請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98949完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐冠倫 | zh_TW |
| dc.contributor.advisor | Kuan-Lun Hsu | en |
| dc.contributor.author | 毛姵媞 | zh_TW |
| dc.contributor.author | Peiti Mao | en |
| dc.date.accessioned | 2025-08-20T16:24:07Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | [1] World Health Organization. 2022. “Musculoskeletal health.” World Health Organization. Accessed February 27, 2025. https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions
[2] 國家發展委員會,2024,中華民國人口推估(2024 年至2070 年),初版,臺北市,臺灣,國家發展委員會。 [3] 林玉婷,2015,《上交叉症候群 (Upper Crossed Syndrome)》,於基醫醫訊,第三季第八十六期,第10至14頁,臺北市,臺灣,行政院新聞局。 [4] 行政院教育部體育署,2021,[運動i臺灣2.0] 111-116年推展全民運動計畫,臺北市,臺灣,行政院教育部體育署。 [5] H. H. Lee, F. Y. Hsu, Y. W. Kang, and Y. S. Yang, 2024, “The Effect of Self-shoulder and Neck Correction and Stretching Exercise on Musculoskeletal Discomfort of the Upper Back in the Workplace: A Randomized Controlled Trial,” Journal of Medicine and Health, 13 (2). [6] N. C. da Silva, F. P. F. M. Ricci, V. R. de Castro, A. C. R. de Lima, E. R. do Carmo Lopes, L. D. de Salvo Mauad, K. A. K. Suzuki, ...et al, 2022, “Effects of workplace upper extremity resistance exercises on function and symptoms of workers at a tertiary hospital: a randomized controlled trial protocol,” BMC Musculoskeletal Disorders, 23 (119). [7] A. Shariat, J. A. Cleland, M. Danaee, M. Kargarfard, B. Sangelaji, and S. B. M. Tamrin, 2018, “Effects of stretching exercise training and ergonomic modifications on musculoskeletal discomforts of office workers: a randomized controlled trial,” Brazilian Journal of Physical Therapy, 22 (2), pp. 144-153. [8] A. P. Verhagen, C. Karels, S. M. A. Bierma-Zeinstra, A. Feleus, S. Dahaghin, A. Burdorf, and B. W. Koes, 2007, “Exercise proves effective in a systematic review of work-related complaints of the arm, neck, or shoulder,” Journal of Clinical Epidemiology, 60 (2), pp. 110-117. [9] E. Sundstrup, M. D. Jakobsen, M. Brandt, K. Jay, R. Persson, P. Aagaard, and L. L. Andersen, 2014, “Workplace strength training prevents deterioration of work ability among workers with chronic pain and work disability: a randomized controlled trial,” Scandinavian Journal of Work, Environment & Health, 40 (3), pp. 244-251. [10] M. T. Pedersen, C. H. Andersen, M. K. Zebis, G. Sjøgaard, and L. L. Andersen, 2013, “Implementation of specific strength training among industrial laboratory technicians: long-term effects on back, neck and upper extremity pain,” BMC Musculoskeletal Disorders, 14 (287). [11] M. K. Zebis, L. L. Andersen, M. T. Pedersen, P. Mortensen, C. H. Andersen, M. M. Pedersen, M. Boysen, ...et al, 2011, “Implementation of neck/shoulder exercises for pain relief among industrial workers: A randomized controlled trial,” BMC Musculoskeletal Disorders, 12 (205). [12] S. P. Bird, K. M. Tarpenning, and F. E. Marino, 2005, “Designing Resistance Training Programmes to Enhance Muscular Fitness,” Sports Medicine, 35, pp. 841-851. [13] L. L. Andersen, K. B. Christensen, A. Holtermann, O. M. Poulsen, G. Sjøgaard, M. T. Pedersen, and E. A. Hansen, 2010, “Effect of physical exercise interventions on musculoskeletal pain in all body regions among office workers: A one-year randomized controlled trial,” Manual Therapy, 15 (1), pp. 100-104. [14] I. Ris, K. Søgaard, B. Gram, K. Agerbo, E. Boyle, and B. Juul-Kristensen, 2016, “Does a combination of physical training, specific exercises and pain education improve health-related quality of life in patients with chronic neck pain? A randomised control trial with a 4-month follow up,” Manual Therapy, 26, pp. 132-140. [15] S. W. Wong, A. Parkes, and P. Crowe, 2024, “Ergonomic interventions to reduce upper limb musculoskeletal pain during robotic surgery: a narrative review,” Journal of Robotic Surgery, 18 (224). [16] Q. Gasibat, N. B. Simbak, and A. A. Aziz, 2017, “Stretching Exercises to Prevent Work-related Musculoskeletal Disorders – A Review Article,” American Journal of Sports Science and Medicine, 5 (2), pp. 27-37. [17] P. F. de Oliveira Martins, E. A. A. Zicolau, and M. F. Cury-Boaventura, 2015, “Stretch breaks in the work setting improve flexibility and grip strength and reduce musculoskeletal complaints,” Motriz. The Journal of Physical Education, 21 (3), pp. 263-273. [18] H. C. Wu, C. Y. Lin, H. C. Chen, and C. H. Wang, 2007, “Relations between Ergonomic Risk Factors and Musculoskeletal Disorders in Computer Operation,” Journal of Ergonomic Study, 9 (1), pp. 1-10. [19] Y. C. Lien, J. T. Wei, and Y. S. Horng, 2018, “Return to work and Health Management in Patients with Work-Related Musculoskeletal Disorder: Literature reviewarticle,” Rehabilitation Practice and Science, 46 (2), pp 55-62. [20] A. Luttmann, M. Jäger, B. Griefahn, G. Caffier, F. Liebers, and U. Steinberg, 2003, “Preventing musculoskeletal disorders in the workplace,” In Protecting Workers' Health Series, No. 5, Geneva. Switzerland: World Health Organization. [21] J. W. Berryman, and R. J. Park, 1992, Sport and Exercise Science : Essays in the History of Sports Medicine, Urbana. USA: University of Illinois Press. [22] 蔣行健,朱正忠,2023,《人工智慧物聯網(AIoT)於運動與科學之應用 ——精準運動之羽球訓練》,碩士論文,資訊工程學系,東海大學。 [23] W. van Mechelen, H. Hlobil, and H. C. G. Kemper, 1992, “Incidence, Severity, Aetiology and Prevention of Sports Injuries,” Sports Medicine, 14, pp. 82-99. [24] A. W. S. Watson, 1997, “Sports injuries: incidence, causes, prevention,” Physical Therapy Reviews, 2(3), pp. 135-151. [25] SEER Training Modules. “Anatomy & Physiology.” U. S. National Institutes of Health, National Cancer Institute. Accessed March 9, 2025. https://training.seer.cancer.gov/anatomy/ [26] 石井直方,2014,運動に関わる筋肉のしくみとトレーニング法 (徹底解剖),東京,日本,新星出版社。 [27] S. V. Brooks, 2003, “Current topics for teaching skeletal muscle physiology,” Advances in Physiology Education, 27 (4), pp. 171-182. [28] R. H. Crompton, B. Wood, S. W. Cummings, and C. Tangen, 2025, “Human Muscle System,” In Health & Medicine, Chicago. Illinois. USA: Encyclopaedia Britannica, Inc.. [29] International Olympic Committee. Accessed March 9, 2025. https://www.olympics.com/ [30] Global Association of International Sports Federations. Accessed March 9, 2025. https://www.sportaccord.sport/ [31] M. C. Gash, P. F. Kandle, I. V. Murray, and M. A. Varaca, 2023, “Physiology, Muscle Contraction,” StatPearls [Internet], Treasure Island. Florida: StatPearls Publishing. [32] 川島敏生,2014,ぜんぶわかる動作・運動別筋肉・関節のしくみ事典: リアルな部位別解剖図で詳細解説,東京,日本,成美堂出版。 [33] D. A. Neumann, 2016, Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation, Amsterdam. Netherlands: Elsevier. [34] K. Carr, and M. K. Feit, 2021, Functional Training Anatomy, Champaign. Illinois. USA: Human Kinetics. [35] J. Cronin, P. J. McNair, and R. N. Marshall, 2001, “Developing explosive power: A comparison of technique and training,” Journal of Science and Medicine in Sport, 4 (1), pp. 59-70. [36] R. U. Newton, A. J. Murphy, B. J. Humphries, G. J. Wilson, W. J. Kraemer, and K. Häkkinen, 1997, “Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements,” European Journal of Applied Physiology and Occupational Physiology, 75, pp. 333-342. [37] 林子鳶,相子元,2012,《瞬間變速訓練與離心加速式訓練法的 動力學分析與建議》,碩士論文,體育學系,國立臺灣師範大學。 [38] 小山裕史,1994,[新訂版]新トレーニング革命-初動負荷理論に基づくトレーニング体系の確立と展開,東京,日本,講談社。 [39] 小山裕史,1999, 初動負荷理論による野球トレーニング革命,東京,日本,ベースボール・マガジン社。 [40] 小山裕史,2004,「奇跡」のトレーニング 初動負荷理論が「世界」を変える,東京,日本,講談社。 [41] 小山裕史,鈴木秀次,2011,《初動負荷トレーニングによる神経筋の協応能の変化とその解析》,学位論文博士,人間科学研究科,早稲田大学。 [42] 小山裕史,鈴木秀次,2012,《初動負荷トレーニングによる神経筋の協応能の変化とその解析》,人間科学研究,25,pp. 154-155。 [43] 鈴木秀次,2007,《初動負荷トレーニング理論と運動機能改善》,人間科学研究,20 (補遺),p. 184。 [44] 鈴木秀次,2010,《初動負荷トレーニングの動作特性と効果》,2008-2010三年間科学研究費補助金研究成果報告書,早稲田大学。 [45] 小山裕史,鈴木秀次,2006,《初動負荷トレーニングでのかわし動作における筋活動様式と肩甲骨キネマティクス》,人間科学研究,19,p. 55。 [46] Y. Koyama, H. Kobayashi, S. Suzuki, and R. M. Enoka, 2008, “The spatial and temporal relations between EMG activity and joint displacement during the lat pull-down exercise,” XVII Congress of the International Society of Electrophysiology and Kinesiology, Niagara Falls. Ontario. Canada, 18-21 June 2008. [47] Y. Koyama, H. Kobayashi, S. Suzuki, and R. M. Enoka, 2010, “Enhancing the weight training experience: a comparison of limb kinematics and EMG activity on three machines,” European Journal of Applied Physiology, 109, pp. 789-801. [48] 小山裕史, 2001, 初動負荷トレーニング, The Journal of clinical sports medicine, 18, pp. 385-390. [49] 小山裕史,2014,希望のトレーニング 彼らは初動負荷トレーニングで何を見つけたのか,東京,日本,講談社。 [50] A. V. Hill, 1938, The Heat of Shortening and the Dynamic Constants of Muscle, Proceedings of the Royal Society of London. Series B, Biological Sciences, 126 (843), pp. 136-195. [51] 小林裕央,小山裕史,Roger M. Enoka,鈴木秀次,2009,《初動負荷トレーニングが高齢者の運動機能に与える影響》,人間科学研究,22 (1),p. 52。 [52] H. Kobayashi, Y. Koyama, and S. Suzuki, 2010, “Beginning movement load training improves steadiness of older adults during submaximal isometric contractions,” XVIII Congress of the International Society of Electrophysiology and Kinesiology, Aalborg. Denmark, 16-19 June 2010. [53] 小林裕央,鈴木秀次,2012,《高齢者の神経筋機能および日常身体活動に及ぼす初動負荷トレーニングの影響》,学位論文博士,人間科学研究科,早稲田大学。 [54] 小林裕央,鈴木秀次,2012,《高齢者の神経筋機能および日常身体活動に及ぼす初動負荷トレーニングの影響》,人間科学研究,25 (2),p. 304-305。 [55] H. Kobayashi, Y. Koyama, R. M. Enoka, and S. Suzuki, 2014, “A unique form of light-load training improves steadiness and performance on some functional tasks in older adults,” Scandinavian Journal of Medicine & Science in Sports, 24 (1), pp. 98-110. [56] 荒川慎也,小林裕央,小山裕史,鈴木秀次,2010,《初動負荷トレーニングが児童の体力・運動機能に与える影響》,人間科学研究,23 (1),p. 143。 [57] 小山裕史, 2007, トレーニング器具, Japan Patent, JP2007105542A. [58] 小山裕史, 2008, トレーニング器具, Japan Patent, JP4063821B2. [59] 小山裕史, 2008, トレーニング器具, Japan Patent, JP4063827B2. [60] Y. Koyama, 2010, Training apparatus, United States Patent, US7686746B2. [61] 小山裕史, 2010, 训练器具, China Patent, CN101048204B. [62] 小山裕史, 2010, トレーニング器具, Japan Patent, JP4559440B2. [63] Y. Koyama, 2011, Training apparatus, United States Patent, US7892153B2. [64] Y. Koyama, 2016, Übungsgerät, European Patent, EP1832316A1. [65] 小山裕史, 2023, トレーニング器具用負荷伝達機構部及びこれを用いたトレーニング器具, WIPO (PCT) Patent, WO2023021720A1. [66] 小山裕史, 2023, 訓練器材的負載傳遞機構部及使用該機構部的訓練器材, Taiwan Patent, TWI808583B. [67] 小山裕史, 2023, トレーニング器具, Japan Patent, JP2023119061A. [68] 小山裕史, 2023, トレーニング器具, Japan Patent, JP2023119062A. [69] 小山裕史, 2024, Unité de mécanisme de transmission de charge destinée à un appareil d'entraînement physique et appareil d'entraînement physique l'utilisant, WIPO (PCT) Patent, WO2024009742A1. [70] Y. Koyama, 2024, Load transmission mechanism unit for training device, and training device using same, United States Patent, US20240108941A1. [71] Y. Koyama, 2024, Lastübertragungsmechanismuseinheit für trainingsausrüstung und trainingsausrüstung damit, European Patent, EP4389241A1. [72] 小山裕史, 2024, 訓練器具用負荷傳遞機構及使用該負荷傳遞機構之訓練器具, Taiwan Patent, TWI858800B. [73] 小山裕史, 2025, トレーニング器具, Japan Patent, JP7627481B2. [74] 小山裕史, 2025, トレーニング器具用負荷伝達機構部及びこれを用いたトレーニング器具, Japan Patent, JP7634301B1. [75] 小山裕史, 2025, トレーニング器具, Japan Patent, JP7635961B2. [76] Y. Koyama, 2025, Load transmission mechanism unit for training machine and training machine employing same, United States Patent, US20250135262A1. [77] H. S. Yan, 1998, Creative Design of Mechanical Devices, Singapore: Springer Verlag. [78] A. G. Erdman, and G. N. Sandor, 1997, Mechanism Design Analysis and Synthesis, Volume 1, 3rd ed., New Jersey. America: Prentice Hall, Inc. [79] E. C. Kinzel, J. P. Schmiedeler, and