serializer and Deserializer Errors . . . . . . . . . . . . . . . . 82 4.8 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.8.1 Simulation Method . . . . . . . . . . . . . . . . . . . . . . . . 82 4.8.2 Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.8.3 Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . 85 4.8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5 Monte Carlo Study of B̅⁰→J/ψ Λ⁰n̅ 102 5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.2 Data Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.4 Event Reconstruction and Selection . . . . . . . . . . . . . . . . . . . 105 5.4.1 Bremsstrahlung Correction . . . . . . . . . . . . . . . . . . . . 105 5.4.2 Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.4.3 Vertex fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.4.4 Best Candidate Selection . . . . . . . . . . . . . . . . . . . . . 108 5.5 Fitting Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.6 Control Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.6.1 Motivation and Methods . . . . . . . . . . . . . . . . . . . . . 112 5.6.2 Data Samples and Selections . . . . . . . . . . . . . . . . . . . 113 5.6.3 Modified scheme for the Electromagnetic Calorimeter matching of p̅ . . 113 5.6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 116 5.7 Upper Limit Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6 Conclusions 122 Bibliography 123 Appendix A: Track Trajectory Parameterization 128 Appendix B: Performance of 3D 130 | - |
| dc.language.iso | en | - |
| dc.subject | L1 觸發系統 | zh_TW |
| dc.subject | Belle II 實驗 | zh_TW |
| dc.subject | 反中子鑑別 | zh_TW |
| dc.subject | 重子衰變 | zh_TW |
| dc.subject | 三維追蹤器 | zh_TW |
| dc.subject | 3D tracker | en |
| dc.subject | baryonic decay | en |
| dc.subject | antineutron identification | en |
| dc.subject | L1 trigger system | en |
| dc.subject | Belle II experiment | en |
| dc.title | Belle II 實驗中 Level-1 觸發系統之三維追蹤方法的實作與 B̅⁰ → J/ψ Λ n̅衰變的蒙地卡羅研究 | zh_TW |
| dc.title | Implementation of the 3D tracking method for the Level-1 trigger system of the Belle II experiment, and Monte Carlo Study of B̅⁰ → J/ψ Λ n̅ | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 徐靜戈;張寶棣;張敏娟;胡貝禎 | zh_TW |
| dc.contributor.oralexamcommittee | Jing-Ge Shiu;Pao-Ti Chang;Min-Chuan Chang;Bei-Zhen Hu | en |
| dc.subject.keyword | Belle II 實驗,L1 觸發系統,三維追蹤器,重子衰變,反中子鑑別, | zh_TW |
| dc.subject.keyword | Belle II experiment,L1 trigger system,3D tracker,baryonic decay,antineutron identification, | en |
| dc.relation.page | 136 | - |
| dc.identifier.doi | 10.6342/NTU202504396 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 33.29 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