G. R. Pennock, 2006, “Kinematic Synthesis for Finitely Separated Positions Using Geometric Constraint Programming,” ASME Journal of Mechanical Design, 128 (5), pp. 1070-1079. [80] E. C. Kinzel, J. P. Schmiedeler, and G. R. Pennock, 2007, “Function Generation With Finitely Separated Precision Points Using Geometric Constraint Programming,” ASME Journal of Mechanical Design, 129 (11), pp. 1185-1190. [81] J. P. Schmiedeler, B. C. Clark, E. C. Kinzel, and G. R. Pennock, 2011, “Kinematic Synthesis for Infinitesimally and Multiply Separated Positions Using Geometric Constraint Programming,” In Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 6: 35th Mechanisms and Robotics Conference, Parts A and B., 28-31 August 2011: pp. 435-443, Washington. DC. USA: ASME. [82] Worldwing Shonan. 2020. “ワールドウィング湘南 設置マシン紹介【SCAPULA<肩甲骨>4D-1000(両手)】” Youtube. Accessed April 30, 2025. https://www.youtube.com/watch?v=RBHCNepKdIU [83] Worldwing Shonan. 2020. “ワールドウィング湘南 設置マシン紹介【SCAPULA<肩甲骨>4D-2000(片手)】” Youtube. Accessed April 30, 2025. https://youtu.be/BmF3Dc4tErw?si=AaL7UkUoMKnXgQn2 [84] ワールドウィング京都. 2020. “SCAPULA 4D-1000 スキャプラー両側【肩甲骨】” Youtube. Accessed April 30, 2025. https://youtu.be/jYKkbYZhBe8?si=NksJ9QiA-efDWdlq [85] ワールドウィング京都. 2020. “SCAPULA 4D-2000 スキャプラー片側【肩甲骨】” Youtube. Accessed April 30, 2025. https://youtu.be/gtlySa3T8mw?si=bmb-93F28liaAO47 [86] [公式] ワールドウィング川崎・町田 - World Wing Kawasaki / Machida. 2020. “SCAPULA [肩甲骨] 4D-2000 - 解説動画” Youtube. Accessed April 30, 2025. https://youtu.be/bTVYo5_SGAc?si=f3ksRG0ZgNn_LL5p [87] 張晉瑈,劉雅硯,呂祐華,林威名,陳羽薰,徐冠倫,2024,《初動負荷理論器材之運動學分析》,第27屆全國機構與機器原理學術研討會論文集,論文編號:108,臺北市,臺灣。 [88] B. D. M. Chaparro-Rico, D. Cafolla, M. Ceccarelli, and E. Castillo-Castaneda, 2020, “NURSE-2 DoF Device for Arm Motion Guidance: Kinematic, Dynamic, and FEM Analysis,” Applied Sciences, 10 (6), 2139. [89] M. Casadio, V. Sanguineti, P. G. Morasso, and V. Arrichiello, 2006, “Braccio di Ferro: A new haptic workstation for neuromotor rehabilitation,” Technology and Health Care, 14 (3), pp. 123-142. [90] I. P. Corona-Acosta, and E. Castillo-Castaneda, 2015, “Dimensional Synthesis of a Planar Parallel Manipulator Applied to Upper Limb Rehabilitation,” Proceedings of the MUSME Conference. Multibody Mechatronic Systems. Mechanisms and Machine Science, 25, pp. 443-452. [91] J. Yamine, A. Prini, M. L. Nicora, T. Dinon, H. Giberti, and M. Malosio, 2020, “A Planar Parallel Device for Neurorehabilitation,” Robotics, 9 (4), 104. [92] D. Koo, P. H. Chang, M. K. Sohn, and J. H. Shin, 2011, “Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation,” 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), Zurich. Switzerland, 29 June-01 July 2011. [93] K. Y. Wu, Y. Y. Su, Y. L. Yu, C. H. Lin, and C. C. Lan, 2019, “A 5-Degrees-of-Freedom Lightweight Elbow-Wrist Exoskeleton for Forearm Fine-Motion Rehabilitation,” IEEE/ASME Transactions on Mechatronics, 24 (6), pp. 2684-2695. [94] 李柏翰,陳羽薰,2024,《具虛擬實境與外骨骼機構之上肢復健系統設計》,碩士論文,機械工程系,國立臺灣科技大學。 [95] O. Lambercy, A. J. Robles, Y. Kim, and R. Gassert, 2011, “Design of a robotic device for assessment and rehabilitation of hand sensory function,” 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), Zurich. Switzerland, 29 June-01 July 2011. [96] M. Fontana, S. Fabio, S. Marcheschi, and M. Bergamasco, 2013, “Haptic Hand Exoskeleton for Precision Grasp Simulation,” Journal of Mechanisms and Robotics, 5 (4). [97] S. Christensen, and S. Bai, 2015, “A Novel Shoulder Mechanism with a Double Parallelogram Linkage for Upper-Body Exoskeletons,” Proceedings of the 2nd International Symposium on Wearable Robotics (WeRob2016). Wearable Robotics: Challenges and Trends. Biosystems & Biorobotics, 26, pp. 51–56. [98] H. C. Hsieh, D. F. Chen, L. Chien, and C. C. Lan, 2017, “Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation,” IEEE/ASME Transactions on Mechatronics, 22 (5), pp. 2034-2045. [99] M. N. Castro, J. Rasmussen, M. S. Andersen, and S. Bai, 2019, “A compact 3-DOF shoulder mechanism constructed with scissors linkages for exoskeleton applications,” Mechanism and Machine Theory, 132, pp. 264-278. [100] R. Contini, 1972, “Body Segment Parameters, Part II,” Artificial Limbs, 16 (1), pp. 1-19. [101] R. A. R. C. Gopura, and K. Kiguchi, 2019, “Mechanical designs of active upper-limb exoskeleton robots: State-of-the-art and design difficulties,” 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto. Japan, 23-26 June 2009, pp. 178-187. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98949 | - |
| dc.description.abstract | 初動負荷理論訓練廣為所用,亦有不少運動員使用的實績成效,但並沒有以工程角度邏輯解析,因此本研究以機械工程角度系統化完成初動負荷理論證明,包含機構、軌跡、以及力學等分析,給未來想做相關研究的學者參考。
本研究提出一套設計流程,適用上肢訓練復健輔具與初動負荷輔具等的設計,可提供做輔具類相關醫工研究的學者參考。首先初動負荷理論進行證明,經由機構、軌跡、以及力學等分析方式,確認設計要點。因負荷傳遞部用六桿八接頭與八桿十一接頭,能改變的拘束度為1齒輪對與凸輪對皆已被小山裕史開發完畢,因此本研究結合其他類型的上肢連桿式輔具,以二自由度連桿機構取代負荷傳遞部,並以創意性機構設計方法推出13種上肢訓練裝置可行之機械裝置設計圖譜。 根據人體上肢範圍以及初動負荷訓練的定向動作,合成軌跡曲線並以方程式表示,合出男女性150至180公分8種身高尺寸的理想輪廓曲線,再以幾何約束方法針對13種可行構型進行機構尺寸與軌跡合成,合成出9個機構的最佳軌跡與尺寸,對每個機構進行運動學分析,並比較每個構型生成的最佳軌跡曲線與理想軌跡的誤差值,從中選定一種最佳機構。 本研究完成初動負荷理論證明之外設計出一款新型初動負荷訓練儀器,利用Creo建立CAD模型進行模擬,並針對軌跡分析與原機構比較,利用ADAMS模擬力學,驗證力學分析無誤,證實所設計之裝置符合初動負荷理論,CAD模型作可調式,可根據使用者的身高調整機構平台與軌跡導引,共有四段位,並解決原機構對於使用者動作不確實這點做改善。 | zh_TW |
| dc.description.abstract | This thesis investigates the Beginning Movement Load (BML) training theory, which is widely applied and has demonstrated practical effectiveness among many athletes. However, there has been no logical analysis from an engineering perspective. Therefore, this research systematically validates the BML theory from the standpoint of mechanical engineering, including analyses of mechanisms, motion trajectories, and mechanics, to serve as a reference for scholars conducting related studies in the future.
This research proposes a design process applicable to the development of upper-limb rehabilitation assistive devices and BML training apparatus, providing a methodological reference for biomedical engineering studies involving assistive equipment. First, the BML theory is validated through analyses of mechanisms, trajectories, and mechanical principles to identify key design points. Since the load transmission unit employs six-link eight-joint and eight-link eleven-joint mechanisms—where the modifiable degree of constraint (1 DOF) with gear pairs and cam pairs has already been developed by Yasushi Koyama—this research integrates other types of upper-limb linkage-based assistive devices by replacing the load transmission unit with a two-DOF linkage mechanism. Using a creative mechanism design method, 13 feasible mechanical configurations for upper-limb training devices are developed. Based on the range of motion of the human upper limb and the directional movements in BML training, motion trajectories are synthesized and expressed through mathematical equations. Ideal cam profile curves for eight height ranges (150–180 cm, for both male and female users) are generated. Using geometric constraint programming, mechanism dimensions and trajectories are synthesized for the 13 feasible configurations, resulting in nine optimal trajectory–dimension combinations. Each mechanism undergoes kinematic analysis, and the error between each generated optimal trajectory curve and the ideal trajectory is evaluated to select the most suitable mechanism. In addition to validating the BML theory, this research designs a novel BML training device. A CAD model is created in Creo for simulation, and trajectory analysis is performed in comparison with the original mechanism. Mechanical performance is verified using ADAMS simulation to confirm the accuracy of the mechanical analysis, demonstrating that the designed device meets BML training requirements. The CAD model features an adjustable design that allows the mechanism platform and trajectory guide to be adapted to the user’s height, with four adjustment levels. Furthermore, the design addresses and improves upon the inaccuracy of user movements observed in the original mechanism. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:24:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:24:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝辭 II 摘要 IV Abstract V 目次 VII 圖次 IX 表次 XIV 符號對照表 XV 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 論文架構 4 第二章 文獻回顧 6 2.1 人體肌群使用與肌力訓練 6 2.1.1 各類運動使用的肌群 6 2.1.2 六種肌力訓練動作比較 9 2.1.3 各肌群適合的肌力訓練 12 2.2 初動負荷 13 2.2.1 初動負荷理論 15 2.2.2 初動負荷訓練v.s.傳統重訓 18 2.2.3 初動負荷訓練成效 18 第三章 研究方法 22 3.1 初動負荷理論證明 23 3.2 機構設計 23 3.2.1 創意性機構設計方法 23 3.2.2 尺寸合成方法 24 3.3 模擬分析與驗證 25 第四章 理論證明 26 4.1 現有初動負荷輔具專利檢索 26 4.1.1 整體裝置 28 4.1.2 負荷傳遞部 29 4.2 機構分析 30 4.2.1 六桿八接頭 30 4.2.2 八桿十一接頭 37 4.3 機器尺寸與運動軌跡分析 42 4.4 力學分析 47 4.5 設計要點 57 第五章 機構設計 58 5.1 替代機構現有設計 58 5.2 構型生成 64 5.2.1 一般化 64 5.2.2 特殊化 68 5.2.3 具體化 78 5.3 機器尺寸與軌跡合成 81 第六章 模擬驗證 89 6.1 CAD建模與運動模擬 89 6.2 ADAMS力學分析與模擬驗證 93 第七章 結論 96 7.1 結論 96 7.2 未來展望 98 參考文獻 99 附錄A 合成最佳路徑與尺寸的機構 108 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 初動負荷理論/訓練 | zh_TW |
| dc.subject | 創意性機構設計 | zh_TW |
| dc.subject | 醫療輔具 | zh_TW |
| dc.subject | 復健器材 | zh_TW |
| dc.subject | 上肢訓練 | zh_TW |
| dc.subject | 力學分析 | zh_TW |
| dc.subject | Upper Limb Training | en |
| dc.subject | Beginning Movement Load Theory/Training (BMLT) | en |
| dc.subject | Creative Design of Mechanism | en |
| dc.subject | Assistive Devices | en |
| dc.subject | Rehabilitation Equipment | en |
| dc.subject | Static Force Analysis | en |
| dc.title | 上肢負荷訓練輔具之創意機構設計 | zh_TW |
| dc.title | Creative Mechanism Design of Assistive Device for Upper Limb Load Training | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳羽薰;石伊蓓 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Hsun Chen;Yi-Pei Shih | en |
| dc.subject.keyword | 初動負荷理論/訓練,創意性機構設計,醫療輔具,復健器材,上肢訓練,力學分析, | zh_TW |
| dc.subject.keyword | Beginning Movement Load Theory/Training (BMLT),Creative Design of Mechanism,Assistive Devices,Rehabilitation Equipment,Upper Limb Training,Static Force Analysis, | en |
| dc.relation.page | 114 | - |
| dc.identifier.doi | 10.6342/NTU202503685 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 12.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
